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Symbolic dynamics

» We are interested in dynamical systems and their long
term, qualitative properties.

» Alphabets are denoted by A, B, etc., sets of non-empty words
by A", BT, etc.

» The full-shift A%, equipped with the product topology, is a
compact metrizable space.
> We write x = ...x_1.X0X1 . .. if x € AZ.
> A sequence (x*)x converges iff V/j, (Xjk)k is eventually constant.
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Symbolic dynamics

» Define the shift map S: AZ — A% as

S X DX_1.XQX1 P .. X_1XQ-X1XD . ..

> A subshift, or symbolic system, is a closed subset X C A%
such that S(X) C X.

» The complexity function px: N — N of X is

px(n) = #words of length n occurring in points of X.

» The growth of px measures how “random” are the orbits of S
in X.
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Symbolic dynamics: example

» Let x c R\Qand v € {0,1,...,9}" be its decimal expansion.
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Symbolic dynamics: example

> Let x e R\Q and u € {0,1,...,9}" be its decimal expansion.

> Then, X = closurery gy ({S"(u) : n € N}) is a subshift.

» The frequency fy of the digit 0 in v is equal to:

1
lim — > xuo T"(u),
N—~+oco N 0<n<N

where U = {y € X : yp = 0}.

» If liminf, 4o px(n)/n < +00, then x is transcendental
(Adamczewski and Bugeaud, Ann. Math. 2007.).
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Symbolic dynamics

» Our focus is on low complexity subshifts.
» More precisely, we consider systems such that
limsup px(n)/n < 400 or liminf px(n)/n < +o0
n—-+400

n—-+400

» Classic examples: substitutions, Sturmians, |IETs, linearly
recurrent, “almost every"” finite top. rank system, etc.

> X is transitive if there is x € X s.t. {S"(x) : n € Z} is dense
in X.

» We will only consider minimal subshifts i.e. s.t. every orbit is
dense in X.
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The main question

» Observation: Low complexity systems have shown to be very
rigid.

P Intuition: There is a hidden structure explaining this rigidity.

The S-adic conjecture. Consider the class (L) of linear-growth
complexity subshifts, i.e., consisting in subshifts X s.t.

lim sup px(n)/n < +oc.

n——+o0o

Then, there is an S-adic structure theorem for (L).
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Definitions

» A substitution is a map 7: AT — BT s.t.
7(ar---ak) = 7(a1)---7(ak), Var---a € AT
> A directive sequence is a sequence of substitutions
T = (Th)n>0 having the form
I AR = AT S AT oA 5 A

We write 7, m = 7Tp...Tm—1 for m>n > 0.

> We always assume that 7 is everywhere growing, that is,

njiglx>;212 ‘TD n( )| =t

» Words of the form 79 ,(a), a € Ap, are base blocks for the
level n.
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Definitions

> Let £ C A7 be the set of subwords of

{Tam(a) :m>n,ac An}.

-

L

Definition. The n-th S-adic subshift Xﬁ") is defined as

{x € A% : any finite subword of x belongs to £}

We write X, = X%,

-

\

Fact. For every n > 0, X7(-n) = Ukez Skr, (X7(-n+1)) .
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The main question

» Observation: Low complexity systems have shown to be very
rigid.

» Intuition: There is a hidden structure explaining this rigidity.

The S-adic conjecture. Consider the class (L) of linear-growth
complexity subshifts, i.e., consisting in subshifts X s.t. Then,
there is an S-adic structure theorem for (L).

» The class (L) has connections with many other areas.
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» Sturmian subshifts (px(n) = n+ 1) have an S-adic structure
that uses just 2 substitutions (Coven, Hedlund '73).

» Arnoux and Rauzy, in '91, studied certain sequences with
px(n) = 2n+ 1, and gave a structure with 3 substitutions.

Theorem (Cassaigne '95). A transitive subshift in (L) is
such that px(n+ 1) — px(n) is bounded.

» We say that 7 is finitary if {7,: n > 0} is finite.

Theorem (Ferenczi '96). Any transitive subshift in (L) is
generated by a finitary directive sequence.
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Past work

» In (Leroy '13), a finitary S-adic structure is described for the
case px(n+1) — px(n) < 2.

