Analogs of overlap-freeness

James D. Currie
University of Winnipeg

September 26, 2023

Three famous words

Three famous words

The Thue-Morse word \boldsymbol{t} is a fixed point of the morphism $\mu=[01,10]$:

$$
\boldsymbol{t}=\lim _{n \rightarrow \infty} \mu^{n}(0)=0110100110010110 \cdots
$$

Three famous words

The Thue-Morse word \boldsymbol{t} is a fixed point of the morphism $\mu=[01,10]$:

$$
\boldsymbol{t}=\lim _{n \rightarrow \infty} \mu^{n}(0)=0110100110010110 \cdots
$$

The period-doubling word \boldsymbol{d} is the fixed point of $\delta=[01,00]$:

$$
\boldsymbol{d}=\lim _{n \rightarrow \infty} \delta^{n}(0)=0100010101000100 \cdots
$$

Three famous words

The Thue-Morse word \boldsymbol{t} is a fixed point of the morphism $\mu=[01,10]$:

$$
\boldsymbol{t}=\lim _{n \rightarrow \infty} \mu^{n}(0)=0110100110010110 \cdots
$$

The period-doubling word \boldsymbol{d} is the fixed point of $\delta=[01,00]$:

$$
\boldsymbol{d}=\lim _{n \rightarrow \infty} \delta^{n}(0)=0100010101000100 \cdots
$$

The Fibonacci word \boldsymbol{f} is the fixed point of $\phi=[01,0]$:

$$
\boldsymbol{f}=\lim _{n \rightarrow \infty} \phi^{n}(0)=010010100100101001010 \cdots
$$

Factors and Patterns

Factors and Patterns

Factors

Word w contains word v as a factor if $w=u v z$ for words u, z. For example, adoration contains ratio as a factor, letting $u=$ ado, $z=n$.

Factors and Patterns

Factors

Word w contains word v as a factor if $w=u v z$ for words u, z. For example, adoration contains ratio as a factor, letting $u=$ ado, $z=n$.

Patterns

Word w encounters pattern p if $h(p)$ is a factor of w for some non-erasing morphism h. Word illegible encounters $x y x$. (Let $h(x)=l e, h(y)=g i b$, for example.)

The Thue-Morse morphism and overlap-freeness

The Thue-Morse morphism and overlap-freeness

A binary word w is overlap-free if

The Thue-Morse morphism and overlap-freeness

A binary word w is overlap-free if

- Word w does not contain 000 or 111 as a factor.

The Thue-Morse morphism and overlap-freeness

A binary word w is overlap-free if

- Word w does not contain 000 or 111 as a factor.
- Word w doesn't encounter the pattern xyxyx.

The Thue-Morse morphism and overlap-freeness

A binary word w is overlap-free if

- Word w does not contain 000 or 111 as a factor.
- Word w doesn't encounter the pattern xyxyx.

When we study overlap-free binary words, the Thue-Morse morphism μ always shows up:

The Thue-Morse morphism and overlap-freeness

A binary word w is overlap-free if

- Word w does not contain 000 or 111 as a factor.
- Word w doesn't encounter the pattern xyxyx.

When we study overlap-free binary words, the Thue-Morse morphism μ always shows up:
Theorem
A binary word w is overlap-free if and only if $\mu(w)$ is overlap-free.

The Thue-Morse morphism and overlap-freeness

A binary word w is overlap-free if

- Word w does not contain 000 or 111 as a factor.
- Word w doesn't encounter the pattern $x y x y x$.

When we study overlap-free binary words, the Thue-Morse morphism μ always shows up:

Theorem

A binary word w is overlap-free if and only if $\mu(w)$ is overlap-free.

Structure Theorem

If w is a finite overlap-free binary word, then $w=x \mu(y) z$ where y is an overlap-free binary word, and $|x|,|z| \leq 2$.

The Thue-Morse morphism and overlap-freeness

A binary word w is overlap-free if

- Word w does not contain 000 or 111 as a factor.
- Word w doesn't encounter the pattern $x y x y x$.

