On a Faithful Representation of Sturmian Monoid

Štěpán Starosta
joint work with Jana Lepšová and Edita Pelantová
Czech Technical University in Prague
March 27, 2023
One World Combinatorics on Words Seminar

Representation of a monoid

Let $(\mathcal{M}, *)$ be a monoid
Let $L(V)$ be the set of all linear operators on a vector space V.
A representation of the monoid $(\mathcal{M}, *)$ is a mapping $\mathcal{R}: \mathcal{M} \rightarrow L(V)$ such that

$$
\mathcal{R}(x * y)=\mathcal{R}(x) \circ \mathcal{R}(y) \quad \text { for every } x, y \in \mathcal{M}
$$

Representation of a monoid

Let $(\mathcal{M}, *)$ be a monoid
Let $L(V)$ be the set of all linear operators on a vector space V.
A representation of the monoid $(\mathcal{M}, *)$ is a mapping $\mathcal{R}: \mathcal{M} \rightarrow L(V)$ such that

$$
\mathcal{R}(x * y)=\mathcal{R}(x) \circ \mathcal{R}(y) \quad \text { for every } x, y \in \mathcal{M}
$$

Example: Let \mathcal{A} be a finite alphabet. Consider the monoid of all morphisms over \mathcal{A}^{*} with composition ○:
$\mathcal{R}: \varphi \mapsto M_{\varphi}$, where M_{φ} is the incidence matrix of φ, is a representation.
We have $M_{\varphi \circ \psi}=M_{\varphi} M_{\psi}$.

Representation of a monoid

Let $(\mathcal{M}, *)$ be a monoid
Let $L(V)$ be the set of all linear operators on a vector space V.
A representation of the monoid $(\mathcal{M}, *)$ is a mapping $\mathcal{R}: \mathcal{M} \rightarrow L(V)$ such that

$$
\mathcal{R}(x * y)=\mathcal{R}(x) \circ \mathcal{R}(y) \quad \text { for every } x, y \in \mathcal{M}
$$

Example: Let \mathcal{A} be a finite alphabet. Consider the monoid of all morphisms over \mathcal{A}^{*} with composition ○:
$\mathcal{R}: \varphi \mapsto M_{\varphi}$, where M_{φ} is the incidence matrix of φ, is a representation.
We have $M_{\varphi \circ \psi}=M_{\varphi} M_{\psi}$.
A representation \mathcal{R} is faithful if \mathcal{R} is injective, i.e. if $x \neq y$, then $\mathcal{R}(x) \neq \mathcal{R}(y)$.

Sturmian monoid / Monoid of Sturm

Definition: A morphism $\varphi:\{0,1\}^{*} \mapsto\{0,1\}^{*}$ is Sturmian if the sequence $\varphi(\mathrm{u})$ is Sturmian for any Sturmian sequence u.

Monoid of Sturm is the set of all Sturmian morphisms with composition o, it is generated by

$$
E:\left\{\begin{array}{l}
0 \rightarrow 1 \\
1 \rightarrow 0
\end{array} \quad, \quad G:\left\{\begin{array}{l}
0 \rightarrow 0 \\
1 \rightarrow 01
\end{array} \quad \text { and } \quad \widetilde{G}:\left\{\begin{array}{l}
0 \rightarrow 0 \\
1 \rightarrow 10
\end{array}\right.\right.\right.
$$

Sturmian monoid / Monoid of Sturm

Definition: A morphism $\varphi:\{0,1\}^{*} \mapsto\{0,1\}^{*}$ is Sturmian if the sequence $\varphi(\mathrm{u})$ is Sturmian for any Sturmian sequence u.

Monoid of Sturm is the set of all Sturmian morphisms with composition o, it is generated by

$$
E:\left\{\begin{array}{l}
0 \rightarrow 1 \\
1 \rightarrow 0
\end{array} \quad, \quad G:\left\{\begin{array}{l}
0 \rightarrow 0 \\
1 \rightarrow 01
\end{array} \quad \text { and } \quad \widetilde{G}:\left\{\begin{array}{l}
0 \rightarrow 0 \\
1 \rightarrow 10
\end{array}\right.\right.\right.
$$

