Essential difference between the repetitive threshold and asymptotic repetitive threshold

Ľubomíra Dvořáková joint work with Edita Pelantová

FNSPE Czech Technical University in Prague

One World CoW Seminar January, 23, 2023

Program

- Critical exponent
 - Repetitive threshold
 - Repetitive threshold of balanced sequences
- Asymptotic critical exponent
 - Asymptotic repetitive threshold
 - Asymptotic repetitive threshold of balanced sequences

Program

- Critical exponent
 - Repetitive threshold
 - Repetitive threshold of balanced sequences
- Asymptotic critical exponent
 - Asymptotic repetitive threshold
 - Asymptotic repetitive threshold of balanced sequences

Rational powers

Definition

If a word z is a prefix of uuuuuu $\cdots = u^{\omega}$, then z is a fractional power of u, we write $z = u^{e}$, where $e = \frac{|z|}{|u|}$.

Example

kabelkabel =
$$(kabel)^2$$

kabelkabelkabel = $(kabel)^3$
kabelka = $(kabel)^{\frac{7}{5}}$

Critical exponent

Definition

The critical exponent of a sequence u is

$$E(\mathbf{u}) = \sup\{e \in \mathbb{Q} : u^e \text{ is a non-empty factor of } \mathbf{u}\}.$$

The repetitive threshold for $d \ge 2$:

$$RT(d) = \inf\{E(\mathbf{u}) : \mathbf{u} \text{ is a } d\text{-ary sequence}\}.$$

Example

The Thue-Morse sequence $\mathbf{u}_{TM}=$ abbabaabbaababaab... $\mathbf{u}_{TM}=\varphi(\mathbf{u}_{TM})$, where $\varphi:\mathbf{a}\to\mathbf{a}\mathbf{b}$, $\mathbf{b}\to\mathbf{b}\mathbf{a}$ \mathbf{u}_{TM} does not contain overlaps: xwxwx, where w is a factor and x is a letter. Hence $E(\mathbf{u}_{TM})=2$ and RT(2)=2.

Critical exponent

Definition

The critical exponent of a sequence **u** is

$$E(\mathbf{u}) = \sup\{e \in \mathbb{Q} : u^e \text{ is a non-empty factor of } \mathbf{u}\}.$$

The repetitive threshold for $d \ge 2$:

$$RT(d) = \inf\{E(\mathbf{u}) : \mathbf{u} \text{ is a } d\text{-ary sequence}\}.$$

Example

The Thue-Morse sequence $\mathbf{u}_{TM} = \mathtt{abbabaabbabaabaabaab} \dots$

$$\mathbf{u}_{\mathit{TM}} = arphi(\mathbf{u}_{\mathit{TM}})$$
, where $arphi$: a o ab, ba

 \mathbf{u}_{TM} does not contain overlaps: xwxwx, where w is a factor and x is a letter. Hence $E(\mathbf{u}_{TM}) = 2$ and RT(2) = 2.

Repetitive threshold

Theorem (Dejean)

- RT(2) = 2;
- RT(3) = 7/4;
- RT(4) = 7/5;
- $RT(d) = 1 + \frac{1}{d-1}$ for $d \ge 5$.

Definition

A sequence is **balanced** if, for any two of its factors u and v, holds $|u| = |v| \Rightarrow ||u|_a - |v|_a| \le 1$.

The **repetitive threshold of balanced sequences** for $d \ge 2$ $RTB(d) = \inf\{E(\mathbf{v}) : \mathbf{v} \text{ } d\text{-ary balanced sequence}\}$.

Theorem (Carpi, de Luca, 2000)

$$RTB(2) = 2 + \frac{1+\sqrt{5}}{2}$$
.

Definition

A sequence is **balanced** if, for any two of its factors u and v, holds $|u| = |v| \Rightarrow ||u|_a - |v|_a| \le 1$.

The repetitive threshold of balanced sequences for $d \ge 2$ $RTB(d) = \inf\{E(\mathbf{v}) : \mathbf{v} \text{ } d\text{-ary balanced sequence}\}$.

Theorem (Carpi, de Luca, 2000)

$$RTB(2) = 2 + \frac{1+\sqrt{5}}{2}.$$

Definition

A sequence is **balanced** if, for any two of its factors u and v, holds $|u| = |v| \Rightarrow |u|_a - |v|_a \le 1$.

