The structure of low complexity subshifts

Bastián Espinoza
U. de Chile \& U. de Picardie JV

One World Combinatorics on Words Seminar
July 6, 2023

Index

1. Symbolic dynamics
2. Structures via directive sequences
3. Two structure theorems
4. Discussion

Symbolic dynamics

- We are interested in dynamical systems and their long term, qualitative properties.

Symbolic dynamics

- We are interested in dynamical systems and their long term, qualitative properties.
- Alphabets are denoted by \mathcal{A}, \mathcal{B}, etc., sets of non-empty words by $\mathcal{A}^{+}, \mathcal{B}^{+}$, etc.

Symbolic dynamics

- We are interested in dynamical systems and their long term, qualitative properties.
- Alphabets are denoted by \mathcal{A}, \mathcal{B}, etc., sets of non-empty words by $\mathcal{A}^{+}, \mathcal{B}^{+}$, etc.
- The full-shift $\mathcal{A}^{\mathbb{Z}}$, equipped with the product topology, is a compact metrizable space.

Symbolic dynamics

- We are interested in dynamical systems and their long term, qualitative properties.
- Alphabets are denoted by \mathcal{A}, \mathcal{B}, etc., sets of non-empty words by $\mathcal{A}^{+}, \mathcal{B}^{+}$, etc.
- The full-shift $\mathcal{A}^{\mathbb{Z}}$, equipped with the product topology, is a compact metrizable space.
- We write $x=\ldots x_{-1} \cdot x_{0} x_{1} \ldots$ if $x \in \mathcal{A}^{\mathbb{Z}}$.

Symbolic dynamics

- We are interested in dynamical systems and their long term, qualitative properties.
- Alphabets are denoted by \mathcal{A}, \mathcal{B}, etc., sets of non-empty words by $\mathcal{A}^{+}, \mathcal{B}^{+}$, etc.
- The full-shift $\mathcal{A}^{\mathbb{Z}}$, equipped with the product topology, is a compact metrizable space.
- We write $x=\ldots x_{-1} \cdot x_{0} x_{1} \ldots$ if $x \in \mathcal{A}^{\mathbb{Z}}$.
- A sequence $\left(x^{k}\right)_{k}$ converges iff $\forall j,\left(x_{j}^{k}\right)_{k}$ is eventually constant.

Symbolic dynamics

- Define the shift map $S: \mathcal{A}^{\mathbb{Z}} \rightarrow \mathcal{A}^{\mathbb{Z}}$ as

$$
S: \ldots x_{-2} x_{-1} \cdot x_{0} x_{1} \cdots \mapsto \ldots x_{-1} x_{0} \cdot x_{1} x_{2} \ldots
$$

Symbolic dynamics

- Define the shift map $S: \mathcal{A}^{\mathbb{Z}} \rightarrow \mathcal{A}^{\mathbb{Z}}$ as

$$
S: \ldots x_{-2} x_{-1} \cdot x_{0} x_{1} \cdots \mapsto \ldots x_{-1} x_{0} \cdot x_{1} x_{2} \ldots
$$

- A subshift, or symbolic system, is a closed subset $X \subseteq \mathcal{A}^{\mathbb{Z}}$ such that $S(X) \subseteq X$.

Symbolic dynamics

- Define the shift map $S: \mathcal{A}^{\mathbb{Z}} \rightarrow \mathcal{A}^{\mathbb{Z}}$ as

$$
S: \ldots x_{-2} x_{-1} \cdot x_{0} x_{1} \cdots \mapsto \ldots x_{-1} x_{0} \cdot x_{1} x_{2} \ldots
$$

- A subshift, or symbolic system, is a closed subset $X \subseteq \mathcal{A}^{\mathbb{Z}}$ such that $S(X) \subseteq X$.
- The complexity function $p_{X}: \mathbb{N} \rightarrow \mathbb{N}$ of X is

$$
p_{X}(n)=\# \text { words of length } n \text { occurring in points of } X
$$

Symbolic dynamics

- Define the shift map $S: \mathcal{A}^{\mathbb{Z}} \rightarrow \mathcal{A}^{\mathbb{Z}}$ as

$$
S: \ldots x_{-2} x_{-1} \cdot x_{0} x_{1} \cdots \mapsto \ldots x_{-1} x_{0} \cdot x_{1} x_{2} \ldots
$$

- A subshift, or symbolic system, is a closed subset $X \subseteq \mathcal{A}^{\mathbb{Z}}$ such that $S(X) \subseteq X$.
- The complexity function $p_{X}: \mathbb{N} \rightarrow \mathbb{N}$ of X is

$$
p_{X}(n)=\# \text { words of length } n \text { occurring in points of } X
$$

- The growth of p_{X} measures how "random" are the orbits of S in X.

