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Symbolic dynamics

▶ We are interested in dynamical systems and their long
term, qualitative properties.

▶ Alphabets are denoted by A, B, etc., sets of non-empty words
by A+, B+, etc.

▶ The full-shift AZ, equipped with the product topology, is a
compact metrizable space.
▶ We write x = . . . x−1.x0x1 . . . if x ∈ AZ.
▶ A sequence (xk)k converges iff ∀j , (xk

j )k is eventually constant.
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Symbolic dynamics

▶ Define the shift map S : AZ → AZ as

S : . . . x−2x−1.x0x1 · · · 7→ . . . x−1x0.x1x2 . . .

▶ A subshift, or symbolic system, is a closed subset X ⊆ AZ

such that S(X ) ⊆ X .

▶ The complexity function pX : N → N of X is

pX (n) = #words of length n occurring in points of X .

▶ The growth of pX measures how “random” are the orbits of S
in X .

2 / 18
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Symbolic dynamics: example

▶ Let x ∈ R \Q and u ∈ {0, 1, . . . , 9}N be its decimal expansion.

▶ Then, X = closure{0,...,9}N({Sn(u) : n ∈ N}) is a subshift.

▶ The frequency f0 of the digit 0 in u is equal to:

lim
N→+∞

1
N

∑
0≤n<N

χU ◦ T n(u),

where U = {y ∈ X : y0 = 0}.

▶ If lim infn→+∞ pX (n)/n < +∞, then x is transcendental
(Adamczewski and Bugeaud, Ann. Math. 2007.).
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Symbolic dynamics

▶ Our focus is on low complexity subshifts.

▶ More precisely, we consider systems such that

lim sup
n→+∞

pX (n)/n < +∞ or lim inf
n→+∞

pX (n)/n < +∞

▶ Classic examples: substitutions, Sturmians, IETs, linearly
recurrent, “almost every” finite top. rank system, etc.

▶ X is transitive if there is x ∈ X s.t. {Sn(x) : n ∈ Z} is dense
in X .

▶ We will only consider minimal subshifts i.e. s.t. every orbit is
dense in X .
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The main question

▶ Observation: Low complexity systems have shown to be very
rigid.

▶ Intuition: There is a hidden structure explaining this rigidity.

The S-adic conjecture. Consider the class (L) of linear-growth
complexity subshifts, i.e., consisting in subshifts X s.t.

lim sup
n→+∞

pX (n)/n < +∞.

Then, there is an S-adic structure theorem for (L).
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The Sturmian case: pX (n) = n + 1
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Definitions
▶ A substitution is a map τ : A+ → B+ s.t.

τ(a1 · · · ak) = τ(a1) · · · τ(ak), ∀a1 · · · ak ∈ A+.

▶ A directive sequence is a sequence of substitutions
τ = (τn)n≥0 having the form

. . .
τ4−→ A+

4
τ3−→ A+

3
τ2−→ A+

2
τ1−→ A+

1
τ0−→ A+

0 .

We write τn,m = τn . . . τm−1 for m > n ≥ 0.

▶ We always assume that τ is everywhere growing, that is,

lim
n→+∞

min
a∈An

|τ0,n(a)| = +∞.

▶ Words of the form τ0,n(a), a ∈ An, are base blocks for the
level n.
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Definitions

▶ Let L(n)
τ ⊆ A+

n be the set of subwords of

{τn,m(a) : m > n, a ∈ Am}.

Definition. The n-th S-adic subshift X (n)
τ is defined as

{x ∈ AZ
n : any finite subword of x belongs to L(n)

τ .}

We write Xτ = X (0)
τ .

Fact. For every n ≥ 0, X (n)
τ =

⋃
k∈Z Skτn

(
X (n+1)

τ

)
.
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The main question

▶ Observation: Low complexity systems have shown to be very
rigid.

▶ Intuition: There is a hidden structure explaining this rigidity.

The S-adic conjecture. Consider the class (L) of linear-growth
complexity subshifts, i.e., consisting in subshifts X s.t. Then,
there is an S-adic structure theorem for (L).

▶ The class (L) has connections with many other areas.
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Past work

▶ Sturmian subshifts (pX (n) = n + 1) have an S-adic structure
that uses just 2 substitutions (Coven, Hedlund ’73).

▶ Arnoux and Rauzy, in ’91, studied certain sequences with
pX (n) = 2n + 1, and gave a structure with 3 substitutions.

Theorem (Cassaigne ’95). A transitive subshift in (L) is
such that pX (n + 1) − pX (n) is bounded.