The **repetitive threshold of balanced sequences** for $d \ge 2$ $RTB(d) = \inf\{E(\mathbf{v}) : \mathbf{v} \text{ } d\text{-ary balanced sequence}\}$.

Theorem (Rampersad, Shallit, Vandomme, 2019)

$$RTB(3) = 2 + \frac{1}{\sqrt{2}}$$
 and $RTB(4) = 1 + \frac{1+\sqrt{5}}{4}$.

Definition

A sequence is **balanced** if, for any two of its factors u and v, holds $|u| = |v| \Rightarrow |u|_a - |v|_a \le 1$.

The repetitive threshold of balanced sequences for $d \ge 2$ $RTB(d) = \inf\{E(\mathbf{v}) : \mathbf{v} \text{ } d\text{-ary balanced sequence}\}.$

Theorem (Baranwal, Shallit, 2019, 2020)

$$RTB(d) = 1 + \frac{1}{d-3} \text{ for } 5 \le d \le 8.$$

Definition

A sequence is **balanced** if, for any two of its factors u and v, holds $|u| = |v| \Rightarrow |u|_a - |v|_a \le 1$.

The repetitive threshold of balanced sequences for $d \ge 2$ $RTB(d) = \inf\{E(\mathbf{v}) : \mathbf{v} \text{ } d\text{-ary balanced sequence}\}$.

Theorem (Dolce, D., Pelantová, 2021)

$$RTB(d) = 1 + \frac{1}{d-3} \text{ for } 9 \le d \le 10.$$

Definition

A sequence is **balanced** if, for any two of its factors u and v, holds $|u| = |v| \Rightarrow |u|_a - |v|_a \le 1$.

The repetitive threshold of balanced sequences for $d \ge 2$ $RTB(d) = \inf\{E(\mathbf{v}) : \mathbf{v} \text{ } d\text{-ary balanced sequence}\}$.

Theorem (D., Opočenská, Pelantová, Shur, 2022)

 $RTB(d) = 1 + \frac{1}{d-2}$ for d = 11 and all even numbers $d \ge 12$.

Definition

A sequence is **balanced** if, for any two of its factors u and v, holds $|u| = |v| \Rightarrow |u|_a - |v|_a \le 1$.

The repetitive threshold of balanced sequences for $d \ge 2$ $RTB(d) = \inf\{E(\mathbf{v}) : \mathbf{v} \text{ } d\text{-ary balanced sequence}\}$.

Theorem (D., Opočenská, Pelantová, Shur, 2022)

$$RTB(d) \ge 1 + \frac{1}{d-2}$$
 for $d \ge 11$.

Program

- Critical exponent
 - Repetitive threshold
 - Repetitive threshold of balanced sequences
- Asymptotic critical exponent
 - Asymptotic repetitive threshold
 - Asymptotic repetitive threshold of balanced sequences

Definition

The asymptotic critical exponent of a sequence **u** is

$$E^*(\mathbf{u}) = +\infty$$
 if $E(\mathbf{u}) = +\infty$ and otherwise

$$E^*(\mathbf{u}) = \limsup_{n \to \infty} \{ e \in \mathbb{Q} : u^e \text{ is a factor of } \mathbf{u} \text{ for some } u \text{ of length } n \}.$$

$$RT^*(d) = \inf\{E^*(\mathbf{u}) : \mathbf{u} \text{ is a } d\text{-ary sequence}\}.$$

•
$$E^*(u) \le E(u)$$

Definition

The asymptotic critical exponent of a sequence **u** is

$$E^*(\mathbf{u}) = +\infty$$
 if $E(\mathbf{u}) = +\infty$ and otherwise

$$E^*(\mathbf{u}) = \limsup_{n \to \infty} \{ e \in \mathbb{Q} : u^e \text{ is a factor of } \mathbf{u} \text{ for some } u \text{ of length } n \}.$$

$$RT^*(d) = \inf\{E^*(\mathbf{u}) : \mathbf{u} \text{ is a } d\text{-ary sequence}\}.$$

- $E^*(\mathbf{u}) \leq E(\mathbf{u})$
- ullet if E(f u) is irrational, then $E^*(f u)=E(f u)$ (Fibonacci $2+rac{1+\sqrt{5}}{2}$)