Symbolic dynamics: example

- Let $x \in \mathbb{R} \backslash \mathbb{Q}$ and $u \in\{0,1, \ldots, 9\}^{\mathbb{N}}$ be its decimal expansion.

Symbolic dynamics: example

- Let $x \in \mathbb{R} \backslash \mathbb{Q}$ and $u \in\{0,1, \ldots, 9\}^{\mathbb{N}}$ be its decimal expansion.
- Then, $X=$ closure $_{\{0, \ldots, 9\}^{\mathbb{N}}}\left(\left\{S^{n}(u): n \in \mathbb{N}\right\}\right)$ is a subshift.

Symbolic dynamics: example

- Let $x \in \mathbb{R} \backslash \mathbb{Q}$ and $u \in\{0,1, \ldots, 9\}^{\mathbb{N}}$ be its decimal expansion.
- Then, $X=$ closure $_{\{0, \ldots, 9\}^{\mathbb{N}}}\left(\left\{S^{n}(u): n \in \mathbb{N}\right\}\right)$ is a subshift.
- The frequency f_{0} of the digit 0 in u is equal to:

$$
\lim _{N \rightarrow+\infty} \frac{1}{N} \sum_{0 \leq n<N} \chi U \circ T^{n}(u)
$$

where $U=\left\{y \in X: y_{0}=0\right\}$.

Symbolic dynamics: example

- Let $x \in \mathbb{R} \backslash \mathbb{Q}$ and $u \in\{0,1, \ldots, 9\}^{\mathbb{N}}$ be its decimal expansion.
- Then, $X=$ closure $_{\{0, \ldots, 9\}^{\mathbb{N}}}\left(\left\{S^{n}(u): n \in \mathbb{N}\right\}\right)$ is a subshift.
- The frequency f_{0} of the digit 0 in u is equal to:

$$
\lim _{N \rightarrow+\infty} \frac{1}{N} \sum_{0 \leq n<N} \chi U \circ T^{n}(u)
$$

where $U=\left\{y \in X: y_{0}=0\right\}$.

- If $\lim \inf _{n \rightarrow+\infty} p_{X}(n) / n<+\infty$, then x is transcendental (Adamczewski and Bugeaud, Ann. Math. 2007.).

Symbolic dynamics

- Our focus is on low complexity subshifts.

Symbolic dynamics

- Our focus is on low complexity subshifts.
- More precisely, we consider systems such that

$$
\limsup _{n \rightarrow+\infty} p_{X}(n) / n<+\infty \text { or } \liminf _{n \rightarrow+\infty} p_{X}(n) / n<+\infty
$$

Symbolic dynamics

- Our focus is on low complexity subshifts.
- More precisely, we consider systems such that

$$
\limsup _{n \rightarrow+\infty} p_{X}(n) / n<+\infty \text { or } \liminf _{n \rightarrow+\infty} p_{X}(n) / n<+\infty
$$

- Classic examples: substitutions, Sturmians, IETs, linearly recurrent, "almost every" finite top. rank system, etc.
- X is transitive if there is $x \in X$ s.t. $\left\{S^{n}(x): n \in \mathbb{Z}\right\}$ is dense in X.

Symbolic dynamics

- Our focus is on low complexity subshifts.
- More precisely, we consider systems such that

$$
\limsup _{n \rightarrow+\infty} p_{X}(n) / n<+\infty \text { or } \liminf _{n \rightarrow+\infty} p_{X}(n) / n<+\infty
$$

- Classic examples: substitutions, Sturmians, IETs, linearly recurrent, "almost every" finite top. rank system, etc.
- X is transitive if there is $x \in X$ s.t. $\left\{S^{n}(x): n \in \mathbb{Z}\right\}$ is dense in X.
- We will only consider minimal subshifts i.e. s.t. every orbit is dense in X.

The main question

- Observation: Low complexity systems have shown to be very rigid.