▶ We say that τ is finitary if {τn : n ≥ 0} is finite.

Theorem (Ferenczi ’96). Any transitive subshift in (L) is
generated by a finitary directive sequence.
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Past work

▶ In (Leroy ’13), a finitary S-adic structure is described for the
case pX (n + 1) − pX (n) ≤ 2.

▶ Other works try to narrow down the type of searched S-adic
structure, but none of the proposed conditions is considered
satisfactory.
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Main result

▶ If w is a word, then root(w) defined as its shortest prefix v
s.t. w = vk for some k ≥ 1.

▶ Example: root(ababab) = ab and root(abababa) = abababa.

Theorem. A minimal subshift X has linear-growth complexity
if and only if there exist d ≥ 1 and an directive sequence τ =
(τn : An+1 → A+

n )n≥0 generating X such that for every n ≥ 1:

(C1) root(τ0,n(An)) := {root(τ0,n(a)) : a ∈ An} has at most d
elements.

(C2) |τ0,n(a)| ≤ d · |τ0,n(b)| for every a, b ∈ An.

(C3) |τn−1(a)| ≤ d for every a ∈ An.
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Main Result
▶ Suppose that τ satisfies (C1), (C2) and (C3).

Corollary. There exists a constant d s.t. for every x ∈ Xτ and
ℓ ≥ 1, we can find at most d words {wa}a decomposing x as

x = . . . wp0
a0 wp1

a1 wp2
a2 wp3

a3 . . . ,

where ℓ ≤ |wpkak | ≤ d · ℓ.
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Main Result: variation

▶ We have an analogous theorem for the class (NSL) of
nonsuperlinear-growth complexity subshifts.

Theorem. A minimal subshift X is in (NSL), i.e.,

lim inf
n→+∞

pX (n)/n < +∞,

if and only if there exist d ≥ 1 and an directive sequence τ =
(τn : An+1 → A+

n )n≥0 generating X such that for every n ≥ 1:

(C1) root(τ0,n(An)) := {root(τ0,n(a)) : a ∈ An} has at most d
elements.

(C2) |τ0,n(a)| ≤ d · |τ0,n(b)| for every a, b ∈ An.
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Finitary structures

▶ Our main theorem is intrinsically non-finitary.

Theorem. There is a minimal subshift X in (L) s.t. any S-adic
structure satisfying (C1), (C2) and (C3) is not finitary.

▶ We believe that (L) is intrinsically non-finitary.

Conjecture. There is no finitary S-adic structure theorem for
(L).

▶ This is not a formal statement.
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Applications

▶ When is a particular S-adic structure useful?

When we can
use it to prove useful theorems.

▶ Our main theorem allowed us to give a new proof of
Cassaigne’s Theorem using known S-adic techniques.
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Applications

The known S-adic tools permit to give new proofs for:
▶ that subshifts in (NSL) are partially rigid (Creutz ’23).
▶ that subshifts in (NSL) have finite top. rank (DDMP, ’21).
▶ the characterization of (L) from (Cassaigne, Frid, Puzynina and

Zamboni, ’19).

Our conclusion. The classes (NSL) and (L) gain effective access
to the S-adic tool set, and thus our theorems provide a unified
framework for these results.
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Thank you!



Proof idea

▶ A coding of Y ⊆ BZ is a pair (X ⊆ AZ, τ : A+ → B+) s.t.
Y =

⋃
k∈Z Skτ(X ).

▶ Ex. If τ is an directive sequence, then (X (n+1)
τ , τn) is a coding

of X (n)
τ .

Proof Idea.
▶ Step 1: build appropriate codings

(Xn ⊆ AZ
n , σn : A+

n → A+) of X ⊆ AZ, where
|σn+1| ≫ |σn|.

▶ Step 2: define substitutions γn : A+
n+1 → A+

n s.t. σn+1 is
equal to σnγn (up to a shift).

▶ Then, τ = (σ0, γ0, γ1, . . . ) generates X and inherits
properties from the σn.
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Proof idea

Idea for building the codings:
▶ Consider the “returns to right-special words” coding (Xn, σn)

of X .

▶ There are two types of behaviors: a periodic one and an
aperiodic one.

▶ The periodic parts occur when there are too many consecutive
short return words; we control them using tricks from
combinatorics on words.

▶ The aperiodic parts greatly contribute to the complexity, so
they are controlled by pX .

▶ Several technical conditions are needed in the interface of the
words σn(a) for defining the connecting substitutions γn.
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