Definition

The asymptotic critical exponent of a sequence **u** is

$$E^*(\mathbf{u}) = +\infty$$
 if $E(\mathbf{u}) = +\infty$ and otherwise

 $E^*(\mathbf{u}) = \limsup_{n \to \infty} \{ e \in \mathbb{Q} : u^e \text{ is a factor of } \mathbf{u} \text{ for some } u \text{ of length } n \}.$

$$RT^*(d) = \inf\{E^*(\mathbf{u}) : \mathbf{u} \text{ is a } d\text{-ary sequence}\}.$$

- $E^*(\mathbf{u}) \leq E(\mathbf{u})$
- ullet if E(f u) is irrational, then $E^*(f u)=E(f u)$ (Fibonacci $2+rac{1+\sqrt{5}}{2}$)
- $E^*(\mathbf{u}_{TM}) = E(\mathbf{u}_{TM}) = 2$

Definition

The asymptotic critical exponent of a sequence **u** is

$$E^*(\mathbf{u}) = +\infty$$
 if $E(\mathbf{u}) = +\infty$ and otherwise

$$E^*(\mathbf{u}) = \limsup_{n \to \infty} \{ e \in \mathbb{Q} : u^e \text{ is a factor of } \mathbf{u} \text{ for some } u \text{ of length } n \}.$$

$$RT^*(d) = \inf\{E^*(\mathbf{u}) : \mathbf{u} \text{ is a } d\text{-ary sequence}\}.$$

- $E^*(\mathbf{u}) \leq E(\mathbf{u})$
- ullet if E(f u) is irrational, then $E^*(f u)=E(f u)$ (Fibonacci $2+rac{1+\sqrt{5}}{2}$)
- $E^*(\mathbf{u}_{TM}) = E(\mathbf{u}_{TM}) = 2$

Theorem (D., Opočenská, Pelantová, 2022)

$$RT^*(d) = 1$$
 for every $d \ge 2$.

Theorem (D., Opočenská, Pelantová, 2022)

 $RT^*(d) = 1$ for every $d \ge 2$.

• Set
$$d = F_k$$
 if F_k even, $F_k \ge 12$

Theorem (D., Opočenská, Pelantová, 2022)

$$RT^*(d) = 1$$
 for every $d \ge 2$.

- Set $d = F_k$ if F_k even, $F_k \ge 12$
- Find a uniformly recurrent *d*-ary balanced sequence ${\bf v}$ with $E({\bf v})=1+\frac{1}{d-2}$

Theorem (D., Opočenská, Pelantová, 2022)

$$RT^*(d) = 1$$
 for every $d \ge 2$.

- Set $d = F_k$ if F_k even, $F_k \ge 12$
- Find a uniformly recurrent d-ary balanced sequence ${\bf v}$ with $E({\bf v})=1+rac{1}{d-2}$
- Define a morphism $\psi:\{0,1,\ldots,d-1\}^* \to \{0,1\}^*$ $\psi(i)=110(i)_{\mathsf{Fib}}$

Theorem (D., Opočenská, Pelantová, 2022)

$$RT^*(d) = 1$$
 for every $d \ge 2$.

- Set $d = F_k$ if F_k even, $F_k \ge 12$
- Find a uniformly recurrent d-ary balanced sequence ${\bf v}$ with $E({\bf v})=1+rac{1}{d-2}$
- Define a morphism $\psi:\{0,1,\ldots,d-1\}^* \to \{0,1\}^*$ $\psi(i)=110(i)_{\mathsf{Fib}}$
- Define $\mathbf{u}^{(k)} = \psi(\mathbf{v})$

Theorem (D., Opočenská, Pelantová, 2022)

$$RT^*(d) = 1$$
 for every $d \ge 2$.

Proof: Construction of a uniformly recurrent binary sequence $\mathbf{u}^{(k)}$ with $E^*(\mathbf{u}^{(k)}) \leq 1 + \frac{2}{F_k - 3}$ for infinitely many $k \Rightarrow RT^*(2) = 1$.

