Perfectly clustering words: Induction and morphisms

Mélodie Lapointe

Département mathématiques et statistique
Université de Moncton
8 mai 2023
One World Combinatorics on Words Seminar

Outline

We studied a family of words called

perfectly clustering words.

In this talk, we want to show

- morphisms sending perfectly clustering words to another perfectly clustering words
- an induction on discrete interval exchange transformation
- a relation between perfectly clustering words and band bricks over certain algebras

Perfectly clustering words

Perfectly clustering words

The Burrows-Wheeler transform is a function on the word defined as follows

1. takes all the conjugates of a word
2. sort them in lexicographic order
3. return a word which is the concatenation of the last letter of each conjugates

Perfectly clustering words

The Burrows-Wheeler transform is a function on the word defined as follows

1. takes all the conjugates of a word
2. sort them in lexicographic order
3. return a word which is the concatenation of the last letter of each conjugates
Example :
ananas

Perfectly clustering words

The Burrows-Wheeler transform is a function on the word defined as follows

1. takes all the conjugates of a word
2. sort them in lexicographic order
3. return a word which is the concatenation of the last letter of each conjugates
Example :

$$
\begin{aligned}
\text { ananas } \\
\text { nanas a } \\
\text { anas an } \\
\text { nas ana } \\
\text { as s anan } \\
\text { s andana }
\end{aligned}
$$

Perfectly clustering words

The Burrows-Wheeler transform is a function on the word defined as follows

1. takes all the conjugates of a word
2. sort them in lexicographic order
3. return a word which is the concatenation of the last letter of each conjugates
Example:

ananas	ananas
n anas a	anasan
anasan	a s an an
$n \mathrm{a}$ s an a	n a n a s a
as anan	$n \mathrm{as}$ ana
s an an a	s an ana

Perfectly clustering words

The Burrows-Wheeler transform is a function on the word defined as follows

1. takes all the conjugates of a word
2. sort them in lexicographic order
3. return a word which is the concatenation of the last letter of each conjugates
Example:

> ananas
> n an a s a
> anasan
> n a s an a
> a s an an
> s an ana
> ananas
> anasan
> a s an an
> n an a s a
> n a s an a
> s an ana

BWT(ananas) $=$ snnaaa

Perfectly clustering word

- $|w|_{a}$ denote the number of occurrences of the letter a in w.
- A word w is π-clustering if

$$
\operatorname{TBW}(w)=a_{\pi(1)}^{|w|_{\pi(1)}} a_{\pi(2)}^{|w| a_{\pi(2)}} \ldots a_{\pi(r)}^{|w|_{\pi(r)}}
$$

and $\pi \neq i d$.

- A word w is perfectly clustering if

$$
\operatorname{TBW}(w)=a_{r}^{|w| a_{r}} a_{r-1}^{|w| a_{r-1}} \ldots a_{1}^{|w| a_{1}}
$$

Example :

Words	appartement	aluminium	ananas
BWT	tptmeepaanr	mmnauuiil	snnaaa

Also call words with simple Burrows-Wheeler transform.

Why study perfectly clustering words?

- On binary alphabet, they are Christoffel words.

Theorem (Mantaci, Restivo et Sciortino, 2003)
A binary word w is perfectly clustering if and only if w is a conjugate of a Christoffel word.

- They are acting as interval exchange transformation.

Theorem (Ferenczi and Zamboni, 2013)

A word w is a perfectly clustering word if and only if the mapping from the last column to the first column is a minimal symmetric discrete interval exchange transformation.

Christoffel words

Examples : The Christoffel words of slope 7/4

Also known as Standard words, central words or periodic mechanical words.

Generalization of Christoffel words

- finite episturmian words: Factor of an infinite episturmian word.
- A infinite episturmian word $w \in \mathcal{A}^{\omega}$ if $\operatorname{Fact}(t)$ closed under reversal and at most one left special factor of each length.
- Episturmian words \neq Perfectly clustering words
- Episturmian words \cap Perfectly clustering words $\neq \emptyset$.
(Restivo, Rosone 2009)

Using morphisms to construct perfectly clustering words

Main goals

Recall : A morphism is a map ϕ between \mathcal{A}^{*} and \mathcal{A}^{*} such that for all $u, v \in M$,

$$
\phi(u v)=\phi(u) \phi(v) .
$$

Theorem (Berstel and de Luca, 1997)