When we study overlap-free binary words, the Thue-Morse morphism μ always shows up:

Theorem

A binary word w is overlap-free if and only if $\mu(w)$ is overlap-free.

Structure Theorem

If w is a finite overlap-free binary word, then $w=x \mu(y) z$ where y is an overlap-free binary word, and $|x|,|z| \leq 2$.

Theorem

If \boldsymbol{u} is an infinite binary overlap-free word, then $\boldsymbol{u}=x \mu(\boldsymbol{w})$, where \boldsymbol{w} is overlap-free, and $x \in\{\epsilon, 0,1\}$.

The Thue-Morse morphism and overlap-freeness

The Thue-Morse morphism and overlap-freeness

Many results are known for overlap-free words. These structure theorems often contribute to the proof:

The Thue-Morse morphism and overlap-freeness

Many results are known for overlap-free words. These structure theorems often contribute to the proof:

- the number of binary overlap-free words of length n grows like $n^{\sigma}, 1.3005<\sigma<1.3098$ (Jungers, Protasov, Blondel);

The Thue-Morse morphism and overlap-freeness

Many results are known for overlap-free words. These structure theorems often contribute to the proof:

- the number of binary overlap-free words of length n grows like $n^{\sigma}, 1.3005<\sigma<1.3098$ (Jungers, Protasov, Blondel);
- the lexicographically greatest infinite overlap-free word starting with 0 is \boldsymbol{t} (Berstel);

The Thue-Morse morphism and overlap-freeness

Many results are known for overlap-free words. These structure theorems often contribute to the proof:

- the number of binary overlap-free words of length n grows like $n^{\sigma}, 1.3005<\sigma<1.3098$ (Jungers, Protasov, Blondel);
- the lexicographically greatest infinite overlap-free word starting with 0 is \boldsymbol{t} (Berstel);
- Fife's Theorem (a characterization of all infinite overlap-free binary words);

The Thue-Morse morphism and overlap-freeness

Many results are known for overlap-free words. These structure theorems often contribute to the proof:

- the number of binary overlap-free words of length n grows like $n^{\sigma}, 1.3005<\sigma<1.3098$ (Jungers, Protasov, Blondel);
- the lexicographically greatest infinite overlap-free word starting with 0 is \boldsymbol{t} (Berstel);
- Fife's Theorem (a characterization of all infinite overlap-free binary words);
- the only patterns encountered by \boldsymbol{t} which are not factors of \boldsymbol{t} are 00100 and 11011 (Shur).

The ϕ-good words

Say that a binary word w is ϕ-good if

The ϕ-good words

Say that a binary word w is ϕ-good if

- Word w does not contain 11 as a factor.

The ϕ-good words

Say that a binary word w is ϕ-good if

- Word w does not contain 11 as a factor.
- Word w does not contain a factor $X X X X^{-}$, where X^{-}is obtained from X by deleting the last letter.

The ϕ-good words

Say that a binary word w is ϕ-good if

- Word w does not contain 11 as a factor.
- Word w does not contain a factor $X X X X^{-}$, where X^{-}is obtained from X by deleting the last letter.
- The word 01001010 is ϕ-good.

The ϕ-good words

Say that a binary word w is ϕ-good if

- Word w does not contain 11 as a factor.
- Word w does not contain a factor $X X X X^{-}$, where X^{-}is obtained from X by deleting the last letter.
- The word 01001010 is ϕ-good.
- The word 01001101 is not ϕ-good. (It contains factor 11.)

The ϕ-good words

Say that a binary word w is ϕ-good if

- Word w does not contain 11 as a factor.
- Word w does not contain a factor $X X X X^{-}$, where X^{-}is obtained from X by deleting the last letter.
- The word 01001010 is ϕ-good.
- The word 01001101 is not ϕ-good. (It contains factor 11.)
- The word 01010100 is not ϕ-good. (It contains factor $X X X X^{-}$, where $X=01$.)