- Set $d = F_k$ if F_k even, $F_k \ge 12$
- Find a uniformly recurrent d-ary balanced sequence ${f v}$ with $E({f v})=1+rac{1}{d-2}$
- Define a morphism $\psi:\{0,1,\ldots,d-1\}^* \to \{0,1\}^*$ $\psi(i)=110(i)_{\mathsf{Fib}}$
- Define $\mathbf{u}^{(k)} = \psi(\mathbf{v})$

Corollary (RT versus RT^*)

Let
$$d \ge 2$$
, then $RT^*(d) = 1 < 1 + \frac{1}{d-1} \le RT(d)$.

Theorem (D., Opočenská, Pelantová, 2022)

 $RT^*(d) = 1$ for every $d \ge 2$.

Proof: Construction of a uniformly recurrent binary sequence $\mathbf{u}^{(k)}$ with $E^*(\mathbf{u}^{(k)}) \leq 1 + \frac{2}{F_k - 3}$ for infinitely many $k \Rightarrow RT^*(2) = 1$.

- Set $d = F_k$ if F_k even, $F_k \ge 12$
- Find a uniformly recurrent d-ary balanced sequence ${\bf v}$ with $E({\bf v})=1+rac{1}{d-2}$
- Define a morphism $\psi:\{0,1,\ldots,d-1\}^* \to \{0,1\}^*$ $\psi(i)=110(i)_{\mathsf{Fib}}$
- Define $\mathbf{u}^{(k)} = \psi(\mathbf{v})$

Corollary (RT versus RT^*)

Let
$$d \ge 2$$
, then $RT^*(d) = 1 < 1 + \frac{1}{d-1} \le RT(d)$.

Asymptotic repetitive threshold of balanced sequences

Definition

The asymptotic repetitive threshold of balanced sequences for d > 2

$$RTB^*(d) = \inf\{E^*(\mathbf{v}) : \mathbf{v} \text{ balanced } d\text{-ary sequence}\}.$$

Theorem (D., Opočenská, Pelantová, 2022)

$$RTB^*(d) \ge 1 + \frac{1}{2^{d-2}} \text{ for } d \ge 2.$$

Asymptotic repetitive threshold of balanced sequences

Definition

The asymptotic repetitive threshold of balanced sequences for d > 2

$$RTB^*(d) = \inf\{E^*(\mathbf{v}) : \mathbf{v} \text{ balanced } d\text{-ary sequence}\}.$$

Theorem (D., Opočenská, Pelantová, 2022)

$$RTB^*(d) \ge 1 + \frac{1}{2^{d-2}} \text{ for } d \ge 2.$$

Theorem (D., Opočenská, Pelantová, 2022)

$$RTB^*(d)$$
 for $2 \le d \le 10$.

Asymptotic repetitive threshold of balanced sequences

Definition

The asymptotic repetitive threshold of balanced sequences for d > 2

$$RTB^*(d) = \inf\{E^*(\mathbf{v}) : \mathbf{v} \text{ balanced } d\text{-ary sequence}\}.$$

Theorem (D., Opočenská, Pelantová, 2022)

$$RTB^*(d) \ge 1 + \frac{1}{2^{d-2}} \text{ for } d \ge 2.$$

Theorem (D., Opočenská, Pelantová, 2022)

$$RTB^*(d)$$
 for $2 \le d \le 10$.

$RTB^*(d)$ for $d \leq 10$

d	RTB*(d)	RTB(d)
2	$2 + \frac{1 + \sqrt{5}}{2} \doteq 3.618034$	$2 + \frac{1+\sqrt{5}}{2}$
3	$2 + \frac{\sqrt{2}}{2} \doteq 2.707107$	$2 + \frac{\sqrt{2}}{2}$
4	$1 + \frac{\sqrt{5}+1}{4} \doteq 1.809017$	$1 + \frac{\sqrt{5}+1}{4}$
5	$\frac{3}{2} = 1.5$	3 2
6	$\frac{75+3\sqrt{65}}{80} \doteq 1.239835$	$\frac{4}{3} \doteq 1.3333333$
7	$\frac{49+\sqrt{577}}{64} \doteq 1.140950$	$\frac{5}{4} = 1.25$
8	$1 + \frac{3 - \sqrt{5}}{16} \doteq 1.047746$	$\frac{6}{5} = 1.2$
9	$\frac{21-\sqrt{20}}{16} \doteq 1.032992$	$\frac{7}{6} \doteq 1.166667$
10	$\frac{364-21\sqrt{7}}{304} \doteq 1.014603$	$\frac{8}{7} \doteq 1.142857$

Asymptotic behavior of $RTB^*(d)$

Observing the table

$$RTB^*(7) < 1 + \frac{1}{7}, RTB^*(8) < 1 + \frac{1}{20},$$

$$RTB^*(9) < 1 + \frac{1}{30}, RTB^*(10) < 1 + \frac{1}{68}.$$

Conjecture

There exists q > 1

$$RTB^*(d) < 1 + \frac{1}{q^d}$$
 for sufficiently large d.

