Perfectly clustering words: Induction and morphisms

Mélodie Lapointe

Département mathématiques et statistique Université de Moncton

8 mai 2023 One World Combinatorics on Words Seminar

Outline

We studied a family of words called

perfectly clustering words.

In this talk, we want to show

- morphisms sending perfectly clustering words to another perfectly clustering words
- ► an induction on discrete interval exchange transformation
- a relation between perfectly clustering words and band bricks over certain algebras

The Burrows-Wheeler transform is a function on the word defined as follows

- 1. takes all the conjugates of a word
- 2. sort them in lexicographic order
- 3. return a word which is the concatenation of the last letter of each conjugates

The Burrows-Wheeler transform is a function on the word defined as follows

- 1. takes all the conjugates of a word
- 2. sort them in lexicographic order
- 3. return a word which is the concatenation of the last letter of each conjugates

Example :

a n a n a s

The Burrows-Wheeler transform is a function on the word defined as follows

- 1. takes all the conjugates of a word
- 2. sort them in lexicographic order
- 3. return a word which is the concatenation of the last letter of each conjugates

Example :

```
ananas
nanasa
anasan
nasana
asanan
sanana
```

The Burrows-Wheeler transform is a function on the word defined as follows

- 1. takes all the conjugates of a word
- 2. sort them in lexicographic order
- 3. return a word which is the concatenation of the last letter of each conjugates

Example :

```
ananas ananas
nanasa anasan
anasan asanan
nasana nanasa
asanan nasana
sanana sanana
```

The Burrows-Wheeler transform is a function on the word defined as follows

- 1. takes all the conjugates of a word
- 2. sort them in lexicographic order
- 3. return a word which is the concatenation of the last letter of each conjugates

Example :

ananas	a n a n a s
nanasa	anasan
anasan	a s a n a n
nasana	n a n a s a
asanan	n a s a n a
s a n a n a	s a n a n <mark>a</mark>

BWT(ananas) = snnaaa

- $|w|_a$ denote the number of occurrences of the letter *a* in *w*.
- A word *w* is π -clustering if

$$\text{TBW}(w) = a_{\pi(1)}^{|w|_{a_{\pi(1)}}} a_{\pi(2)}^{|w|_{a_{\pi(2)}}} \dots a_{\pi(r)}^{|w|_{a_{\pi(r)}}}$$

and $\pi \neq id$.

► A word *w* is perfectly clustering if

$$TBW(w) = a_r^{|w|_{a_r}} a_{r-1}^{|w|_{a_{r-1}}} \dots a_1^{|w|_{a_1}}$$

Example :

Words	appartement	aluminium	ananas
BWT	tptmeepaanr	mmnauuiil	snnaaa

Also call words with simple Burrows-Wheeler transform.

Why study perfectly clustering words?

• On binary alphabet, they are Christoffel words.

Theorem (Mantaci, Restivo et Sciortino, 2003)

A binary word w is perfectly clustering if and only if w is a conjugate of a Christoffel word.

• They are acting as interval exchange transformation.

Theorem (Ferenczi and Zamboni, 2013)

A word w is a perfectly clustering word if and only if the mapping from the last column to the first column is a minimal symmetric discrete interval exchange transformation.

Christoffel words

Examples : The Christoffel words of slope 7/4

Also known as Standard words, central words or periodic mechanical words.

Generalization of Christoffel words

- finite episturmian words : Factor of an infinite episturmian word.
- ► A infinite episturmian word $w \in A^{\omega}$ if Fact(t) closed under reversal and at most one left special factor of each length.
- ► Episturmian words ≠ Perfectly clustering words
- Episturmian words \cap Perfectly clustering words $\neq \emptyset$. (Restivo, Rosone 2009)

Using morphisms to construct perfectly clustering words

Main goals

Recall : A morphism is a map ϕ between \mathcal{A}^* and \mathcal{A}^* such that for all $u, v \in M$,

$$\phi(uv) = \phi(u)\phi(v).$$

Theorem (Berstel and de Luca, 1997)