The Fibonacci morphism and ϕ-goodness

The Fibonacci morphism and ϕ-goodness

When we study ϕ-good words, the Fibonacci morphism ϕ always shows up:

The Fibonacci morphism and ϕ-goodness

When we study ϕ-good words, the Fibonacci morphism ϕ always shows up:

Theorem
A binary word w is ϕ-good, if and only if $\phi(w)$ is ϕ-good.

The Fibonacci morphism and ϕ-goodness

When we study ϕ-good words, the Fibonacci morphism ϕ always shows up:

Theorem
A binary word w is ϕ-good, if and only if $\phi(w)$ is ϕ-good.
Theorem
If \boldsymbol{u} is an infinite ϕ-good word, then $\boldsymbol{u}=x \phi(\boldsymbol{w})$, where \boldsymbol{w} is ϕ-good, and $x \in\{\epsilon, 1\}$.

Lexicographically least ϕ-good word

Lexicographically least ϕ-good word

Let ℓ be the lexicographically least infinite ϕ-good word, and let \boldsymbol{m} be the lexicographically greatest infinite ϕ-good word. (We skip past the existence theorems.)

Lexicographically least ϕ-good word

Let ℓ be the lexicographically least infinite ϕ-good word, and let \boldsymbol{m} be the lexicographically greatest infinite ϕ-good word. (We skip past the existence theorems.)
Theorem
We have $\boldsymbol{\ell}=\phi(\boldsymbol{m})$, and $\boldsymbol{m}=1 \phi(\ell)$.

Lexicographically least ϕ-good word

Let ℓ be the lexicographically least infinite ϕ-good word, and let \boldsymbol{m} be the lexicographically greatest infinite ϕ-good word. (We skip past the existence theorems.)
Theorem
We have $\boldsymbol{\ell}=\phi(\boldsymbol{m})$, and $\boldsymbol{m}=1 \phi(\ell)$.
Proof.
We show $\boldsymbol{\ell}=\phi(\boldsymbol{m})$. Since \boldsymbol{f} has final segments beginning 00 , word ℓ begins 00 . By our structure theorems on ϕ-good words, $\boldsymbol{\ell}=\phi(\boldsymbol{u})$, some ϕ-good \boldsymbol{u}. However, we see that ϕ is order-reversing on infinite words. It follows that $\boldsymbol{u}=\boldsymbol{m}$.

Lexicographically least ϕ-good word

Lexicographically least ϕ-good word

Corollary
We have $\ell=0 \phi^{2}(\ell)$, and $\boldsymbol{m}=1 \phi^{2}(\boldsymbol{m})$.

Lexicographically least ϕ-good word

Corollary

We have $\ell=0 \phi^{2}(\ell)$, and $\boldsymbol{m}=1 \phi^{2}(\boldsymbol{m})$.
This allows us to calculate arbitrarily long prefixes of ℓ and \boldsymbol{m}. For example, ℓ begins with 0 , hence with $0 \phi^{2}(0)=0010$, hence with $0 \phi^{2}(0010)=001001001010$.

Corollary
Every factor of \boldsymbol{f} is a factor of ℓ, but there are infinitely many factors of $\boldsymbol{\ell}$ which are not factors of \boldsymbol{f}. Word $\boldsymbol{\ell}$ is not a fixed point of a binary morphism.

The δ-good words

Say that a binary word w is δ-good if

The δ-good words

Say that a binary word w is δ-good if

- Word w does not contain 11 or 1001 as a factor.

The δ-good words

Say that a binary word w is δ-good if

- Word w does not contain 11 or 1001 as a factor.
- Word w does not encounter the patterns $x x x x$ or $x x x y x y x x$.

The δ-good words

Say that a binary word w is δ-good if

- Word w does not contain 11 or 1001 as a factor.
- Word w does not encounter the patterns $x x x x$ or $x x x y x y x x$.

The δ-good words

Say that a binary word w is δ-good if

- Word w does not contain 11 or 1001 as a factor.
- Word w does not encounter the patterns $x x x x$ or $x x x y x y x x$.
- The word 010001010 is δ-good.

The δ-good words

Say that a binary word w is δ-good if

- Word w does not contain 11 or 1001 as a factor.
- Word w does not encounter the patterns $x x x x$ or $x x x y x y x x$.
- The word 010001010 is δ-good.
- The word 0101010001000101 is not δ-good. (It encounters xxxyxyxx.)