Corollary (RTB versus RTB*)

$$RTB^*(d) < 1 + \frac{1}{a^d} < 1 + \frac{1}{d-2} \le RTB(d).$$

Balanced sequences

Theorem (Graham 1973, Hubert 2000)

v recurrent aperiodic is balanced iff v obtained from a Sturmian sequence u over $\{a,b\}$ by replacing

- a's with a constant gap sequence y over A,
- ullet b's with a constant gap sequence $\hat{oldsymbol{y}}$ over \mathcal{B} ,

where A and B disjoint. We write $\mathbf{v} = \operatorname{colour}(\mathbf{u}, \mathbf{y}, \hat{\mathbf{y}})$.

Example

```
\mathbf{v} = \operatorname{colour}(\mathbf{u}_F, \mathbf{y}, \hat{\mathbf{y}}), where \mathbf{y} = (1323)^\omega and \hat{\mathbf{y}} = (\hat{1}\hat{3}\hat{2}\hat{3})^\omega \mathbf{u}_F = \text{abaababaabaabaabaabaabaabaabaab} \cdots \mathbf{v} = 1\hat{1}32\hat{3}3\hat{2}13\hat{3}23\hat{1}1\hat{3}32\hat{2}3\hat{3}13\hat{1}23\hat{3}1\hat{2}32\hat{3}\cdots "discolouration map" \pi replaces all letters from \mathcal{A} by a and all letters from \mathcal{B} by b, i.e., \pi(\mathbf{v}) = \mathbf{u}_F and \pi(1\hat{1}32\hat{3}3\hat{2}) = \text{abaabab}.
```

Balanced sequences

Theorem (Graham 1973, Hubert 2000)

v recurrent aperiodic is balanced iff v obtained from a Sturmian sequence u over $\{a,b\}$ by replacing

- a's with a constant gap sequence y over A,
- ullet b's with a constant gap sequence $\hat{oldsymbol{y}}$ over \mathcal{B} ,

where A and B disjoint. We write $\mathbf{v} = \operatorname{colour}(\mathbf{u}, \mathbf{y}, \hat{\mathbf{y}})$.

Example

```
\mathbf{v} = \operatorname{colour}(\mathbf{u}_F, \mathbf{y}, \hat{\mathbf{y}}), where \mathbf{y} = (1323)^\omega and \hat{\mathbf{y}} = (\hat{1}\hat{3}\hat{2}\hat{3})^\omega \mathbf{u}_F = \text{abaababaabaabaabaabaabaabaabaab}. \mathbf{v} = 1\hat{1}32\hat{3}3\hat{2}13\hat{3}23\hat{1}1\hat{3}32\hat{2}3\hat{3}123\hat{3}1\hat{2}32\hat{3}\cdots "discolouration map" \pi replaces all letters from \mathcal{A} by a and all letters from \mathcal{B} by b, i.e., \pi(\mathbf{v}) = \mathbf{u}_F and \pi(1\hat{1}32\hat{3}3\hat{2}) = \text{abaabab}.
```

Computation of asymptotic critical exponent

Proposition (D., Pelantová)

Let **u** be a uniformly recurrent aperiodic sequence. Let w_n be the n-th bispecial of **u** and v_n a shortest return word to w_n . Then

$$E(\mathbf{u}) = 1 + \sup\{\frac{|w_n|}{|v_n|} : n \in \mathbb{N}\}$$
 and $E^*(\mathbf{u}) = 1 + \limsup_{n \to \infty} \frac{|w_n|}{|v_n|}$.

Colouring of the Fibonacci sequence

Definition

Let $\delta \geq 1$ and $d = 2\delta$. Define a d-ary sequence $\mathbf{v}_{\delta} = \operatorname{colour}(\mathbf{u}_{F}, \mathbf{y}_{\delta}, \hat{\mathbf{y}}_{\delta})$, where the period of \mathbf{y}_{δ} and $\hat{\mathbf{y}}_{\delta}$ is $H = 2^{\delta - 1}$.