A word w is a Christoffel word if and only if there exists a sequence of *morphisms*

$$\chi = \chi_1 \circ \cdots \circ \chi_n$$

where $\chi_i \in \{G = (a, ab), \widetilde{D} = (ab, b)\}$ such that

$$\chi_1 \circ \cdots \circ \chi_n(ab) = w.$$

Main goals

Recall : A morphism is a map ϕ between \mathcal{A}^* and \mathcal{A}^* such that for all $u, v \in M$,

 $\phi(uv) = \phi(u)\phi(v).$

Theorem (Berstel and de Luca, 1997)

A word w is a Christoffel word if and only if there exists a sequence of *morphisms*

 $\chi = \chi_1 \circ \cdots \circ \chi_n$

where $\chi_i \in \{G = (a, ab), \widetilde{D} = (ab, b)\}$ such that

 $\chi_1 \circ \cdots \circ \chi_n(ab) = w.$

Can we describe perfectly clustering words using morphisms?

Main goals

Theorem (Simpson and Puglisi, 2008)

A word $w \in \{a, b, c\}^*$ is perfectly clustering if and only if there exists a sequence of functions

 $\chi = \chi_1 \circ \cdots \circ \chi_n$

where $\chi_i \in \{\phi, \theta, \psi\}$ such that

 $\chi_1 \circ \cdots \circ \chi_n(m) = w$

where *m* is a conjugates to a Christoffel words.

Our solution : Free group morphism

Free group

Recall that

- The inverse of an element $l \in \mathcal{F}(\mathcal{A})$ is denoted by l^{-1} .
- ► Each element of the free group may be represented by a reduced word, which is a product of the letters or their inverses, without the factors xx^{-1} or $x^{-1}x$ for $x \in A$.
- An element *w* of the free group is called positive if $w \in A^*$

Ternary alphabet

	а					
λ_a	a ab^{-1} ac^{-1}	ab	ас	 fb fa	а	b
λ_b	ab^{-1}	b	bc	fa	b	С
λ_c	ac^{-1}	bc^{-1}	С			

Theorem

If w is a Lyndon perfectly clustering word on $\{a, b, c\}$, there exists a sequence of group morphisms, $g_1, g_2, \ldots, g_k \in \{\lambda_a, \lambda_b, \lambda_c, \lambda_a^{-1}, \lambda_b^{-1}, \lambda_c^{-1}\}$ and $f \in \{f_a, f_b\}$ such that $g_1 \circ \cdots \circ g_k \circ f(m_w) = w$

where m_w is a Christoffel word.

General case

For each ℓ in A_r

$$\lambda_{\ell}(a) = \begin{cases} a\ell^{-1}, & \text{if } a < \ell; \\ a, & \text{if } a = \ell; \\ \ell a, & \text{if } a > \ell; \end{cases} \text{ and } \rho_{\ell}(a) = \begin{cases} a\ell, & \text{if } a < \ell; \\ a, & \text{if } a = \ell; \\ \ell^{-1}a, & \text{if } a > \ell. \end{cases}$$

Let f_{ℓ,A_r} be a monoid morphism A_r^* to A_{r+1}^* defined by

$$f_{\ell,A_r}(a_i) = \begin{cases} a_i & \text{if } a_i < \ell, \\ a_{i+1} & \text{otherwise,} \end{cases}$$

where $a_i \in A_r$.

General case

Theorem

Let *w* be a Lyndon complete perfectly clustering word on the totally ordered alphabet *A*. There exists a sequence of free group morphisms, namely $g = g_1 \circ \cdots \circ g_k$, such that

g(a) = w

and
$$g_i \in \{\lambda_{\ell_j}, \rho_{\ell_j}, \lambda_{\ell_j} \circ f_{\ell_j,B}, \rho_{\ell_{i+1}} \circ f_{\ell_{j+1},B} \mid \ell_j \in A \text{ and } B \subset A\}$$
 for $i \in \{1, \ldots, k\}$.

Example : The word *adbcbdadbd* is perfectly clustering and its sequence g is

$$\lambda_b \circ f_{b,\{a,b,c\}} \circ \rho_c \circ \lambda_a \circ f_{a,\{a,b\}} \circ \rho_b.$$

Idea of proof

• Relation between λ_{ℓ} and λ_{ℓ}^{-1} :

$$\widetilde{\tau}\circ\lambda_{\ell}^{-1}=\lambda_{\tau(\ell)}\circ\widetilde{\tau}$$

with $\tau(a_k) = a_{r-k+1}$ for all $a_k \in \mathcal{A}$.