The δ-good words

Say that a binary word w is δ-good if

- Word w does not contain 11 or 1001 as a factor.
- Word w does not encounter the patterns $x x x x$ or $x x x y x y x x$.
- The word 010001010 is δ-good.
- The word 0101010001000101 is not δ-good. (It encounters xxxyxyxx.)
- The word 010101001 is not δ-good. (It contains factor 1001.)

The δ-good words

When we study δ-good words, the period-doubling morphism δ always shows up:

The δ-good words

When we study δ-good words, the period-doubling morphism δ always shows up:

Theorem
Let u be a finite binary word. Then u is δ-good if and only if $\delta(u)$ is δ-good.

The δ-good words

When we study δ-good words, the period-doubling morphism δ always shows up:

Theorem

Let u be a finite binary word. Then u is δ-good if and only if $\delta(u)$ is δ-good.

Theorem
Let w be δ-good. Then we can write $w=a \delta(u) b$ where $a \in\{\epsilon, 0,1\}, b \in\{\epsilon, 0\}$ and u is δ-good. If $|w| \geq 4$ this factorization is unique.

The δ-good words

When we study δ-good words, the period-doubling morphism δ always shows up:

Theorem

Let u be a finite binary word. Then u is δ-good if and only if $\delta(u)$ is δ-good.

Theorem
Let w be δ-good. Then we can write $w=a \delta(u) b$ where $a \in\{\epsilon, 0,1\}, b \in\{\epsilon, 0\}$ and u is δ-good. If $|w| \geq 4$ this factorization is unique.

Theorem
If \boldsymbol{w} is an infinite δ-good word, then $\boldsymbol{w}=a \delta(\boldsymbol{u})$, for some δ-good word \boldsymbol{u} where $a \in\{\epsilon, 0,1\}$.

Fife's Theorem for δ-good words

Suppose \boldsymbol{w} is an infinite δ-good word.

Fife's Theorem for δ-good words

Suppose \boldsymbol{w} is an infinite δ-good word. By the previous structure theorem, $\boldsymbol{w} \in(0,1, \epsilon)(00,01)^{*}$.

Fife's Theorem for δ-good words

Suppose \boldsymbol{w} is an infinite δ-good word. By the previous structure theorem, $\boldsymbol{w} \in(0,1, \epsilon)(00,01)^{*}$. Write $\boldsymbol{w}=y_{1}(01)^{n_{1}} \boldsymbol{u}_{1}$, where 01 is not a factor of y_{1}, and n_{1} is as large as possible.

Fife's Theorem for δ-good words

Suppose \boldsymbol{w} is an infinite δ-good word. By the previous structure theorem, $\boldsymbol{w} \in(0,1, \epsilon)(00,01)^{*}$. Write $\boldsymbol{w}=y_{1}(01)^{n_{1}} \boldsymbol{u}_{1}$, where 01 is not a factor of y_{1}, and n_{1} is as large as possible. Thus $n_{1}=1,2$, or 3 , and \boldsymbol{u}_{1} starts with 00 .

Fife's Theorem for δ-good words

Suppose \boldsymbol{w} is an infinite δ-good word. By the previous structure theorem, $\boldsymbol{w} \in(0,1, \epsilon)(00,01)^{*}$. Write $\boldsymbol{w}=y_{1}(01)^{n_{1}} \boldsymbol{u}_{1}$, where 01 is not a factor of y_{1}, and n_{1} is as large as possible. Thus $n_{1}=1,2$, or 3 , and \boldsymbol{u}_{1} starts with 00 . Then $01 \boldsymbol{u}_{1}$ starts with $\delta(01)$, which is not a factor of $y_{2}=y_{1}(01)^{n_{1}-1}$.