The main question

- Observation: Low complexity systems have shown to be very rigid.
- Intuition: There is a hidden structure explaining this rigidity.

The main question

- Observation: Low complexity systems have shown to be very rigid.
- Intuition: There is a hidden structure explaining this rigidity.

The \mathcal{S}-adic conjecture. Consider the class (L) of linear-growth complexity subshifts, i.e., consisting in subshifts X s.t.

$$
\limsup _{n \rightarrow+\infty} p_{X}(n) / n<+\infty
$$

Then, there is an \mathcal{S}-adic structure theorem for (L).

Index

1. Symbolic dynamics
2. Structures via directive sequences
3. Two structure theorems
4. Discussion

The Sturmian case: $p_{X}(n)=n+1$
$x=\ldots 011010110.10110101 \ldots$

The Sturmian case: $p_{X}(n)=n+1$

$$
\begin{array}{cc}
p_{X}(1)=2 & p_{X}(2)=3 \\
\Rightarrow 0,1 & \Rightarrow 00,01,10,11
\end{array}
$$

$$
x=\ldots 011010110.10110101 \ldots
$$

The Sturmian case: $p_{X}(n)=n+1$

$$
\begin{array}{cc}
p_{X}(1)=2 & p_{X}(2)=3 \\
\Rightarrow 0,1 & \Rightarrow \partial 0,01,10,11
\end{array}
$$

$$
x=\ldots 011010110.10110101 \ldots
$$

The Sturmian case: $p_{X}(n)=n+1$
$x=\ldots 011010110.10110101 \ldots$

The Sturmian case: $p_{X}(n)=n+1$

$$
\begin{aligned}
& 0 \mapsto 01 \\
& 1 \mapsto 1
\end{aligned}
$$

$$
\left.x=\ldots 011010110.10110101 \ldots . \begin{array}{ccccccccc}
0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0
\end{array}\right]
$$

The Sturmian case: $p_{X}(n)=n+1$

$$
\begin{aligned}
& 0 \mapsto 0 \\
& 1 \mapsto 10
\end{aligned}
$$

$$
x=\ldots 0111010110.10110101 \ldots . \begin{array}{ccccccc}
0 & 1 & 0 & 1 & 0 & 1 & 0 \\
0 & 10 & 0 & 1 & 0 & 10 & 0
\end{array}
$$

The Sturmian case: $p_{X}(n)=n+1$
$0 \mapsto 0$
$1 \mapsto 10$

$$
\begin{aligned}
& \begin{array}{lllll}
0 & 1 & 1 & 1
\end{array} \\
& \begin{array}{lllllll}
0 & 1 & 0 & 1 & 0 & 1 & 0
\end{array} \\
& 0100010 \quad 010 \\
& x=\ldots 011010110.10110101 \ldots
\end{aligned}
$$

The Sturmian case: $p_{X}(n)=n+1$

$0 \mapsto 01$ $1 \mapsto 1$

 0 $0100010 \quad 010$ $x=\ldots 011010110.10110101 \ldots$

The Sturmian case: $p_{X}(n)=n+1$

$\begin{array}{llll}0 & & 1 & 0 \mapsto 01 \\ & 1 & 1 & 1 \mapsto 1 \\ & 1 & \end{array}$
 $\begin{array}{lllllllll}0 & 1 & 0 & 1 & & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0\end{array}$
 $x=\ldots 011010110.10110101 \ldots$

The Sturmian case: $p_{X}(n)=n+1$

The Sturmian case: $p_{X}(n)=n+1$

Definitions

- A substitution is a $\operatorname{map} \tau: \mathcal{A}^{+} \rightarrow \mathcal{B}^{+}$s.t.

$$
\tau\left(a_{1} \cdots a_{k}\right)=\tau\left(a_{1}\right) \cdots \tau\left(a_{k}\right), \forall a_{1} \cdots a_{k} \in \mathcal{A}^{+}
$$

Definitions

- A substitution is a map $\tau: \mathcal{A}^{+} \rightarrow \mathcal{B}^{+}$s.t.

$$
\tau\left(a_{1} \cdots a_{k}\right)=\tau\left(a_{1}\right) \cdots \tau\left(a_{k}\right), \forall a_{1} \cdots a_{k} \in \mathcal{A}^{+}
$$