Special Monoid of Sturm \mathcal{M} is generated by

$$
G:\left\{\begin{array}{l}
0 \rightarrow 0 \\
1 \rightarrow 01
\end{array} \quad, \widetilde{G}:\left\{\begin{array}{l}
0 \rightarrow 0 \\
1 \rightarrow 10
\end{array}, D:\left\{\begin{array}{l}
0 \rightarrow 10 \\
1 \rightarrow 1
\end{array} \quad, \widetilde{D}:\left\{\begin{array}{l}
0 \rightarrow 01 \\
1 \rightarrow 1
\end{array}\right.\right.\right.\right.
$$

Lower and upper Sturmian sequences

Lower and upper mechanical sequences:

$$
\mathbf{s}_{\alpha, \delta}(n):=\lfloor\alpha(n+1)+\delta\rfloor-\lfloor\alpha n+\delta\rfloor
$$

and

$$
\mathbf{s}_{\alpha, \delta}^{\prime}(n):=\lceil\alpha(n+1)+\delta\rceil-\lceil\alpha n+\delta\rceil
$$

for each $n \in \mathbb{N}$.

If $\alpha \in(0,1)$ is irrational, then
$\mathrm{s}_{\alpha, \delta}$ is the lower Sturmian sequence with slope α and intercept δ;
$\mathrm{s}_{\alpha, \delta}^{\prime}$ is the upper Sturmian sequence with slope α and intercept δ.

Two interval exchange

Two interval exchange

Two interval exchange

Two interval exchange

Given $\rho \in I_{0} \cup I_{1}$, the infinite sequence $u=u_{0} u_{1} u_{2} \ldots$ defined by

$$
u_{n}= \begin{cases}0 & \text { if } T^{n}(\rho) \in I_{0}, \\ 1 & \text { if } T^{n}(\rho) \in I_{1},\end{cases}
$$

equals the lower Sturmian sequence with slope $\frac{\ell_{1}}{\ell_{0}+\ell_{1}}$ and intercept $\frac{\rho}{\ell_{0}+\ell_{1}}$, i.e., $\mathrm{u}=\mathrm{s} \frac{\ell_{1}}{\ell_{0}+\ell_{1}}, \frac{\rho}{\ell_{0}+\ell_{1}}$.

Vector of parameters of the sequence u

u is fully described by the vector of parameters $\left(\ell_{0}, \ell_{1}, \rho\right)$ except for the fact whether it is lower or upper Sturmian sequence
u is also described by any $c\left(\ell_{0}, \ell_{1}, \rho\right)$ for $c>0$.

Vector of parameters of the sequence u

u is fully described by the vector of parameters $\left(\ell_{0}, \ell_{1}, \rho\right)$ except for the fact whether it is lower or upper Sturmian sequence
u is also described by any $c\left(\ell_{0}, \ell_{1}, \rho\right)$ for $c>0$.

For $\delta \in(0,1), \mathrm{s}_{\alpha, \delta}$ and $\mathrm{s}_{\alpha, \delta}^{\prime}$ have the same parameters;
$\mathrm{s}_{\alpha, 0}$ has parameters $(1-\alpha, \alpha, 0)$;
$\mathrm{s}_{\alpha, 0}^{\prime}$ has parameters $(1-\alpha, \alpha, 1)$.

Action of generators of \mathcal{M} on u

[Parvaix, 1997]

$$
G\left(\mathbf{s}_{\alpha, \delta}\right)=\mathrm{s}_{\frac{\alpha}{1+\alpha}, \frac{\delta}{1+\alpha}}, \quad \widetilde{G}\left(\mathrm{~s}_{\alpha, \delta}\right)=\mathrm{s}_{\frac{\alpha}{1+\alpha}, \frac{\alpha+\delta}{1+\alpha}} \quad \text { and } \quad E\left(\mathrm{~s}_{\alpha, \delta}\right)=\mathrm{s}^{\prime}{ }_{1-\alpha, 1-\delta} .
$$

Let u be a lower (upper) Sturmian sequence with parameters (ℓ_{0}, ℓ_{1}, ρ). The lower (upper) Sturmian sequence

- $\underset{G}{G}(\mathrm{u})$ has parameters $\left(\ell_{0}+\ell_{1}, \ell_{1}, \rho\right)$;
- $\widetilde{G}(\mathrm{u})$ has parameters $\left(\ell_{0}+\ell_{1}, \ell_{1}, \rho+\ell_{1}\right)$;
- $D(\mathrm{u})$ has parameters $\left(\ell_{0}, \ell_{0}+\ell_{1}, \rho+\ell_{0}\right)$;
- $\widetilde{D}(\mathrm{u})$ has parameters $\left(\ell_{0}, \ell_{0}+\ell_{1}, \rho\right)$.