The sequence \mathbf{v}_{δ} is aperiodic, balanced and uniformly recurrent.

Example

$$\mathbf{y}_1 = \mathbf{1}^{\omega}, \quad \mathbf{y}_2 = (12)^{\omega}, \quad \mathbf{y}_3 = (1323)^{\omega}, \quad \mathbf{y}_4 = (14342434)^{\omega}, \text{ etc.}$$

Return words to bispecials in \mathbf{v}_{δ}

- Consider a sufficiently long factor w in \mathbf{v}_{δ} , then w is bispecial in \mathbf{v}_{δ} iff $\pi(w) = b$ is bispecial in \mathbf{u}_{F} .
- If v is a return word to w, then $\pi(v)$ is a concatenation of return words to b.
- $|\pi(v)|_a$ and $|\pi(v)|_b$ are divisible by H.

Example

$$\mathbf{v}_3 = \operatorname{colour}(\mathbf{u}_F, \mathbf{y}_3, \hat{\mathbf{y}}_3), \ \mathbf{y}_3 = (1213)^{\omega} \ \text{and} \ \hat{\mathbf{y}}_3 = (\hat{1}\hat{2}\hat{1}\hat{3})^{\omega}, \ H = 4$$

 $w = \mathbf{1}\hat{1}\mathbf{3}\mathbf{2}\hat{3}\mathbf{3}, \ b = \pi(w) = \text{abaaba}, \ |\pi(v)|_a = 32, \ |\pi(v)|_b = 20.$

 $\underline{1\hat{1}32\hat{3}3}\hat{2}13\hat{3}23\hat{1}1\hat{3}32\hat{2}3\hat{3}13\hat{1}23\hat{3}1\hat{2}32\hat{3}31\hat{1}2\hat{2}13\hat{1}1\hat{3}21\hat{1}31\hat{2}2\hat{1}13\hat{3}\underline{1}\hat{1}21\hat{2}3\cdots$

Return words to bispecials in \mathbf{v}_{δ}

- Consider a sufficiently long factor w in \mathbf{v}_{δ} , then w is bispecial in \mathbf{v}_{δ} iff $\pi(w) = b$ is bispecial in \mathbf{u}_{F} .
- If v is a return word to w, then $\pi(v)$ is a concatenation of return words to b.
- $|\pi(v)|_a$ and $|\pi(v)|_b$ are divisible by H.

Lemma

Consider a sufficiently long bispecial w in \mathbf{v}_{δ} and its return word v. There exist $N, \kappa, \lambda \in \mathbb{N}, \kappa + \lambda \geq 1$, such that

- $|w| = F_{N+3} 2;$
- $|v| = H(\kappa F_{N+2} + \lambda F_{N+1});$
- $|\kappa \tau \lambda| < \frac{\tau^2}{H}.$

If
$$au^{N_0+1} < H = 2^{\delta-1} < au^{N_0+2}$$
 for some $N_0 \ge 1$, then

$$E^*(\mathbf{v}_\delta) \leq 1 + rac{1}{H au^{N_0-1}}.$$

Proof.

• By Lemma
$$\exists N, \kappa, \lambda \in \mathbb{N}, \kappa + \lambda \ge 1$$

 $|w| = F_{N+3} - 2, \quad |v| = H(\kappa F_{n+2} + \lambda F_{n+1}), \quad |\kappa - \tau \lambda| < \frac{\tau^2}{H}$

If
$$au^{N_0+1} < H = 2^{\delta-1} < au^{N_0+2}$$
 for some $N_0 \geq 1$, then

$$E^*(\mathbf{v}_\delta) \leq 1 + rac{1}{H au^{N_0-1}}.$$

Proof.

- By Lemma $\exists N, \kappa, \lambda \in \mathbb{N}, \kappa + \lambda \ge 1$ $|w| = F_{N+3} - 2, \quad |v| = H(\kappa F_{n+2} + \lambda F_{n+1}), \quad |\kappa - \tau \lambda| < \frac{\tau^2}{H}$
- By properties of Fibonacci numbers $|F_{N_0+1}-\tau F_{N_0}|=\frac{1}{\tau^{N_0}}<\frac{\tau^2}{H}<\frac{1}{\tau^{N_0-1}}=|F_{N_0}-\tau F_{N_0-1}|$

If
$$au^{N_0+1} < H = 2^{\delta-1} < au^{N_0+2}$$
 for some $N_0 \geq 1$, then

$$E^*(\mathbf{v}_\delta) \leq 1 + rac{1}{H au^{N_0-1}}.$$

Proof.

