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Let A be a finite set and d ≥ 1 be an integer.
A configuration is a map x : Zd → A.

For example if d = 2 and A = {0, 1, 2} a configuration looks like:

1 0 2 2 1 0 2 1 0 2 1 1 0 2 1
0 2 1 1 0 2 1 0 2 1 0 2 2 1 0
2 1 0 2 2 1 0 2 1 0 2 1 1 0 2
1 0 2 1 1 0 2 1 0 2 1 0 2 2 1
0 2 1 0 2 2 1 0 2 1 0 2 1 1 0
2 1 0 2 1 1 0 2 1 0 2 1 0 2 2
1 0 2 1 0 2 2 1 0 2 1 0 2 1 1
0 2 1 0 2 1 1 0 2 1 0 2 1 0 2
2 1 0 2 1 0 2 2 1 0 2 1 0 2 1
1 0 2 1 0 2 1 0 2 2 1 0 2 1 0
2 2 1 0 2 1 0 2 1 1 0 2 1 0 2
1 1 0 2 1 0 2 1 0 2 2 1 0 2 1
0 2 2 1 0 2 1 0 2 1 1 0 2 1 0
2 1 1 0 2 1 0 2 1 0 2 2 1 0 2
1 0 2 2 1 0 2 1 0 2 1 1 0 2 1
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We say two configurations x , y ∈ AZd are asymptotic if there
exists a finite F ⊂ Zd such that x |Zd\F = y |Zd\F .

Given asymptotic x , y , we call F = {n ∈ Zd : xn 6= yn} their
difference set.
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Why the name “asymptotic”?

Let σ be the Zd action of AZd given by

σn(x)(m) = x(n + m) for every n,m ∈ Zd .

x , y are asymptotic if and only if for any sequence (nk)k∈N in Zd

with ‖nk‖ → ∞ then d(σnk (x), σnk (y))→ 0.

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Let x , y ∈ AZd be asymptotic.
Given S b Zd and a pattern p ∈ AS let

[p] = {z ∈ AZd : z |S = p}.

We wish to compute how many times p occurs in x vs how many
times it occurs in y .

We say an asymptotic pair x , y is indistinguishable if ∆p(x , y) = 0
for every pattern p.
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Example: Let d = 2 and S = {(0, 0), (0, 1), (1, 0), (2, 0)}.
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0 2 1 0 2 1 1 0 2 1 0 2 1 0 2
2 1 0 2 1 0 2 2 1 0 2 1 0 2 1
1 0 2 1 0 2 1 0 2 2 1 0 2 1 0
2 2 1 0 2 1 0 2 1 1 0 2 1 0 2
1 1 0 2 1 0 2 1 0 2 2 1 0 2 1
0 2 2 1 0 2 1 0 2 1 1 0 2 1 0
2 1 1 0 2 1 0 2 1 0 2 2 1 0 2
1 0 2 2 1 0 2 1 0 2 1 1 0 2 1

1 0 2 2 1 0 2 1 0 2 1 1 0 2 1
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0 2 1 0 2 1 0 2 2 1 0 2 1 0 2
2 1 0 2 1 0 2 1 1 0 2 1 0 2 1
1 0 2 1 0 2 1 0 2 2 1 0 2 1 0
2 2 1 0 2 1 0 2 1 1 0 2 1 0 2
1 1 0 2 1 0 2 1 0 2 2 1 0 2 1
0 2 2 1 0 2 1 0 2 1 1 0 2 1 0
2 1 1 0 2 1 0 2 1 0 2 2 1 0 2
1 0 2 2 1 0 2 1 0 2 1 1 0 2 1

4
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Example: Let d = 2 and S = {(0, 0), (0, 1), (1, 0), (2, 0)}.

x y

0 2 2 1 0 2
2 1 1 0 2 1
1 0 2 2 1 0
0 2 1 0 2 2

0 2 2 1 0 2
2 1 0 2 2 1
1 0 2 1 1 0
0 2 1 0 2 2

So for every pattern p with support S, we have ∆p(x , y) = 0.
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Examples:
(x , x) for any x ∈ AZd is an indistinguishable asymptotic pair.
We call it trivial.