Action of generators of \mathcal{M} on u

[Parvaix, 1997]

$$
G\left(\mathrm{~s}_{\alpha, \delta}\right)=\mathrm{s}_{\frac{\alpha}{1+\alpha}, \frac{\delta}{1+\alpha}}, \quad \widetilde{G}\left(\mathrm{~s}_{\alpha, \delta}\right)=\mathrm{s}_{\frac{\alpha}{1+\alpha}, \frac{\alpha+\delta}{1+\alpha}} \quad \text { and } \quad E\left(\mathrm{~s}_{\alpha, \delta}\right)=\mathrm{s}^{\prime}{ }_{1-\alpha, 1-\delta} .
$$

Let u be a lower (upper) Sturmian sequence with parameters (ℓ_{0}, ℓ_{1}, ρ). The lower (upper) Sturmian sequence

- $G(\mathrm{u})$ has parameters $\left(\ell_{0}+\ell_{1}, \ell_{1}, \rho\right)$;
- $\widetilde{G}(\mathrm{u})$ has parameters $\left(\ell_{0}+\ell_{1}, \ell_{1}, \rho+\ell_{1}\right)$;
- $D(\mathrm{u})$ has parameters $\left(\ell_{0}, \ell_{0}+\ell_{1}, \rho+\ell_{0}\right)$;
- $\widetilde{D}(\mathrm{u})$ has parameters $\left(\ell_{0}, \ell_{0}+\ell_{1}, \rho\right)$.

$$
R_{G}=\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right), \quad R_{\widetilde{G}}=\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 1 & 1
\end{array}\right), \quad R_{\widetilde{D}}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right), \quad \text { and } \quad R_{D}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
1 & 1 & 0 \\
1 & 0 & 1
\end{array}\right) .
$$

In particular, if $\left(\begin{array}{c}\ell_{0} \\ \ell_{1} \\ \rho\end{array}\right)$ are parameters of u, then $\mathcal{R}(\psi)\left(\begin{array}{c}\ell_{0} \\ \ell_{1} \\ \rho\end{array}\right)$ are parameters of $\psi(\mathrm{u})$ for $\psi \in\{G, \widetilde{G}, D, \widetilde{D}\}$.

Representation $\mathcal{R}: \mathcal{M} \mapsto \mathbb{R}^{3 \times 3}$
\mathcal{M} is not free: its presentation is for any $k \in \mathbb{N}$

$$
G D^{k} \widetilde{G}=\widetilde{G} \widetilde{D}^{k} G \quad \text { and } \quad D G^{k} \widetilde{D}=\widetilde{D} \widetilde{G}^{k} D
$$

[Theorem 2.3.14, Lothaire: Algebraic combinatorics on words]

Representation $\mathcal{R}: \mathcal{M} \mapsto \mathbb{R}^{3 \times 3}$

\mathcal{M} is not free: its presentation is for any $k \in \mathbb{N}$

$$
G D^{k} \widetilde{G}=\widetilde{G} \widetilde{D}^{k} G \quad \text { and } \quad D G^{k} \widetilde{D}=\widetilde{D} \widetilde{G}^{k} D
$$

[Theorem 2.3.14, Lothaire: Algebraic combinatorics on words]

$$
\mathcal{R}\left(G D^{k} \widetilde{G}\right)=\mathcal{R}\left(\widetilde{G} \widetilde{D}^{k} G\right) \quad \text { and } \quad \mathcal{R}\left(D G^{k} \widetilde{D}\right)=\mathcal{R}\left(\widetilde{D} \widetilde{G}^{k} D\right)
$$

For $\psi=\varphi_{1} \circ \varphi_{2} \circ \cdots \circ \varphi_{n} \in \mathcal{M}=\langle G, \widetilde{G}, D, \widetilde{D}\rangle, \varphi_{i} \in\{G, \widetilde{G}, D, \widetilde{D}\}$ set

$$
\mathcal{R}(\psi)=R_{\varphi_{1}} R_{\varphi_{2}} \cdots R_{\varphi_{n}} .
$$

$\Psi \in \mathcal{M}$ maps a lower Sturmian sequence to a lower Sturmian sequence, and an upper Sturmian sequence to an upper Sturmian sequences.
\mathcal{R} is a faithful representation of \mathcal{M}.