• Let *w* be a perfectly clustering. Then $\lambda_{\ell}(w)$ is positive and perfectly clustering if

$$\sum_{j>\ell} |w|_j > \sum_{j<\ell} |w|_j.$$

- ► A word *w* is perfectly clustering if and only if *τ*(*w*) is perfectly clustering.
- ► Let *w* be a perfectly clustering. Then $\lambda_{\ell}^{-1}(w)$ is positive and perfectly clustering if

$$\sum_{j>\ell} |w|_j < \sum_{j<\ell} |w|_j.$$

Idea proof Lyndon word

- The maps λ_{ℓ}^{-1} from \mathcal{A}^* to $(\mathcal{A} \cup \mathcal{A}^{-1})^*$ is increasing.
- ► Let $w \in A^*$ be a Lyndon word. If $\lambda_{\ell}^{-1}(w)$ is positive, then $\lambda_{\ell}^{-1}(w)$ is a Lyndon word.
- ► Let *w* is a Lyndon perfectly clustering word. If $\lambda_{\ell}(w)$ is positive, then $\lambda_{\ell}(w)$ is a Lyndon word.

Induction on symmetric discrete interval exchange transformation

A symmetric discrete *r*-interval exchange transformation with length vector $c = (c_1, c_2, ..., c_r)$ defined on a set of |c| points.

A symmetric discrete *r*-interval exchange transformation with length vector $c = (c_1, c_2, ..., c_r)$ defined on a set of |c| points.

а

A symmetric discrete *r*-interval exchange transformation with length vector $c = (c_1, c_2, ..., c_r)$ defined on a set of |c| points.

ac

A symmetric discrete *r*-interval exchange transformation with length vector $c = (c_1, c_2, ..., c_r)$ defined on a set of |c| points.

aca

A symmetric discrete *r*-interval exchange transformation with length vector $c = (c_1, c_2, ..., c_r)$ defined on a set of |c| points.

acacacbbcacacbbc...

Perfectly clustering words VS SDIET

Theorem (Ferenczi and Zamboni, 2013)

A word w is a perfectly clustering word if and only if the mapping from the last column to the first column is a minimal symmetric discrete interval exchange transformation.

а	n	а	n	а	S
а	n	а	S	а	n
а	S	а	n	а	n
n	а	n	а	S	а
n	а	S	а	n	а
S	а	n	а	n	а

Perfectly clustering words VS SDIET

Theorem (Ferenczi and Zamboni, 2013)

A word w is a perfectly clustering word if and only if the mapping from the last column to the first column is a minimal symmetric discrete interval exchange transformation.

а	n	а	n	а	S
а	n	а	S	а	n
а	\mathbf{S}	а	n	а	n
n	а	n	а	S	а
n	а	S	а	n	а
S	а	n	а	n	а

Induction

- Let *T* be a minimal symmetric discrete *k*-interval exchange transformation on $U = \{1, ..., n\}$.
- ► Let $(I_a)_{a \in A}$ a partition of U and $(J_a)_{a \in A}$ another partition of U such that $T(I_a) = J_a$.
- Define $N_a = I_a \cap J_a$ for all $a \in A$.
- If one of the $N_a \neq \emptyset$. Denotes by *b* one of the letter such that $N_a \neq \emptyset$.
- Takes $N = N_b \cup \bigcup_{a \in \mathcal{A} \{b\}} I_a$
- ► Then the induced transformation by *T* on *I* is a minimal symmetric discrete interval exchange transformation with at most *k* intervals. (L. 2019)

Examples

ab'bcbbcab'bcbc γ٢ acbcacc

Link between perfectly clustering words and band bricks over certain gentle algebra

The gentle algebra Λ_n

The following quiver with relations :

$$Q_n: 1 \xleftarrow[\beta_1]{\alpha_1} 2 \xleftarrow[\beta_2]{\alpha_{n-1}} n \qquad R_n: \beta_i \alpha_{i+1} = 0, \ \alpha_i \beta_{i+1} = 0$$

gives the generators and relations of Λ_n . Its indecomposable representations :

- 1. string representations given by a certain words in the arrows of Q_n
- 2. band representations $B_{z,m,\lambda}$ given by a certain non-oriented cycles z in Q_n and two parameters.