If x , y ∈ AZd are asymptotic and on the same orbit
(σn(y) = x for some n ∈ Zd) then they are indistinguishable.

x y

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 1 0 0
0 0 0 0 1 1 1 1 1 0
0 0 0 0 1 1 1 1 1 0
0 0 0 0 0 1 1 1 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 1 0 1 0 0 0 0 0
0 1 1 1 1 1 0 0 0 0
0 1 1 1 1 1 0 0 0 0
0 0 1 1 1 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

Does there exist indistinguishable asymptotic pairs which are
not on the same orbit?
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Motivation

Consider n balls with real weights given by a map f .

1

f (1)

2

f (2)

3

f (3)

4

f (4)

5

f (5)

6

f (6)

7

f (7)

n

f (n)

· · ·

¿What is the probability distribution µ = (µ1, . . . , µn) on
{1, . . . , n} that maximizes entropy plus average weight?

max
µ

(
H(µ) +

∫
f dµ

)
= max

µ

n∑
i=1

(−µi log(µi ) + f (i)µi ) .

Answer: Boltzmann’s distribution.

µk = exp(f (k))∑n
i=1 exp(f (i)) .
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We can extend this idea to sets of configurations, yielding the
notion of Gibbs measures.
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Gibbs measures

A measure is Gibbs if it follows Boltzmann’s distribution on its
asymptotic relation.
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asymptotic relation.
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Gibbs measures

µ( | ) and µ( | ) follow Boltzmann’s distribution for some f .
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Gibbs Measures

Denote the set of all asymptotic pairs (x , y) by A. The Boltzmann
distribution of a Gibbs measure is determined by a cocycle
Ψ: A → R, that is, a map which satisfies:

Ψ(x , y) = Ψ(x , z) + Ψ(z , y) for all (x , y), (y , z) ∈ A.

Example: if all configurations all equally likely (that is, there is no
associated weight) we obtain the cocycle Ψ = 0 and the sole Gibbs
measure for Ψ is the uniform Bernoulli measure on AZd .
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1 The space of continuous, shift-invariant cocycles B is a
Banach space with an appropriate norm.

2 There is a natural evaluation map on B∗. For (x , y) ∈ A we
have evx ,y ∈ B∗ given by

evx ,y (Ψ) = Ψ(x , y) for every Ψ ∈ B.

3 It can be shown that the strong norm on B∗ is given by

‖evx ,y‖ = sup
SbZd

1
|S|

∑
p∈AS

|∆p(x , y)|.

4 An asymptotic pair gives the trivial linear functional if
and only if it is indistinguishable.
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Does there exist indistinguishable asymptotic pairs which are
not on the same orbit (for Z)?

TM (2018): Probably not, it should be possible to prove this
using the Fine and Wilf theorem.
SL (2019): Probably not, it should be possible to prove this
using the Fine and Wilf theorem.
ŠS (2019): Probably not, it should be possible to prove this
using the Fine and Wilf theorem.

Theorem (SB + SL + ŠS, 2021)
Yes. We completely characterize them on Z. They are closely
connected to Sturmian codings of irrational rotations.
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Basic properties of indistinguishable pairs:

(x , y) is indistinguishable if and only if ∆p(x , y) = 0 for every
S b Zd and pattern p ∈ AS .

Let (Sn)n∈N with Sn ↗ Zd . Then (x , y) is indistinguishable if and
only if ∆p(x , y) = 0 for every pattern p with support some Sn.

In particular, it suffices to check the property on rectangular
patterns (or words in the case of Z).

Indistinguishable asymptotic pairs are invariant under actions of
the affine group of Zd .

In particular, they are invariant under the shift map.
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Basic properties of indistinguishable pairs:

If (x , y) is an indistinguishable asymptotic pair and τ is a sliding
block code, then (τ(x), τ(y)) is an indistinguishable asymptotic
pair.

We say a sequence of asymptotic pairs (xn, yn)n∈N converges in the
asymptotic relation to (x , y) if both (xn)n∈N, (yn)n∈N converge to
x , y respectively, and there is F b Zd such that the difference set
of (xn, yn) is contained in F for every n ∈ N.

If (xn, yn)n∈N converges in the asymptotic relation to (x , y) and
every pair (xn, yn) is indistinguishable, then (x , y) is
indistinguishable.
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Basic properties of indistinguishable pairs:

Let (x , y) be a non-trivial indistinguishable asymptotic pair. If x is
not recurrent, then x and y lie on the same orbit.