Fixed points

$\mathcal{R}(\psi)=\left(\begin{array}{lll}a & b & 0 \\ c & d & 0 \\ e & f & 1\end{array}\right), \quad$ with $a, b, c, d, e, f \in \mathbb{N}$ and $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=M_{\psi}$.

Theorem 1 (Lepšová, Pelantová, S., 2022)

Let $\psi \in \mathcal{M}$ be a primitive morphism and u be a Sturmian sequence with the vector of parameters $\left(\ell_{0}, \ell_{1}, \rho\right)$. The sequence u is fixed by ψ if and only if $\left(\ell_{0}, \ell_{1}, \rho\right)^{\top}$ is an eigenvector to the dominant eigenvalue of $\mathcal{R}(\psi)$.

Fixed points

$\mathcal{R}(\psi)=\left(\begin{array}{lll}a & b & 0 \\ c & d & 0 \\ e & f & 1\end{array}\right), \quad$ with $a, b, c, d, e, f \in \mathbb{N}$ and $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=M_{\psi}$.

Theorem 1 (Lepšová, Pelantová, S., 2022)

Let $\psi \in \mathcal{M}$ be a primitive morphism and u be a Sturmian sequence with the vector of parameters $\left(\ell_{0}, \ell_{1}, \rho\right)$. The sequence u is fixed by ψ if and only if $\left(\ell_{0}, \ell_{1}, \rho\right)^{\top}$ is an eigenvector to the dominant eigenvalue of $\mathcal{R}(\psi)$.

We could work with the whole Sturmian monoid with

$$
R_{E}=\left(\begin{array}{ccc}
0 & 1 & 0 \\
1 & 0 & 0 \\
1 & 1 & -1
\end{array}\right)
$$

However, that makes things more complicated, and we know that if ψ is Sturmian, then $\psi^{2} \in \mathcal{M}$.

Characterization of $\mathcal{R}(\mathcal{M})$ by convex closed cones

$$
\mathcal{R}(\mathcal{M}) \subset S /(\mathbb{N}, 3)=\left\{M \in \mathbb{N}^{3 \times 3}: \operatorname{det} R=1\right\} \subset S I(\mathbb{Z}, 3)
$$

Characterization of $\mathcal{R}(\mathcal{M})$ by convex closed cones

$$
\mathcal{R}(\mathcal{M}) \subset S I(\mathbb{N}, 3)=\left\{M \in \mathbb{N}^{3 \times 3}: \operatorname{det} R=1\right\} \subset S I(\mathbb{Z}, 3)
$$

Put

$$
\begin{aligned}
& C_{1}:=\left\{(x, y, z)^{\top} \in \mathbb{R}^{3}: 0 \leq x, 0 \leq y, 0 \leq z \leq x+y\right\}, \\
& C_{2}:=\left\{(x, y, z)^{\top} \in \mathbb{R}^{3}: 0 \leq x, 0 \geq y, y \leq z \leq x\right\}, \text { and } \\
& C_{3}:=\left\{(0,0, z)^{\top} \in \mathbb{R}^{3}: 0 \leq z\right\}
\end{aligned}
$$

If $\psi \in \mathcal{M}$, then

$$
\mathcal{R}(\psi)\left(C_{1}\right) \subset C_{1}, \quad(\mathcal{R}(\psi))^{-1}\left(C_{2}\right) \subset C_{2}, \quad \text { and } \quad \mathcal{R}(\psi)\left(C_{3}\right)=C_{3}
$$

Theorem 2 (Lepšová, Pelantová, S., 2022)
$\mathcal{R}(\mathcal{M})=\left\{R \in S I(\mathbb{Z}, 3): R\left(C_{1}\right) \subset C_{1}, R^{-1}\left(C_{2}\right) \subset\left(C_{2}\right), R\left(C_{3}\right)=C_{3}\right\}$.

Application 1

Which parameters ℓ_{0}, ℓ_{1}, ρ allow the relevant Sturmian sequence to be fixed by a primitive substitution?