- By Lemma $\exists N, \kappa, \lambda \in \mathbb{N}, \kappa + \lambda \ge 1$ $|w| = F_{N+3} - 2, \quad |v| = H(\kappa F_{n+2} + \lambda F_{n+1}), \quad |\kappa - \tau \lambda| < \frac{\tau^2}{H}$
- By properties of Fibonacci numbers $|F_{N_0+1} \tau F_{N_0}| = \frac{1}{\tau^{N_0}} < \frac{\tau^2}{H} < \frac{1}{\tau^{N_0-1}} = |F_{N_0} \tau F_{N_0-1}|$
- ullet By theory of Diophantine approximations $\kappa \geq F_{N_0+1}, \ \lambda \geq F_{N_0}$

If
$$au^{N_0+1} < H = 2^{\delta-1} < au^{N_0+2}$$
 for some $N_0 \ge 1$, then

$$E^*(\mathbf{v}_\delta) \leq 1 + rac{1}{H au^{N_0-1}}.$$

Proof.

- By Lemma $\exists N, \kappa, \lambda \in \mathbb{N}, \kappa + \lambda \ge 1$ $|w| = F_{N+3} - 2, \quad |v| = H(\kappa F_{n+2} + \lambda F_{n+1}), \quad |\kappa - \tau \lambda| < \frac{\tau^2}{H}$
- By properties of Fibonacci numbers $|F_{N_0+1} \tau F_{N_0}| = \frac{1}{\tau^{N_0}} < \frac{\tau^2}{H} < \frac{1}{\tau^{N_0-1}} = |F_{N_0} \tau F_{N_0-1}|$
- ullet By theory of Diophantine approximations $\kappa \geq F_{N_0+1}, \ \lambda \geq F_{N_0}$

$$\bullet \ \frac{|w|}{|v|} = \frac{F_{N+3} - 2}{H(\kappa F_{N+2} + \lambda F_{N+1})} \le \frac{F_{N+3} - 2}{H(F_{N_0 + 1} F_{N+2} + F_{N_0} F_{N+1})} \le \frac{F_{N+3}}{HF_{N_0 + N+2}}$$

If
$$au^{N_0+1} < H = 2^{\delta-1} < au^{N_0+2}$$
 for some $N_0 \ge 1$, then

$$E^*(\mathbf{v}_\delta) \leq 1 + \frac{1}{H\tau^{N_0-1}}.$$

Proof.

- By Lemma $\exists N, \kappa, \lambda \in \mathbb{N}, \kappa + \lambda \ge 1$ $|w| = F_{N+3} - 2, \quad |v| = H(\kappa F_{n+2} + \lambda F_{n+1}), \quad |\kappa - \tau \lambda| < \frac{\tau^2}{H}$
- By properties of Fibonacci numbers $|F_{N_0+1} \tau F_{N_0}| = \frac{1}{\tau^{N_0}} < \frac{\tau^2}{H} < \frac{1}{\tau^{N_0-1}} = |F_{N_0} \tau F_{N_0-1}|$
- By theory of Diophantine approximations $\kappa \geq F_{N_0+1}, \ \lambda \geq F_{N_0}$

$$\bullet \ \frac{|w|}{|v|} = \frac{F_{N+3} - 2}{H(\kappa F_{N+2} + \lambda F_{N+1})} \le \frac{F_{N+3} - 2}{H(F_{N_0+1}F_{N+2} + F_{N_0}F_{N+1})} \le \frac{F_{N+3}}{HF_{N_0+N+2}}$$

•
$$E^*(\mathbf{v}_\delta) = 1 + \limsup_{N \to \infty} \frac{|w|}{|v|} \le 1 + \frac{1}{H\tau^{N_0 - 1}}$$

If
$$au^{N_0+1} < H = 2^{\delta-1} < au^{N_0+2}$$
 for some $N_0 \ge 1$, then

$$E^*(\mathbf{v}_\delta) \leq 1 + rac{1}{H au^{N_0-1}}.$$

Proof.