Proof: Suppose x is not recurrent. Then there exists p ∈ AS

which occurs at x exactly once (say σk(x) ∈ [p]).
1 As x , y are indistinguishable, p also occurs exactly once on y ,

say σm(y) ∈ [p].
2 Let (Sn)n∈N with Sn ↗ Zd and S ⊂ Sn. Let pn = σk(x)|Sn

3 By definition σk(x) ∈ [pn]. Also, this n is unique. By
indistinguishability, we must have σm(y) ∈ [pn].

4 As
⋂

n∈N[pn] = σk(x), we conclude that σk(x) = σm(y).
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The case of Z

On Z life is easier (as opposed to Zd with d ≥ 2):

Let (x , y) be a non-trivial indistinguishable asymptotic pair. If a
pattern p occurs in x , then it occurs intersecting their difference
set.

Corollary: If x , y are indistinguishable with difference set
F = J0, k − 1K then their word complexity satisfies

|Ln(x)| ≤ k + n − 1.
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The case of Z

Let (x , y) be a non-trivial indistinguishable asymptotic pair. If x is
recurrent, then it is uniformly recurrent.

In particular, if (x , y) is an indistinguishable asymptotic pair, with
x recurrent and difference set F = {0, 1} then:

1 x , y are uniformly recurrent.
2 |Ln(x)| = |Ln(y)| = n + 1

Thus x , y must be Sturmian configurations!
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Let α ∈ [0, 1] \ Q. Consider the rotation Rα : S1 → S1 given by
Rα(x) = x + α.
Consider the partition P = {P0 = [0, 1− α), [1− α, 1)}.

α =
√

5−1
2 .

α•
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Formally, given α ∈ [0, 1] \ Q let cα ∈ {0, 1}Z be given by

cα(n) = bα(n + 1)c − bαnc.

Choosing instead the partition P ′ = {P0 = (0, 1− α], (1− α, 1]}
gives

c ′α(n) = dα(n + 1)e − dαne.

The pair (cα, c ′α) is asymptotic with difference set F = {−1, 0}.

The pair (cα, c ′α) is indistinguishable. In fact, every pattern in their
language occurs exactly once intersecting each of their difference
sets.
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Theorem: B, Labbé and Starosta
Let x , y ∈ {0, 1}Z and assume that x is recurrent. The following
are equivalent:

(x , y) is an indistinguishable asymptotic pair with difference
set F = {−1, 0} such that x−1x0 = 10 and y−1y0 = 01

There exists α ∈ [0, 1] \ Q such that x = cα and y = c ′α are
the lower and upper characteristic Sturmian sequences of
slope α.

But there is more...

19
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The non-recurrent case is an asymptotic limit of Sturmians.
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n→∞
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c ′αn .
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The general case can be obtained from Sturmians using shifts and
substitutions.
Theorem: B, Labbé and Starosta
Let A be a finite alphabet and x , y ∈ AZ a non-trivial asymptotic
pair. Then x , y is indistinguishable if and only if either

x is recurrent and there exists α ∈ [0, 1] \ Q, a substitution
ϕ : {0, 1} → A+ and an integer m ∈ Z such that

{x , y} = {σmϕ(σ(cα)), σmϕ(σ(c ′α))},

x is not recurrent and there exists a substitution
ϕ : {0, 1} → A+ and an integer m ∈ Z such that

{x , y} = {σmϕ(∞0.10∞), σmϕ(∞0.010∞)}.

21



What about d ≥ 2?

Things are much harder:
Patterns may occur without intersecting the difference set.
recurrent indistinguishable pairs may not be uniformly
recurrent.
Substitutions do not help reduce the problem to a small size
difference set (no good notion of derived sequences).
In general, there is no complexity bound.
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Example:

x y

2 2 2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 2 2 2 2
1 0 0 1 0 0 1 0 1 0 0 1
2 2 2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 2 2 2 2
1 0 0 1 0 1 0 0 1 0 0 1
2 2 2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 2 2 2 2

The horizontal configuration is a 1-dimensional indistinguishable
pair, everything else is the symbol 2.