- A directive sequence is a sequence of substitutions $\boldsymbol{\tau}=\left(\tau_{n}\right)_{n \geq 0}$ having the form

$$
\ldots \xrightarrow{\tau_{4}} \mathcal{A}_{4}^{+} \xrightarrow{\tau_{3}} \mathcal{A}_{3}^{+} \xrightarrow{\tau_{2}} \mathcal{A}_{2}^{+} \xrightarrow{\tau_{1}} \mathcal{A}_{1}^{+} \xrightarrow{\tau_{0}} \mathcal{A}_{0}^{+} .
$$

We write $\tau_{n, m}=\tau_{n} \ldots \tau_{m-1}$ for $m>n \geq 0$.

Definitions

- A substitution is a map $\tau: \mathcal{A}^{+} \rightarrow \mathcal{B}^{+}$s.t.

$$
\tau\left(a_{1} \cdots a_{k}\right)=\tau\left(a_{1}\right) \cdots \tau\left(a_{k}\right), \forall a_{1} \cdots a_{k} \in \mathcal{A}^{+}
$$

- A directive sequence is a sequence of substitutions $\boldsymbol{\tau}=\left(\tau_{n}\right)_{n \geq 0}$ having the form

$$
\ldots \xrightarrow{\tau_{4}} \mathcal{A}_{4}^{+} \xrightarrow{\tau_{3}} \mathcal{A}_{3}^{+} \xrightarrow{\tau_{2}} \mathcal{A}_{2}^{+} \xrightarrow{\tau_{1}} \mathcal{A}_{1}^{+} \xrightarrow{\tau_{0}} \mathcal{A}_{0}^{+}
$$

We write $\tau_{n, m}=\tau_{n} \ldots \tau_{m-1}$ for $m>n \geq 0$.

- We always assume that $\boldsymbol{\tau}$ is everywhere growing, that is,

$$
\lim _{n \rightarrow+\infty} \min _{a \in \mathcal{A}_{n}}\left|\tau_{0, n}(a)\right|=+\infty
$$

Definitions

- A substitution is a map $\tau: \mathcal{A}^{+} \rightarrow \mathcal{B}^{+}$s.t.

$$
\tau\left(a_{1} \cdots a_{k}\right)=\tau\left(a_{1}\right) \cdots \tau\left(a_{k}\right), \forall a_{1} \cdots a_{k} \in \mathcal{A}^{+}
$$

- A directive sequence is a sequence of substitutions $\boldsymbol{\tau}=\left(\tau_{n}\right)_{n \geq 0}$ having the form

$$
\ldots \xrightarrow{\tau_{4}} \mathcal{A}_{4}^{+} \xrightarrow{\tau_{3}} \mathcal{A}_{3}^{+} \xrightarrow{\tau_{2}} \mathcal{A}_{2}^{+} \xrightarrow{\tau_{1}} \mathcal{A}_{1}^{+} \xrightarrow{\tau_{0}} \mathcal{A}_{0}^{+} .
$$

We write $\tau_{n, m}=\tau_{n} \ldots \tau_{m-1}$ for $m>n \geq 0$.

- We always assume that $\boldsymbol{\tau}$ is everywhere growing, that is,

$$
\lim _{n \rightarrow+\infty} \min _{a \in \mathcal{A}_{n}}\left|\tau_{0, n}(a)\right|=+\infty
$$

- Words of the form $\tau_{0, n}(a), a \in \mathcal{A}_{n}$, are base blocks for the level n.

Definitions

- Let $\mathcal{L}_{\tau}^{(n)} \subseteq \mathcal{A}_{n}^{+}$be the set of subwords of

$$
\left\{\tau_{n, m}(a): m>n, a \in \mathcal{A}_{m}\right\} .
$$

Definitions

- Let $\mathcal{L}_{\tau}^{(n)} \subseteq \mathcal{A}_{n}^{+}$be the set of subwords of

$$
\left\{\tau_{n, m}(a): m>n, a \in \mathcal{A}_{m}\right\} .
$$

Definition. The \boldsymbol{n}-th \mathcal{S}-adic subshift $X_{\tau}^{(n)}$ is defined as
$\left\{x \in \mathcal{A}_{n}^{\mathbb{Z}}:\right.$ any finite subword of x belongs to $\left.\mathcal{L}_{\tau}^{(n)}.\right\}$
We write $X_{\tau}=X_{\tau}^{(0)}$.