A word w is a Christoffel word if and only if there exists a sequence of morphisms

$$
\chi=\chi_{1} \circ \cdots \circ \chi_{n}
$$

where $\chi_{i} \in\{G=(a, a b), \widetilde{D}=(a b, b)\}$ such that

$$
\chi_{1} \circ \cdots \circ \chi_{n}(a b)=w
$$

Main goals

Recall : A morphism is a map ϕ between \mathcal{A}^{*} and \mathcal{A}^{*} such that for all $u, v \in M$,

$$
\phi(u v)=\phi(u) \phi(v)
$$

Theorem (Berstel and de Luca, 1997)

A word w is a Christoffel word if and only if there exists a sequence of morphisms

$$
\chi=\chi_{1} \circ \cdots \circ \chi_{n}
$$

where $\chi_{i} \in\{G=(a, a b), \widetilde{D}=(a b, b)\}$ such that

$$
\chi_{1} \circ \cdots \circ \chi_{n}(a b)=w .
$$

Can we describe perfectly clustering words using morphisms?

Main goals

Theorem (Simpson and Puglisi, 2008)

A word $w \in\{a, b, c\}^{*}$ is perfectly clustering if and only if there exists a sequence of functions

$$
\chi=\chi_{1} \circ \cdots \circ \chi_{n}
$$

where $\chi_{i} \in\{\phi, \theta, \psi\}$ such that

$$
\chi_{1} \circ \cdots \circ \chi_{n}(m)=w
$$

where m is a conjugates to a Christoffel words.

Main goals

Our solution : Free group morphism

Free group

Recall that

- The inverse of an element $l \in \mathcal{F}(\mathcal{A})$ is denoted by l^{-1}.
- Each element of the free group may be represented by a reduced word, which is a product of the letters or their inverses, without the factors $x x^{-1}$ or $x^{-1} x$ for $x \in \mathcal{A}$.
- An element w of the free group is called positive if $w \in \mathcal{A}^{*}$

Ternary alphabet

	a	b	c
λ_{a}	a	$a b$	$a c$
λ_{b}	$a b^{-1}$	b	$b c$
λ_{c}	$a c^{-1}$	$b c^{-1}$	c

	a	b
f_{b}	a	b
f_{a}	b	c

Theorem

If w is a Lyndon perfectly clustering word on $\{a, b, c\}$, there exists a sequence of group morphisms,
$g_{1}, g_{2}, \ldots, g_{k} \in\left\{\lambda_{a}, \lambda_{b}, \lambda_{c}, \lambda_{a}^{-1}, \lambda_{b}^{-1}, \lambda_{c}^{-1}\right\}$ and $f \in\left\{f_{a}, f_{b}\right\}$ such that

$$
g_{1} \circ \cdots \circ g_{k} \circ f\left(m_{w}\right)=w
$$

where m_{w} is a Christoffel word.

General case

For each ℓ in A_{r}

$$
\lambda_{\ell}(a)=\left\{\begin{array}{ll}
a \ell^{-1}, & \text { if } a<\ell ; \\
a, & \text { if } a=\ell ; \\
\ell a, & \text { if } a>\ell ;
\end{array} \quad \text { and } \quad \rho_{\ell}(a)= \begin{cases}a \ell, & \text { if } a<\ell \\
a, & \text { if } a=\ell \\
\ell^{-1} a, & \text { if } a>\ell\end{cases}\right.
$$

Let $f_{\ell, A_{r}}$ be a monoid morphism A_{r}^{*} to A_{r+1}^{*} defined by

$$
f_{\ell, A_{r}}\left(a_{i}\right)= \begin{cases}a_{i} & \text { if } a_{i}<\ell \\ a_{i+1} & \text { otherwise }\end{cases}
$$

where $a_{i} \in A_{r}$.

General case

Theorem

Let w be a Lyndon complete perfectly clustering word on the totally ordered alphabet A. There exists a sequence of free group morphisms, namely $g=g_{1} \circ \cdots \circ g_{k}$, such that

$$
g(a)=w
$$

and $g_{i} \in\left\{\lambda_{\ell_{j}}, \rho_{\ell_{j}}, \lambda_{\ell_{j}} \circ f_{\ell_{j}, B}, \rho_{\ell_{i+1}} \circ f_{\ell_{j+1}, B} \mid \ell_{j} \in A\right.$ and $\left.B \subset A\right\}$ for $i \in\{1, \ldots, k\}$.

Example : The word adbcbdadbd is perfectly clustering and its sequence g is

$$
\lambda_{b} \circ f_{b,\{a, b, c\}} \circ \rho_{c} \circ \lambda_{a} \circ f_{a,\{a, b\}} \circ \rho_{b} .
$$

Idea of proof

- Relation between λ_{ℓ} and λ_{ℓ}^{-1} :

$$
\widetilde{\tau} \circ \lambda_{\ell}^{-1}=\lambda_{\tau(\ell)} \circ \widetilde{\tau}
$$

with $\tau\left(a_{k}\right)=a_{r-k+1}$ for all $a_{k} \in \mathcal{A}$.