Fife's Theorem for δ-good words

Suppose \boldsymbol{w} is an infinite δ-good word. By the previous structure theorem, $\boldsymbol{w} \in(0,1, \epsilon)(00,01)^{*}$. Write $\boldsymbol{w}=y_{1}(01)^{n_{1}} \boldsymbol{u}_{1}$, where 01 is not a factor of y_{1}, and n_{1} is as large as possible. Thus $n_{1}=1,2$, or 3 , and \boldsymbol{u}_{1} starts with 00 . Then $01 \boldsymbol{u}_{1}$ starts with $\delta(01)$, which is not a factor of $y_{2}=y_{1}(01)^{n_{1}-1}$. Write $\boldsymbol{w}=y_{2}(\delta(01))^{n_{2}} \boldsymbol{u}_{2}$, where n_{2} is as large as possible.

Fife's Theorem for δ-good words

Suppose \boldsymbol{w} is an infinite δ-good word. By the previous structure theorem, $\boldsymbol{w} \in(0,1, \epsilon)(00,01)^{*}$. Write $\boldsymbol{w}=y_{1}(01)^{n_{1}} \boldsymbol{u}_{1}$, where 01 is not a factor of y_{1}, and n_{1} is as large as possible. Thus $n_{1}=1,2$, or 3 , and \boldsymbol{u}_{1} starts with 00 . Then $01 \boldsymbol{u}_{1}$ starts with $\delta(01)$, which is not a factor of $y_{2}=y_{1}(01)^{n_{1}-1}$. Write $\boldsymbol{w}=y_{2}(\delta(01))^{n_{2}} \boldsymbol{u}_{2}$, where n_{2} is as large as possible. Then $n_{2}=1$, 2 , or 3 , and \boldsymbol{u}_{2} starts with $\delta(00)$.

Fife's Theorem for δ-good words

Suppose \boldsymbol{w} is an infinite δ-good word. By the previous structure theorem, $\boldsymbol{w} \in(0,1, \epsilon)(00,01)^{*}$. Write $\boldsymbol{w}=y_{1}(01)^{n_{1}} \boldsymbol{u}_{1}$, where 01 is not a factor of y_{1}, and n_{1} is as large as possible. Thus $n_{1}=1,2$, or 3 , and \boldsymbol{u}_{1} starts with 00 . Then $01 \boldsymbol{u}_{1}$ starts with $\delta(01)$, which is not a factor of $y_{2}=y_{1}(01)^{n_{1}-1}$. Write $\boldsymbol{w}=y_{2}(\delta(01))^{n_{2}} \boldsymbol{u}_{2}$, where n_{2} is as large as possible. Then $n_{2}=1,2$, or 3 , and \boldsymbol{u}_{2} starts with $\delta(00)$. Continue to parse off maximal blocks $\delta^{n_{i}}(01)$ near the beginning of \boldsymbol{w}. These are analogous to Morse blocks in overlap-free words.

Fife's Theorem for δ-good words

Suppose \boldsymbol{w} is an infinite δ-good word. By the previous structure theorem, $\boldsymbol{w} \in(0,1, \epsilon)(00,01)^{*}$. Write $\boldsymbol{w}=y_{1}(01)^{n_{1}} \boldsymbol{u}_{1}$, where 01 is not a factor of y_{1}, and n_{1} is as large as possible. Thus $n_{1}=1,2$, or 3 , and \boldsymbol{u}_{1} starts with 00 . Then $01 \boldsymbol{u}_{1}$ starts with $\delta(01)$, which is not a factor of $y_{2}=y_{1}(01)^{n_{1}-1}$. Write $\boldsymbol{w}=y_{2}(\delta(01))^{n_{2}} \boldsymbol{u}_{2}$, where n_{2} is as large as possible. Then $n_{2}=1,2$, or 3 , and \boldsymbol{u}_{2} starts with $\delta(00)$. Continue to parse off maximal blocks $\delta^{n_{i}}(01)$ near the beginning of \boldsymbol{w}. These are analogous to Morse blocks in overlap-free words. We get a sequence of finite words of the form $y \delta^{n}(01)$ where n is maximal and $\delta^{n}(01)$ doesn't appear in y.