Recurrent but not uniformly recurrent.
Some patterns do not occur in the difference set.
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Theorem: B and Labbé.
Let d ≥ 1 and x , y ∈ {0, . . . , d}Zd be an asymptotic pair with
difference set F = {0,−e1, . . . ,−ed}. TFAE:

1 The asymptotic pair (x , y) is indistinguishable, satisfies the
flip condition and x is uniformly recurrent.

2 There exists a totally irrational vector α ∈ [0, 1)d such that
x = cα and y = c ′α are the characteristic multidimensional
Sturmian configurations of slope α.
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Theorem: B and Labbé.
Let d ≥ 1 and x , y ∈ {0, . . . , d}Zd be an asymptotic pair such that
x is uniformly recurrent and which satisfies the flip condition with
difference set F = {0,−e1, . . . ,−ed}. TFAE:

1 The asymptotic pair (x , y) is indistinguishable.
2 For every nonempty finite connected subset S ⊂ Zd and

p ∈ LS(x) ∪ LS(y), p intersects the difference set F exactly
once in both x and y .

3 For every nonempty finite connected subset S ⊂ Zd , we have

|LS(x)| = |LS(y)| = |F − S|.

4 There exists a totally irrational vector α ∈ [0, 1)d such that
x = cα and y = c ′α are the characteristic multidimensional
Sturmian configurations of slope α.
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Multidimensional Sturmian Configurations

Let (α1, . . . , αd ) ∈ Rd and consider the associated rotations
Rα1 , . . . ,Rαd .

If (1, α1, . . . , αd ) is rationally independent, then the Zd -action
on S1 generated by the Rαi is free.
Consider the partition W of S1 generated by refining the
Sturmian partitions Pi = {[0, 1− αi ), [1− αi , 1)} for every
1 ≤ i ≤ d .
Respectively, let W ′ be the partition of S1 generated by
refining the Sturmian partitions P ′i = {(0, 1− αi ], (1− αi , 1]}
for every 1 ≤ i ≤ d .

The characteristic Sturmian configurations cα, c ′α of slope α are
the codings of 0 under the Zd -orbit generated by the rotations Rαi

and the partitions W and W ′ respectively.
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Given α = (α1, . . . , αd ) ∈ [0, 1]d , let τ ∈ Sd such that
1 ≥ ατ(1) ≥ ατ(2) ≥ · · · ≥ ατ(d) ≥ 0.

Then the partitions W and W ′ are given by:

1− ατ(1) 1− ατ(2)1− ατ(3) 1− ατ(d)0 1

· · ·

W0

W1

W2

Wd

W ′
0

W ′
1

W ′
2

W ′
d
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Explicitly, given α = (α1, . . . , αd ) we have

cα : Zd → {0, . . . , d}

n 7→
d∑

i=1
(bαi + n · αc − bn · αc) ,

and

c ′α : Zd → {0, . . . , d}

n 7→
d∑

i=1
(dαi + n · αe − dn · αe) .

The configurations cα, c ′α are asymptotic with difference set
F = {0,−e1, . . . ,−ed}.

28



Explicitly, given α = (α1, . . . , αd ) we have

cα : Zd → {0, . . . , d}

n 7→
d∑

i=1
(bαi + n · αc − bn · αc) ,

and

c ′α : Zd → {0, . . . , d}

n 7→
d∑

i=1
(dαi + n · αe − dn · αe) .

The configurations cα, c ′α are asymptotic with difference set
F = {0,−e1, . . . ,−ed}.

28



Recall the picture from the beginning:

x y

1 0 2 2 1 0 2 1 0 2 1 1 0 2 1
0 2 1 1 0 2 1 0 2 1 0 2 2 1 0
2 1 0 2 2 1 0 2 1 0 2 1 1 0 2
1 0 2 1 1 0 2 1 0 2 1 0 2 2 1
0 2 1 0 2 2 1 0 2 1 0 2 1 1 0
2 1 0 2 1 1 0 2 1 0 2 1 0 2 2
1 0 2 1 0 2 2 1 0 2 1 0 2 1 1
0 2 1 0 2 1 1 0 2 1 0 2 1 0 2
2 1 0 2 1 0 2 2 1 0 2 1 0 2 1
1 0 2 1 0 2 1 0 2 2 1 0 2 1 0
2 2 1 0 2 1 0 2 1 1 0 2 1 0 2
1 1 0 2 1 0 2 1 0 2 2 1 0 2 1
0 2 2 1 0 2 1 0 2 1 1 0 2 1 0
2 1 1 0 2 1 0 2 1 0 2 2 1 0 2
1 0 2 2 1 0 2 1 0 2 1 1 0 2 1