Theorem 3 (Yasutomi, 1999)

Let u be a Sturmian sequence with the parameters $(1-\alpha, \alpha, \rho)$, where $\alpha \in(0,1)$ is irrational and $\rho \in[0,1)$. The sequence u is fixed by a primitive morphism if and only if
(1) α and ρ belong to the same quadratic field $\mathbb{Q}(\sqrt{m})$;
(2) $\bar{\alpha} \notin(0,1)$;
(3) $\min \{\bar{\alpha}, 1-\bar{\alpha}\} \leq \bar{\rho} \leq \max \{\bar{\alpha}, 1-\bar{\alpha}\}$, where the mapping $x \mapsto \bar{x}$ is the non-trivial field automorphism on $\mathbb{Q}(\sqrt{m})$ induced by $\sqrt{m} \mapsto-\sqrt{m}$.

The faithful representation \mathcal{R} allows for a short proof of the implication (\Longrightarrow).

Proof of [Yasutomi, 1999] (\Longrightarrow) I

Assume u is a Sturmian sequence with the parameters $(1-\alpha, \alpha, \rho)^{\top}=\vec{p}, \alpha \in(0,1)$ is irrational and $\rho \in[0,1), \Psi(\mathrm{u})=\mathrm{u}$ for a primitive morphism Ψ.

By Theorem 1: \vec{p} is an eigenvector of the dominant eigenvalue Λ of $\mathcal{R}(\psi)=\left(\begin{array}{ccc}a & b & 0 \\ c & d & 0 \\ e & f & 1\end{array}\right)$
In detail: Λ is an eigenvalue of the primitive matrix $M_{\psi}=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ with eigenvector $(1-\alpha, \alpha)^{\top}$, hence
(1) Λ is quadratic, say $\mathbb{Q}(\Lambda)=\mathbb{Q}(\sqrt{m})$;
(2) $1-\alpha, \alpha \in \mathbb{Q}(\Lambda)$;
(3) $e(1-\alpha)+f \alpha+1 \rho=\Lambda \rho$ implies $\rho \in \mathbb{Q}(\Lambda)$.

Proof of [Yasutomi, 1999] (\Longrightarrow) II

$\bar{\Lambda}$ is another eigenvalue, its eigenvector is $\overline{\vec{p}}=(1-\bar{\alpha}, \bar{\alpha}, \bar{\rho})^{\top}$ is eigenvector The last eigenvector is $(0,0,1)^{\top}$.

By Theorem 2: $\mathcal{R}(\Psi)^{-1} C_{2} \subset C_{2}$.
Therefore, by Brouwer's theorem, at least one eigenvector of $\mathcal{R}(\Psi)^{-1}$ belongs to C_{2}.
$\mathcal{R}(\Psi)$ shares eigenvectors with $\mathcal{R}(\Psi)^{-1}$.

Proof of [Yasutomi, 1999] (\Longrightarrow) III

An eigenvector of $\mathcal{R}(\Psi)$ belongs to
$C_{2}=\left\{(x, y, z)^{\top} \in \mathbb{R}^{3}: 0 \leq x, 0 \geq y, y \leq z \leq x\right\}$
$(0,0,1)^{\top} \notin C_{2}$
Since $\alpha \in(0,1), \vec{p}=(1-\alpha, \alpha, \rho)^{\top} \notin C_{2}$
Hence: $\overline{\vec{p}}$ or $-\vec{p}$ is in C_{2}.

Both cases imply from the definition of C_{2} what is to show:
$\bar{\alpha} \notin(0,1)$
$\min \{\bar{\alpha}, 1-\bar{\alpha}\} \leq \bar{\rho} \leq \max \{\bar{\alpha}, 1-\bar{\alpha}\}$

Application 2

Recall that for each $n \in \mathbb{N}$:

$$
\begin{aligned}
\mathbf{s}_{\alpha, \delta}(n) & :=\lfloor\alpha(n+1)+\delta\rfloor-\lfloor\alpha n+\delta\rfloor \\
\mathbf{s}_{\alpha, \delta}^{\prime}(n) & :=\lceil\alpha(n+1)+\delta\rceil-\lceil\alpha n+\delta\rceil
\end{aligned}
$$

[Dekking,2018]:
Find slope α and intercept δ such that
(1) $\mathrm{s}_{\alpha, \delta}^{\prime} \neq \mathrm{s}_{\alpha, \delta}$,
(2) $s_{\alpha, \delta}^{\prime}$ is fixed by a primitive morphism, and
(3) $\mathrm{s}_{\alpha, \delta}$ is fixed by a primitive morphism.