- Let w be a perfectly clustering. Then $\lambda_{\ell}(w)$ is positive and perfectly clustering if

$$
\sum_{j>\ell}|w|_{j}>\sum_{j<\ell}|w|_{j}
$$

- A word w is perfectly clustering if and only if $\widetilde{\tau}(w)$ is perfectly clustering.
- Let w be a perfectly clustering. Then $\lambda_{\ell}^{-1}(w)$ is positive and perfectly clustering if

$$
\sum_{j>\ell}|w|_{j}<\sum_{j<\ell}|w|_{j}
$$

Idea proof Lyndon word

- The maps λ_{ℓ}^{-1} from \mathcal{A}^{*} to $\left(\mathcal{A} \cup \mathcal{A}^{-1}\right)^{*}$ is increasing.
- Let $w \in \mathcal{A}^{*}$ be a Lyndon word. If $\lambda_{\ell}^{-1}(w)$ is positive, then $\lambda_{\ell}^{-1}(w)$ is a Lyndon word.
- Let w is a Lyndon perfectly clustering word. If $\lambda_{\ell}(w)$ is positive, then $\lambda_{\ell}(w)$ is a Lyndon word.

Induction on symmetric discrete interval exchange transformation

Symmetric discrete interval exchange transformation

A symmetric discrete r-interval exchange transformation with length vector $c=\left(c_{1}, c_{2}, \ldots, c_{r}\right)$ defined on a set of $|c|$ points.

Symmetric discrete interval exchange transformation

A symmetric discrete r-interval exchange transformation with length vector $c=\left(c_{1}, c_{2}, \ldots, c_{r}\right)$ defined on a set of $|c|$ points.

a

Symmetric discrete interval exchange transformation

A symmetric discrete r-interval exchange transformation with length vector $c=\left(c_{1}, c_{2}, \ldots, c_{r}\right)$ defined on a set of $|c|$ points.

ac

Symmetric discrete interval exchange transformation

A symmetric discrete r-interval exchange transformation with length vector $c=\left(c_{1}, c_{2}, \ldots, c_{r}\right)$ defined on a set of $|c|$ points.

aca

Symmetric discrete interval exchange transformation

A symmetric discrete r-interval exchange transformation with length vector $c=\left(c_{1}, c_{2}, \ldots, c_{r}\right)$ defined on a set of $|c|$ points.

acacacbbcacacbbc. . .

Perfectly clustering words VS SDIET

Theorem (Ferenczi and Zamboni, 2013)

A word w is a perfectly clustering word if and only if the mapping from the last column to the first column is a minimal symmetric discrete interval exchange transformation.
a n a n a s
a n a s a
a s a n a n
n a n a a
n a s a n
s a n a n a

Perfectly clustering words VS SDIET

Theorem (Ferenczi and Zamboni, 2013)

A word w is a perfectly clustering word if and only if the mapping from the last column to the first column is a minimal symmetric discrete interval exchange transformation.
a n a n a s
a n a s a
a s a n a n
n a n a s
n a s a n a
s a n a n a

Induction

- Let T be a minimal symmetric discrete k-interval exchange transformation on $U=\{1, \ldots, n\}$.
- Let $\left(I_{a}\right)_{a \in \mathcal{A}}$ a partition of U and $\left(J_{a}\right)_{a \in \mathcal{A}}$ another partition of U such that $T\left(I_{a}\right)=J_{a}$.
- Define $N_{a}=I_{a} \cap J_{a}$ for all $a \in \mathcal{A}$.
- If one of the $N_{a} \neq \emptyset$. Denotes by b one of the letter such that $N_{a} \neq \emptyset$.
- Takes $N=N_{b} \cup \bigcup_{a \in \mathcal{A}-\{b\}} I_{a}$
- Then the induced transformation by T on I is a minimal symmetric discrete interval exchange transformation with at most k intervals. (L. 2019)

Examples

Link between perfectly clustering words and band bricks over certain gentle algebra

The gentle algebra Λ_{n}

The following quiver with relations:

$$
Q_{n}: 1 \underset{\beta_{1}}{\stackrel{\alpha_{1}}{\leftrightarrows}} 2 \underset{\beta_{2}}{\stackrel{\alpha_{2}}{\leftleftarrows}} \cdots \underset{\beta_{n-1}}{\alpha_{n-1}} n \quad R_{n}: \beta_{i} \alpha_{i+1}=0, \alpha_{i} \beta_{i+1}=0
$$

gives the generators and relations of Λ_{n}. Its indecomposable representations:

1. string representations given by a certain words in the arrows of Q_{n}
2. band representations $B_{z, m, \lambda}$ given by a certain non-oriented cycles z in Q_{n} and two parameters.