- By Lemma $\exists N, \kappa, \lambda \in \mathbb{N}, \kappa + \lambda \ge 1$ $|w| = F_{N+3} - 2, \quad |v| = H(\kappa F_{n+2} + \lambda F_{n+1}), \quad |\kappa - \tau \lambda| < \frac{\tau^2}{H}$
- By properties of Fibonacci numbers $|F_{N_0+1} \tau F_{N_0}| = \frac{1}{\tau^{N_0}} < \frac{\tau^2}{H} < \frac{1}{\tau^{N_0-1}} = |F_{N_0} \tau F_{N_0-1}|$
- By theory of Diophantine approximations $\kappa \geq F_{N_0+1}, \ \lambda \geq F_{N_0}$

$$\bullet \ \frac{|w|}{|v|} = \frac{F_{N+3} - 2}{H(\kappa F_{N+2} + \lambda F_{N+1})} \le \frac{F_{N+3} - 2}{H(F_{N_0 + 1} F_{N+2} + F_{N_0} F_{N+1})} \le \frac{F_{N+3}}{HF_{N_0 + N+2}}$$

•
$$E^*(\mathbf{v}_\delta) = 1 + \limsup_{N \to \infty} \frac{|w|}{|v|} \le 1 + \frac{1}{H\tau^{N_0-1}}$$

Theorem

Let $d \in \mathbb{N}$, d > 1, d even. Then

$$1 + \frac{1}{2^{d-2}} \leq RTB^*(d) < 1 + \frac{\tau^3}{2^{d-2}}.$$

Corollary

Let $d \in \mathbb{N}$, d > 1, d even. Then

$$RTB^*(d+1) \le RTB^*(d) < 1 + \frac{\tau^3}{2d-2}$$
.

Theorem

Let $d \in \mathbb{N}$, d > 1, d even. Then

$$1 + \frac{1}{2^{d-2}} \leq RTB^*(d) < 1 + \frac{\tau^3}{2^{d-2}}.$$

Corollary

Let $d \in \mathbb{N}$, d > 1, d even. Then

$$RTB^*(d+1) \le RTB^*(d) < 1 + \frac{\tau^3}{2^{d-2}}$$
.

Conjecture (proven)

There exists q > 1

$$RTB^*(d) < 1 + \frac{1}{q^d}$$
 for sufficiently large d .

Theorem

Let $d \in \mathbb{N}$, d > 1, d even. Then

$$1 + \frac{1}{2^{d-2}} \le RTB^*(d) < 1 + \frac{\tau^3}{2^{d-2}}$$
.

Corollary

Let $d \in \mathbb{N}$, d > 1, d even. Then

$$RTB^*(d+1) \le RTB^*(d) < 1 + \frac{\tau^3}{2^{d-2}}$$
.

Conjecture (proven)

There exists q > 1

$$RTB^*(d) < 1 + \frac{1}{q^d}$$
 for sufficiently large d .

- The upper bound from Theorem (coloured Fibonacci) is optimal for d=2,4,8 and it is close to the value of $RTB^*(d)$ for every even $d \le 10$. We conjecture that the bound is attained for infinitely many even d's.
- What is the value of $RTB^*(d)$ for $d \ge 11$?

- The upper bound from Theorem (coloured Fibonacci) is optimal for d=2,4,8 and it is close to the value of $RTB^*(d)$ for every even $d \le 10$. We conjecture that the bound is attained for infinitely many even d's.
- What is the value of $RTB^*(d)$ for $d \ge 11$?
- Is $RTB(d) = 1 + \frac{1}{d-2}$ for $d \ge 13$, d odd? We know $RTB(d) \ge 1 + \frac{1}{d-2}$.

- The upper bound from Theorem (coloured Fibonacci) is optimal for d=2,4,8 and it is close to the value of $RTB^*(d)$ for every even $d \le 10$. We conjecture that the bound is attained for infinitely many even d's.
- What is the value of $RTB^*(d)$ for $d \ge 11$?
- Is $RTB(d) = 1 + \frac{1}{d-2}$ for $d \ge 13$, d odd? We know $RTB(d) \ge 1 + \frac{1}{d-2}$.

Thank you for attention