1 0 2 2 1 0 2 1 0 2 1 1 0 2 1
0 2 1 1 0 2 1 0 2 1 0 2 2 1 0
2 1 0 2 2 1 0 2 1 0 2 1 1 0 2
1 0 2 1 1 0 2 1 0 2 1 0 2 2 1
0 2 1 0 2 2 1 0 2 1 0 2 1 1 0
2 1 0 2 1 1 0 2 1 0 2 1 0 2 2
1 0 2 1 0 2 2 1 0 2 1 0 2 1 1
0 2 1 0 2 1 0 2 2 1 0 2 1 0 2
2 1 0 2 1 0 2 1 1 0 2 1 0 2 1
1 0 2 1 0 2 1 0 2 2 1 0 2 1 0
2 2 1 0 2 1 0 2 1 1 0 2 1 0 2
1 1 0 2 1 0 2 1 0 2 2 1 0 2 1
0 2 2 1 0 2 1 0 2 1 1 0 2 1 0
2 1 1 0 2 1 0 2 1 0 2 2 1 0 2
1 0 2 2 1 0 2 1 0 2 1 1 0 2 1

We have x = cα and y = c ′α respectively for

α =
(√

2
2 ,
√
19− 4

)
.
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Flip Condition

Let x , y ∈ {0, . . . , d}Zd be an asymptotic pair. We say it satisfies
the flip condition if:

1 the difference set of x and y is F = {0,−e1, . . . ,−ed},
2 the restriction x |F is a bijection F → {0, . . . , d} such that

x0 = 0,
3 yn = xn − 1 mod (d + 1) for every n ∈ F .

The conditions above induce a permutation on {0, . . . , d} defined
by yn 7→ xn for every n ∈ F , which is the cyclic permutation
(0, 1, . . . , d) of the alphabet.
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The flip condition can be interpreted as flipping the unit hypercube
on a co-dimension 1 discrete subspace.
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Theorem: B and Labbé.
Let d ≥ 1 and x , y ∈ {0, . . . , d}Zd be an asymptotic pair such that
x is uniformly recurrent and which satisfies the flip condition with
difference set F = {0,−e1, . . . ,−ed}. TFAE:

1 The asymptotic pair (x , y) is indistinguishable.
2 For every nonempty finite connected subset S ⊂ Zd and

p ∈ LS(x) ∪ LS(y), p intersects the difference set F exactly
once in both x and y .

3 For every nonempty finite connected subset S ⊂ Zd , we have

|LS(x)| = |LS(y)| = |F − S|.

4 There exists a totally irrational vector α ∈ [0, 1)d such that
x = cα and y = c ′α are the characteristic multidimensional
Sturmian configurations of slope α.
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For every nonempty finite connected subset S ⊂ Zd , we have

|LS(x)| = |LS(y)| = |F − S|.

Say cα ∈ {0, 1, 2}Z
d and you need to know how many patterns

with support S b Z2 there are.
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For every nonempty finite connected subset S ⊂ Zd , we have

|LS(x)| = |LS(y)| = |F − S|.

Say cα ∈ {0, 1, 2}Z
d and you need to know how many patterns

with support S b Z2 there are.

S = F = F − S =

There are exactly 14 patterns with support S on a 2-dimensional
Sturmian configuration.
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Let (m1, . . . ,md ) ∈ Nd and consider the rectangle

R =
d∏

i=1
J0,mi − 1K.

In this case we get a beautiful formula for the rectangular
complexity of a multidimensional Sturmian configuration x :

|LR(x)| = |L(m1,...,md )(x)| = m1 · · ·md

(
1 + 1

m1
+ · · ·+ 1

md

)
.

We can interpret it as |F − R|, which is the volume of R, plus the
volume of each of the d − 1 dimensional faces.
B For d = 1 we recover Ln(x) = n + 1.
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Thanks!

Indistinguishable asymptotic pairs and multidimensional
Sturmian configurations.

S. Barbieri, S. Labbé
https://arxiv.org/abs/2204.06413

A characterization of Sturmian sequences by
indistinguishable asymptotic pairs
S. Barbieri, S. Labbé, Š. Starosta

https://doi.org/10.1016/j.ejc.2021.103318
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