Representation of Λ_{n}

- We defined the cycle $z_{i}=\alpha_{1} \alpha_{2} \ldots \alpha_{i-1} \beta_{i-1}^{-1} \ldots \beta_{2}^{-1} \beta_{1}^{-1}$ for each $i \in\{1,2, \ldots, n\}$
- For each primitive word $w=a_{1} a_{2} \ldots a_{r} \in\{1,2, \ldots, n\}^{*}$, we defined the cycle $\varphi(w)=z_{a_{1}} z_{a_{2}} \ldots z_{a_{r}}$.
$Q_{n}: 1 \underset{\beta_{1}}{\alpha_{1}} 2 \underset{\beta_{2}}{\alpha_{2}} \cdots \underset{\beta_{n-1}}{\alpha_{n-1}} n \quad R_{n}: \beta_{i} \alpha_{i+1}=0, \alpha_{i} \beta_{i+1}=0$

Theorem (Dequêne, L., Palu, Plamondon. Reutenauer, Thomas)

A primitive word w on n letters is perfectly clustering if and only if the band Λ_{n}-module $B_{\varphi(w), 1, \lambda}$ is a brick for some (equivalently any) $\lambda \in k^{\times}$.

A representation M of Λ_{n} is called a brick if $\operatorname{End}_{\lambda_{n}}(M) \cong k$.

Gessel-Reutenauer bijection

The Burrows-Wheeler transformation is a particular case of the Gessel-Reutenauer bijection.

Definition

The Gessel-Reutnauer bijection is a map Φ sending each word $w \in A^{*}$ to the multiset of primitive necklaces obtain by

1. computing the standard permutation of $w, s t(w)$
2. computing all the cycles of the inverse of $s t(w)$
3. replacing the number i by the i-th letter of w.

Example : baacbcab

$$
\begin{aligned}
& s t(\text { baacbcab })=41275836 \\
& s t(\text { baacbcab })^{-1}=23715846 \\
& \text { cycles st }
\end{aligned}
$$

Algebra to Surface to Dyck word

Figure 11. Dyck path of Dyck word uuuuddduuddd.

The g-vector $(-3,-1,3,-2,3)$ and the words constructing along the curves $M_{(-3,-1,3,-2,3)}=\{(54545131),(3231)\}$

Perfectly clustering words and band bricks

Theorem (Dequêne, L., Palu, Plamondon. Reutenauer, Thomas)

Let $\left(a_{1}, \ldots, a_{n}\right)$ be the g-vector of a simple closed multislalom with a_{1} a negative integer and a_{i} a non-negative integer for $2 \leq i \leq n$. Let $M_{\left(a_{1}, \ldots, a_{n}\right)}$ be the multiset of circular words defined by $\left(a_{1}, \ldots, a_{n}\right)$. Then,

$$
\begin{equation*}
f\left(M_{\left(a_{1}, \ldots, a_{n}\right)}\right)=\Phi\left(n^{a_{n}} \ldots 2^{a_{2}}\right), \tag{1}
\end{equation*}
$$

where f is the erasing morphism $f(1)=\varepsilon$ and $f(i)=i$ for $i \in\{2, \ldots, n\}$.

Words in the multiset $\Phi(w)$

Lemma

Let w be a weakly decreasing word. Then, each circular word in $\Phi(w)$ is perfectly clustering.

Sketch of proof:

- u a necklace in $\Phi(w)$.
- $u_{1} \neq u_{2}$ conjugates of u
- $u_{1}^{\omega}<u_{2}^{\omega}$ iff $u_{1}<u_{2}$
- The last column of the tableau of u is weakly decreasing since $\Phi(w)$ is weakly decreasing.

Number of conjugacy classes

Corollary (Dequêne, L., Palu, Plamondon. Reutenauer, Thomas)

Let $n \geq 1$ and $\left(\alpha_{2}, \ldots, \alpha_{n}\right)$ be a $(n-1)$-tuple of nonnegative integers. The number of distinct conjugacy classes of words appearing in $\Phi\left(n^{\alpha_{n}} \ldots 2^{\alpha_{2}}\right)$ is at mots $\lceil(n-1)\rceil / 2$.

Thank you