Representation of Λ_n

- We defined the cycle $z_i = \alpha_1 \alpha_2 \dots \alpha_{i-1} \beta_{i-1}^{-1} \dots \beta_2^{-1} \beta_1^{-1}$ for each $i \in \{1, 2, \dots, n\}$
- For each primitive word $w = a_1 a_2 \dots a_r \in \{1, 2, \dots, n\}^*$, we defined the cycle $\varphi(w) = z_{a_1} z_{a_2} \dots z_{a_r}$.

$$Q_n: 1 \xleftarrow{\alpha_1}{\beta_1} 2 \xleftarrow{\alpha_2}{\beta_2} \cdots \xleftarrow{\alpha_{n-1}}{\beta_{n-1}} n \qquad R_n: \beta_i \alpha_{i+1} = 0, \ \alpha_i \beta_{i+1} = 0$$

Theorem (Dequêne, L., Palu, Plamondon. Reutenauer, Thomas)

A primitive word w on n letters is perfectly clustering if and only if the band Λ_n -module $B_{\varphi(w),1,\lambda}$ is a brick for some (equivalently any) $\lambda \in k^{\times}$.

A representation *M* of Λ_n is called a brick if $\operatorname{End}_{\lambda_n}(M) \cong k$.

Gessel-Reutenauer bijection

The Burrows-Wheeler transformation is a particular case of the Gessel-Reutenauer bijection.

Definition

The Gessel-Reutnauer bijection is a map Φ sending each word $w \in A^*$ to the multiset of primitive necklaces obtain by

- 1. computing the standard permutation of w, st(w)
- 2. computing all the cycles of the inverse of st(w)
- 3. replacing the number *i* by the *i*-th letter of *w*.

Example : *baacbcab*

st(baacbcab) = 41275836 $st(baacbcab)^{-1} = 23715846$ $cycles st^{-1} = (1, 2, 3, 7, 4), (5), (6, 8)$ $\Phi(baacbcab) = \{(baaac), (b), (cb)\}$

Algebra to Surface to Dyck word

The *g*-vector (-3, -1, 3, -2, 3) and the words constructing along the curves $M_{(-3, -1, 3, -2, 3)} = \{(54545131), (3231)\}$

Perfectly clustering words and band bricks

Theorem (Dequêne, L., Palu, Plamondon. Reutenauer, Thomas)

Let (a_1, \ldots, a_n) be the *g*-vector of a simple closed multislalom with a_1 a negative integer and a_i a non-negative integer for $2 \le i \le n$. Let $M_{(a_1,\ldots,a_n)}$ be the multiset of circular words defined by (a_1,\ldots,a_n) . Then,

$$f(M_{(a_1,\ldots,a_n)}) = \Phi(n^{a_n} \ldots 2^{a_2}),$$
 (1)

where f is the erasing morphism $f(1) = \varepsilon$ and f(i) = i for $i \in \{2, ..., n\}$.

Words in the multiset $\Phi(w)$

Lemma

Let w be a weakly decreasing word. Then, each circular word in $\Phi(w)$ is perfectly clustering.

Sketch of proof :

- *u* a necklace in $\Phi(w)$.
- $u_1 \neq u_2$ conjugates of u
- $\blacktriangleright \ u_1^{\omega} < u_2^{\omega} \text{ iff } u_1 < u_2$
- The last column of the tableau of u is weakly decreasing since $\Phi(w)$ is weakly decreasing.

Number of conjugacy classes

Corollary (Dequêne, L., Palu, Plamondon. Reutenauer, Thomas)

Let $n \ge 1$ and $(\alpha_2, ..., \alpha_n)$ be a (n - 1)-tuple of nonnegative integers. The number of distinct conjugacy classes of words appearing in $\Phi(n^{\alpha_n}...2^{\alpha_2})$ is at mots $\lceil (n - 1) \rceil/2$.

Thank you