» Other works try to narrow down the type of searched S-adic
structure, but none of the proposed conditions is considered
satisfactory.
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Main result

» If wis a word, then root(w) defined as its shortest prefix v
s.t. w = vk for some k > 1.

» Example: root(ababab) = ab and root(abababa) = abababa.
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Main result

» If wis a word, then root(w) defined as its shortest prefix v
s.t. w = vk for some k > 1.

» Example: root(ababab) = ab and root(abababa) = abababa.

A minimal subshift X has linear-growth complexity
if and only if there exist d > 1 and an directive sequence T =
(Tn: Ant1 = A} )n>0 generating X such that for every n > 1:

root(7o,n(An)) = {root(m0,n(a)) : a € Ap} has at most d
elements.

|70.n(a)| < d - |10,n(b)| for every a, b € Ap.

|Th—1(a)| < d for every a € A,.
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Main Result

» Suppose that 7 satisfies (C1), (C2) and (C3).
Corollary. There exists a constant d s.t. for every x € X, and
¢ > 1, we can find at most d words {w,}, decomposing x as

= PO /P \y/P2 1/ P3
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where ¢ < |whk| < d - /.
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» Suppose that 7 satisfies (C1), (C2) and (C3).
Corollary. There exists a constant d s.t. for every x € X, and
¢ > 1, we can find at most d words {w,}, decomposing x as

= PO /P \y/P2 1/ P3
X = WRWIWREwWEE

where ¢ < |whk| < d - /.

\ J
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Main Result: variation

» We have an analogous theorem for the class (NSL) of
nonsuperlinear-growth complexity subshifts.

A minimal subshift X is in (NSL), i.e.,

liminf px(n)/n < +o0,

n—-+o0o

if and only if there exist d > 1 and an directive sequence T =
(Tn: Ant1 = A} )n>0 generating X such that for every n > 1:

root(7o,n(An)) = {root(m0 n(a)) : a € Ap} has at most d
elements.

|70,n(a)| < d - |10,n(b)| for every a, b € A,.
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Finitary structures

» Our main theorem is intrinsically non-finitary.

There is a minimal subshift X in (L) s.t. any S-adic
structure satisfying (C1), (C2) and (C3) is not finitary.

» We believe that (L) is intrinsically non-finitary.

Conjecture. There is no finitary S-adic structure theorem for

(L)

» This is not a formal statement.
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» When is a particular S-adic structure useful? When we can
use it to prove useful theorems.

» Our main theorem allowed us to give a new proof of
Cassaigne’s Theorem using known S-adic techniques.
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Applications

The known S-adic tools permit to give new proofs for:
» that subshifts in (NSL) are partially rigid (Creutz '23).

» that subshifts in (NSL) have finite top. rank (DDMP, '21).

» the characterization of (L) from (Cassaigne, Frid, Puzynina and
Zamboni, '19).
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Applications

The known S-adic tools permit to give new proofs for:
» that subshifts in (NSL) are partially rigid (Creutz '23).

» that subshifts in (NSL) have finite top. rank (DDMP, '21).

» the characterization of (L) from (Cassaigne, Frid, Puzynina and
Zamboni, '19).

The classes (NSL) and (L) gain effective access
to the S-adic tool set, and thus our theorems provide a unified
framework for these results.
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Proof idea

> A coding of Y C B” is a pair (X C A%, 7: AT — BY) st.

Y = Ukez SkT(X).
» Ex. If 7 is an directive sequence, then (X7(-"+1)

of X"

,Tn) is a coding

r

Proof Idea.

» Step 1: build appropriate codings
(Xn C AL o, AF — AT) of X C AZ, where
lont1| > |onl-

> Step 2: define substitutions v,: A} ; — Al s.t. oppy is
equal to oy, (up to a shift).

» Then, 7 = (00,70, 71, - -- ) generates X and inherits
properties from the .
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Proof idea

Idea for building the codings:

» Consider the “returns to right-special words” coding (X, op)
of X.

» There are two types of behaviors: a periodic one and an
aperiodic one.

» The periodic parts occur when there are too many consecutive
short return words; we control them using tricks from
combinatorics on words.

» The aperiodic parts greatly contribute to the complexity, so
they are controlled by px.

» Several technical conditions are needed in the interface of the
words o,(a) for defining the connecting substitutions ~,,.

18/18



	Symbolic dynamics
	Structures via directive sequences
	Two structure theorems
	Discussion