Note:

$$
\mathrm{s}_{\alpha, \delta}(n) \neq \mathrm{s}_{\alpha, \delta}^{\prime}(n) \quad \text { for at most two } n \in \mathbb{N}
$$

Application 2

The faithful representation \mathcal{R} allows for an alternative of the following:

Theorem 4 (Dekking,2018)

Let $\alpha \in(0,1)$, α irrational, and $\delta \in[0,1)$. Assume that both sequences $\mathrm{s}_{\alpha, \delta}$ and $\mathrm{s}^{\prime}{ }_{\alpha, \delta}$ are fixed by primitive morphisms and $\mathrm{s}_{\alpha, \delta} \neq \mathrm{s}^{\prime} \alpha, \delta$. Either
(1) $\delta=1-\alpha$, in which case $\mathbf{s}_{\alpha, \delta}$ and $\mathrm{s}^{\prime}{ }_{\alpha, \delta}$ are distinct fixed points of the same primitive morphism $\psi \in\langle\widetilde{G}, \widetilde{D}\rangle$; or
(2) $\delta=0$, in which case $\mathrm{s}_{\alpha, \delta}$ is fixed by a morphism $\psi \in\langle G, \widetilde{D}\rangle$ and $\mathrm{s}^{\prime}{ }_{\alpha, \delta}$ is fixed by a morphism $\eta \in\langle\widetilde{G}, D\rangle$. Moreover, if $\psi=\varphi_{1} \circ \varphi_{2} \circ \cdots \circ \varphi_{n}$ with $\varphi_{i} \in\{G, \widetilde{D}\}$, then

$$
\eta=\xi_{1} \circ \xi_{2} \circ \cdots \circ \xi_{n}, \quad \text { where } \xi_{i}=\left\{\begin{array}{ll}
\widetilde{G} & \text { if } \varphi_{i}=G, \\
D & \text { if } \varphi_{i}=\widetilde{D},
\end{array} \quad \text { for } i=1, \ldots, n .\right.
$$

Application to fixed points of primitive Sturmian morphisms

We say that morphism ψ and φ over \mathcal{A} are conjugate if there exists a $w \in \mathcal{A}^{*}$ such that $\psi(a) w=w \varphi(a)$ for every $a \in \mathcal{A}$ or $w \psi(a)=\varphi(a) w$ for every $a \in \mathcal{A}$.

Note: If ψ is conjugate to φ, then $M_{\psi}=M_{\varphi}$.
The faithful representation \mathcal{R} allows an alternative proof of:

Theorem 5 (Lothaire, 2002)

If $M=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in S I(\mathbb{N}, 2)$, then M is the incidence matrix of $a+b+c+d-1$ mutually conjugate Sturmian morphisms.

The square root of fixed point of a Sturmian morphism

[Saari (2010)]: for every Sturmian sequence u there exist 6 factors w_{1}, \ldots, w_{6} such that

$$
u=w_{i_{1}}^{2} w_{i_{2}}^{2} w_{i_{3}}^{2} \ldots, \quad \text { where } i_{k} \in\{1, \ldots, 6\} \text { for each } k \in \mathbb{N},
$$

and moreover, for each $k \in \mathbb{N}$, the shortest square prefix of the sequence $w_{i_{k}}^{2} w_{i_{k+1}}^{2} w_{i_{k+2}}^{2} \ldots$ is $w_{i k}^{2}$.
J. Peltomäki and M. Whiteland introduced

$$
\sqrt{\mathbf{u}}=w_{i 1} w_{i_{2}} w_{i_{3}} \ldots
$$

Theorem 6 (J. Peltomäki and M. Whiteland, 2017)

If u is a Sturmian sequence with the slope α and the intercept δ, then $\sqrt{\mathrm{u}}$ is a Sturmian sequence with the same slope α and the intercept $\frac{1-\alpha+\delta}{2}$.