Definitions

- Let $\mathcal{L}_{\tau}^{(n)} \subseteq \mathcal{A}_{n}^{+}$be the set of subwords of

$$
\left\{\tau_{n, m}(a): m>n, a \in \mathcal{A}_{m}\right\} .
$$

Definition. The \boldsymbol{n}-th \mathcal{S}-adic subshift $X_{\tau}^{(n)}$ is defined as
$\left\{x \in \mathcal{A}_{n}^{\mathbb{Z}}:\right.$ any finite subword of x belongs to $\left.\mathcal{L}_{\tau}^{(n)}.\right\}$
We write $X_{\tau}=X_{\tau}^{(0)}$.

Fact. For every $n \geq 0, X_{\tau}^{(n)}=\bigcup_{k \in \mathbb{Z}} S^{k} \tau_{n}\left(X_{\tau}^{(n+1)}\right)$.

Definitions

Definitions

$$
\begin{aligned}
& \sigma_{0}:\left\{\begin{array}{l}
0 \mapsto 01 \\
1 \mapsto 1
\end{array}\right. \\
& \sigma_{1}:\left\{\begin{array}{l}
0 \mapsto 0 \\
1 \mapsto 10
\end{array}\right.
\end{aligned}
$$

Definitions

Index

1. Symbolic dynamics
2. Structures via directive sequences
3. Two structure theorems
4. Discussion

The main question

- Observation: Low complexity systems have shown to be very rigid.
- Intuition: There is a hidden structure explaining this rigidity.

The \mathcal{S}-adic conjecture. Consider the class (L) of linear-growth complexity subshifts, i.e., consisting in subshifts X s.t. Then, there is an \mathcal{S}-adic structure theorem for (L).

- The class (L) has connections with many other areas.

Past work

- Sturmian subshifts $\left(p_{X}(n)=n+1\right)$ have an \mathcal{S}-adic structure that uses just 2 substitutions (Coven, Hedlund '73).

Past work

- Sturmian subshifts $\left(p_{X}(n)=n+1\right)$ have an \mathcal{S}-adic structure that uses just 2 substitutions (Coven, Hedlund '73).
- Arnoux and Rauzy, in '91, studied certain sequences with $p_{X}(n)=2 n+1$, and gave a structure with 3 substitutions.

Past work

- Sturmian subshifts $\left(p_{X}(n)=n+1\right)$ have an \mathcal{S}-adic structure that uses just 2 substitutions (Coven, Hedlund '73).
- Arnoux and Rauzy, in '91, studied certain sequences with $p_{X}(n)=2 n+1$, and gave a structure with 3 substitutions.

Theorem (Cassaigne '95). A transitive subshift in (L) is such that $p_{X}(n+1)-p_{X}(n)$ is bounded.

Past work

- Sturmian subshifts $\left(p_{X}(n)=n+1\right)$ have an \mathcal{S}-adic structure that uses just 2 substitutions (Coven, Hedlund '73).
- Arnoux and Rauzy, in '91, studied certain sequences with $p_{X}(n)=2 n+1$, and gave a structure with 3 substitutions.

Theorem (Cassaigne '95). A transitive subshift in (L) is such that $p_{X}(n+1)-p_{X}(n)$ is bounded.

- We say that $\boldsymbol{\tau}$ is finitary if $\left\{\tau_{n}: n \geq 0\right\}$ is finite.

Theorem (Ferenczi '96). Any transitive subshift in (L) is generated by a finitary directive sequence.

Past work

- In (Leroy '13), a finitary \mathcal{S}-adic structure is described for the case $p_{X}(n+1)-p_{X}(n) \leq 2$.

Past work

- In (Leroy '13), a finitary \mathcal{S}-adic structure is described for the case $p_{X}(n+1)-p_{X}(n) \leq 2$.
- Other works try to narrow down the type of searched \mathcal{S}-adic structure,

Past work

- In (Leroy '13), a finitary \mathcal{S}-adic structure is described for the case $p_{X}(n+1)-p_{X}(n) \leq 2$.
- Other works try to narrow down the type of searched \mathcal{S}-adic structure, but none of the proposed conditions is considered satisfactory.