Example: $\varphi: 0 \mapsto 10,1 \mapsto 10101$

The fixed point of φ is

$$
u=10101101010110101011010110101011010101101010110101101010 \ldots
$$

u can be written as concatenation of the squares of these 6 factors:

$$
w_{1}=10, w_{2}=1, w_{3}=01, w_{4}=0110101, w_{5}=101, w_{6}=01101 .
$$

$$
\begin{aligned}
& \mathrm{u}=1010|11| 0101|01101010110101| 1010|101101| 0101|1010| 101101 \mid 01101010 \ldots \\
& \sqrt{\mathrm{u}}=\underbrace{10}_{w_{1}} \underbrace{1}_{w_{2}} \underbrace{01}_{w_{3}} \underbrace{0110101}_{w_{4}} \underbrace{10}_{w_{1}} \underbrace{101}_{w_{5}} \underbrace{01}_{w_{3}} \underbrace{10}_{w_{1}} \underbrace{101}_{w_{5}} \underbrace{0110101}_{w_{4}} \underbrace{0110101}_{w_{4}} \underbrace{10}_{w_{1}} \ldots
\end{aligned}
$$

A new result

Theorem 7 (Lepšová, Pelantová, S.)

Let $\mathbf{u} \in\{0,1\}^{\mathbb{N}}$ be a Sturmian sequence fixed by a primitive morphism $\varphi \in \mathcal{M}$. The square root $\sqrt{\mathrm{u}}$ is fixed by a morphism ψ which is a conjugate of one of the morphisms $\varphi^{k}, k \in\{1,2,3,4\}$.

A new result

Theorem 7 (Lepšová, Pelantová, S.)

Let $\mathbf{u} \in\{0,1\}^{\mathbb{N}}$ be a Sturmian sequence fixed by a primitive morphism $\varphi \in \mathcal{M}$. The square root $\sqrt{\mathrm{u}}$ is fixed by a morphism ψ which is a conjugate of one of the morphisms $\varphi^{k}, k \in\{1,2,3,4\}$.

$$
\varphi: 0 \mapsto 10, \quad 1 \mapsto 10101
$$

A new result

Theorem 7 (Lepšová, Pelantová, S.)

Let $\mathbf{u} \in\{0,1\}^{\mathbb{N}}$ be a Sturmian sequence fixed by a primitive morphism $\varphi \in \mathcal{M}$. The square root $\sqrt{\mathrm{u}}$ is fixed by a morphism ψ which is a conjugate of one of the morphisms $\varphi^{k}, k \in\{1,2,3,4\}$.

$$
\begin{gathered}
\varphi: 0 \mapsto 10, \quad 1 \mapsto 10101 \\
\varphi^{2}: 0 \mapsto 1010110, \quad 1 \mapsto 1010110101011010101
\end{gathered}
$$

A new result

Theorem 7 (Lepšová, Pelantová, S.)

Let $\mathbf{u} \in\{0,1\}^{\mathbb{N}}$ be a Sturmian sequence fixed by a primitive morphism $\varphi \in \mathcal{M}$. The square root $\sqrt{\mathrm{u}}$ is fixed by a morphism ψ which is a conjugate of one of the morphisms $\varphi^{k}, k \in\{1,2,3,4\}$.

$$
\varphi: 0 \mapsto 10, \quad 1 \mapsto 10101
$$

$$
\varphi^{2}: 0 \mapsto 1010110, \quad 1 \mapsto 1010110101011010101
$$

$$
\psi: 0 \mapsto 1010101,1 \mapsto 1010101101011010101
$$

$\sqrt{\mathrm{u}}=\underbrace{10}_{w_{1}} \underbrace{1}_{w_{2}} \underbrace{01}_{w_{3}} \underbrace{0110101}_{w_{4}} \underbrace{10}_{w_{1}} \underbrace{101}_{w_{5}} \underbrace{01}_{w_{3}} \underbrace{10}_{w_{1}} \underbrace{101}_{w_{5}} \underbrace{0110101}_{w_{4}} \underbrace{0110101}_{w_{4}} \underbrace{10}_{w_{1}} \underbrace{101}_{w_{5}} \underbrace{01}_{w_{3}} \underbrace{1}_{w_{2}} \underbrace{10}_{w_{1}}$.

Open questions

Faithful representation of some other class of morphisms?
[P. Arnoux, G. Rauzy, 1991]:

Thank you for your attention