Main result

- If w is a word, then $\operatorname{root}(w)$ defined as its shortest prefix v s.t. $w=v^{k}$ for some $k \geq 1$.
- Example: $\operatorname{root}(a b a b a b)=a b$ and $\operatorname{root}(a b a b a b a)=a b a b a b a$.

Main result

- If w is a word, then $\operatorname{root}(w)$ defined as its shortest prefix v s.t. $w=v^{k}$ for some $k \geq 1$.
- Example: $\operatorname{root}(a b a b a b)=a b$ and $\operatorname{root}(a b a b a b a)=a b a b a b a$.

Theorem. A minimal subshift X has linear-growth complexity if and only if there exist $d \geq 1$ and an directive sequence $\tau=$ $\left(\tau_{n}: \mathcal{A}_{n+1} \rightarrow \mathcal{A}_{n}^{+}\right)_{n \geq 0}$ generating X such that for every $n \geq 1$:
$\left(\mathcal{C}_{1}\right) \operatorname{root}\left(\tau_{0, n}\left(\mathcal{A}_{n}\right)\right):=\left\{\operatorname{root}\left(\tau_{0, n}(a)\right): a \in \mathcal{A}_{n}\right\}$ has at most d elements.
$\left(\mathcal{C}_{2}\right)\left|\tau_{0, n}(a)\right| \leq d \cdot\left|\tau_{0, n}(b)\right|$ for every $a, b \in \mathcal{A}_{n}$.
$\left(\mathcal{C}_{3}\right)\left|\tau_{n-1}(a)\right| \leq d$ for every $a \in \mathcal{A}_{n}$.

Main Result

- Suppose that τ satisfies $\left(\mathcal{C}_{1}\right),\left(\mathcal{C}_{2}\right)$ and $\left(\mathcal{C}_{3}\right)$.

Corollary. There exists a constant d s.t. for every $x \in X_{\tau}$ and $\ell \geq 1$, we can find at most d words $\left\{w_{a}\right\}_{a}$ decomposing x as

$$
x=\ldots w_{a_{0}}^{p_{0}} w_{a_{1}}^{p_{1}} w_{a_{2}}^{p_{2}} w_{a_{3}}^{p_{3}} \ldots
$$

where $\ell \leq\left|w_{a_{k}}^{p_{k}}\right| \leq d \cdot \ell$.

Main Result

- Suppose that τ satisfies $\left(\mathcal{C}_{1}\right),\left(\mathcal{C}_{2}\right)$ and $\left(\mathcal{C}_{3}\right)$.

Corollary. There exists a constant d s.t. for every $x \in X_{\tau}$ and $\ell \geq 1$, we can find at most d words $\left\{w_{a}\right\}_{a}$ decomposing x as

$$
x=\ldots w_{a_{0}}^{p_{0}} w_{a_{1}}^{p_{1}} w_{a_{2}}^{p_{2}} w_{a_{3}}^{p_{3}} \ldots
$$

where $\ell \leq\left|w_{a_{k}}^{p_{k}}\right| \leq d \cdot \ell$.

Main Result: variation

- We have an analogous theorem for the class (NSL) of nonsuperlinear-growth complexity subshifts.

Theorem. A minimal subshift X is in (NSL), i.e.,

$$
\liminf _{n \rightarrow+\infty} p_{X}(n) / n<+\infty
$$

if and only if there exist $d \geq 1$ and an directive sequence $\tau=$ $\left(\tau_{n}: \mathcal{A}_{n+1} \rightarrow \mathcal{A}_{n}^{+}\right)_{n \geq 0}$ generating X such that for every $n \geq 1$:
$\left(\mathcal{C}_{1}\right) \operatorname{root}\left(\tau_{0, n}\left(\mathcal{A}_{n}\right)\right):=\left\{\operatorname{root}\left(\tau_{0, n}(a)\right): a \in \mathcal{A}_{n}\right\}$ has at most d elements.
$\left(C_{2}\right)\left|\tau_{0, n}(a)\right| \leq d \cdot\left|\tau_{0, n}(b)\right|$ for every $a, b \in \mathcal{A}_{n}$.

Index

1. Symbolic dynamics
2. Structures via directive sequences
3. Two structure theorems
4. Discussion

Finitary structures

- Our main theorem is intrinsically non-finitary.

Theorem. There is a minimal subshift X in (L) s.t. any \mathcal{S}-adic structure satisfying $\left(\mathcal{C}_{1}\right),\left(\mathcal{C}_{2}\right)$ and $\left(\mathcal{C}_{3}\right)$ is not finitary.

Finitary structures

- Our main theorem is intrinsically non-finitary.

Theorem. There is a minimal subshift X in (L) s.t. any \mathcal{S}-adic structure satisfying $\left(\mathcal{C}_{1}\right),\left(\mathcal{C}_{2}\right)$ and $\left(\mathcal{C}_{3}\right)$ is not finitary.

- We believe that (L) is intrinsically non-finitary.

Conjecture. There is no finitary \mathcal{S}-adic structure theorem for (L).

Finitary structures

- Our main theorem is intrinsically non-finitary.

Theorem. There is a minimal subshift X in (L) s.t. any \mathcal{S}-adic structure satisfying $\left(\mathcal{C}_{1}\right),\left(\mathcal{C}_{2}\right)$ and $\left(\mathcal{C}_{3}\right)$ is not finitary.

- We believe that (L) is intrinsically non-finitary.

Conjecture. There is no finitary \mathcal{S}-adic structure theorem for (L).

- This is not a formal statement.

Applications

- When is a particular \mathcal{S}-adic structure useful?

Applications

- When is a particular \mathcal{S}-adic structure useful? When we can use it to prove useful theorems.

Applications

- When is a particular \mathcal{S}-adic structure useful? When we can use it to prove useful theorems.
- Our main theorem allowed us to give a new proof of Cassaigne's Theorem using known \mathcal{S}-adic techniques.

Applications

The known \mathcal{S}-adic tools permit to give new proofs for:

- that subshifts in (NSL) are partially rigid (Creutz '23).
- that subshifts in (NSL) have finite top. rank (DDMP, '21).
- the characterization of (L) from (Cassaigne, Frid, Puzynina and Zamboni, '19).

Applications

The known \mathcal{S}-adic tools permit to give new proofs for:

- that subshifts in (NSL) are partially rigid (Creutz '23).
- that subshifts in (NSL) have finite top. rank (DDMP, '21).
- the characterization of (L) from (Cassaigne, Frid, Puzynina and Zamboni, '19).

Our conclusion. The classes (NSL) and (L) gain effective access to the \mathcal{S}-adic tool set, and thus our theorems provide a unified framework for these results.

Thank you!

Proof idea

- A coding of $Y \subseteq \mathcal{B}^{\mathbb{Z}}$ is a pair $\left(X \subseteq \mathcal{A}^{\mathbb{Z}}, \tau: \mathcal{A}^{+} \rightarrow \mathcal{B}^{+}\right)$s.t. $Y=\bigcup_{k \in \mathbb{Z}} S^{k} \tau(X)$.
- Ex. If $\boldsymbol{\tau}$ is an directive sequence, then $\left(X_{\tau}^{(n+1)}, \tau_{n}\right)$ is a coding of $X_{\tau}^{(n)}$.

Proof Idea.

- Step 1: build appropriate codings $\left(X_{n} \subseteq \mathcal{A}_{n}^{\mathbb{Z}}, \sigma_{n}: \mathcal{A}_{n}^{+} \rightarrow \mathcal{A}^{+}\right)$of $X \subseteq \mathcal{A}^{\mathbb{Z}}$, where $\left|\sigma_{n+1}\right| \gg\left|\sigma_{n}\right|$.
- Step 2: define substitutions $\gamma_{n}: \mathcal{A}_{n+1}^{+} \rightarrow \mathcal{A}_{n}^{+}$s.t. σ_{n+1} is equal to $\sigma_{n} \gamma_{n}$ (up to a shift).
- Then, $\boldsymbol{\tau}=\left(\sigma_{0}, \gamma_{0}, \gamma_{1}, \ldots\right)$ generates X and inherits properties from the σ_{n}.

Proof idea

Idea for building the codings:

- Consider the "returns to right-special words" coding $\left(X_{n}, \sigma_{n}\right)$ of X.
- There are two types of behaviors: a periodic one and an aperiodic one.
- The periodic parts occur when there are too many consecutive short return words; we control them using tricks from combinatorics on words.
- The aperiodic parts greatly contribute to the complexity, so they are controlled by p_{X}.
- Several technical conditions are needed in the interface of the words $\sigma_{n}(a)$ for defining the connecting substitutions γ_{n}.