Fife's Theorem for δ-good words

Suppose $w \in\{0,1\}^{*}$ has a suffix $\delta^{n}(01), n \geq 0$, where n is as large as possible. Write $w=y \delta^{n}(01)$. Define mappings α, β and γ on w by

$$
\begin{aligned}
& \alpha(w)=y \delta^{n+1}(01) \\
& \beta(w)=y \delta^{n+1}(001) \\
& \gamma(w)=y \delta^{n+1}(0001) .
\end{aligned}
$$

Fife's Theorem for δ-good words

Suppose $w \in\{0,1\}^{*}$ has a suffix $\delta^{n}(01), n \geq 0$, where n is as large as possible. Write $w=y \delta^{n}(01)$. Define mappings α, β and γ on w by

$$
\begin{aligned}
& \alpha(w)=y \delta^{n+1}(01) \\
& \beta(w)=y \delta^{n+1}(001) \\
& \gamma(w)=y \delta^{n+1}(0001)
\end{aligned}
$$

Each of these has a w as a prefix, and a suffix $\delta^{n+1}(01)$.

The δ-good words

An example
Let $w=0001000101$. Here $y=00, n=2, \delta^{n}(0)=0100$, $\delta^{n}(1)=0101$, so that

$$
\begin{aligned}
& \alpha(w)=000100010101000100 \\
& \beta(w)=00010001010100010101000100 \\
& \gamma(w)=0001000101010001010100010101000100 .
\end{aligned}
$$

Fife's Theorem for δ-good words

Suppose $u \in\{\alpha, \beta, \gamma\}^{*}, u=u_{1} u_{2} \cdots u_{n}, u_{i} \in\{\alpha, \beta, \gamma\}$. We define

$$
01 \bullet u=u_{n}\left(u_{n-1}\left(\cdots\left(u_{2}\left(u_{1}(01)\right) \cdots\right)\right) .\right.
$$

For an infinite sequence \boldsymbol{u} over $\{\alpha, \beta, \gamma\}, \boldsymbol{u}=u_{1} u_{2} \cdots$, we define $01 \bullet \boldsymbol{u}$ to be the binary sequence having each $01 \bullet u_{1} u_{2} \cdots u_{n}$ as a prefix.

Fife's Theorem for δ-good words

Example

$$
\begin{aligned}
01 \bullet \alpha \beta \gamma & =(01 \bullet \alpha) \beta \gamma \\
& =\left(\delta^{0}(01) \bullet \alpha\right) \beta \gamma \\
& =\delta^{1}(01) \bullet \beta \gamma \\
& \left.=\left(\delta^{1}(01)\right) \bullet \beta\right) \gamma \\
& =\delta^{2}(001) \bullet \gamma \\
& =\left(\delta^{2}(0) \delta^{2}(01)\right) \bullet \gamma \\
& =\left(\delta^{2}(0) \delta^{3}(0001)\right) \\
& =\delta(\delta(0 \delta(0001))) \\
& =\delta(\delta(001010100)) \\
& =\delta(010100010001000101) \\
& =010001000101010001010100010101000100
\end{aligned}
$$

Fife's Theorem for δ-good words

Theorem
The infinite δ-good words starting with 01 are precisely the words $01 \bullet \boldsymbol{u}$, where \boldsymbol{u} can be walked on this automaton:

Figure: 'Fife' automaton for δ-good words

Ingredients for Fife's Theorem

Let G be the set of one-sided infinite δ-good words. Let G_{u} stand for those starting with finite word u.

Lemma
Let \boldsymbol{w} be a one-sided infinite binary word.
(a) $\delta(\boldsymbol{w}) \in G \Longleftrightarrow \boldsymbol{w} \in G$;
(b) $1 \delta(\boldsymbol{w}) \in G \Longleftrightarrow 0 \boldsymbol{w} \in G$;
(c) $0 \delta(\boldsymbol{w}) \in G \Longleftrightarrow(1 \boldsymbol{w} \in G)$ or $\left(\boldsymbol{w} \in G_{001}\right)$.

Let $W=\left\{\boldsymbol{f} \in\{\alpha, \beta, \gamma\}^{\omega}: 01 \bullet \boldsymbol{f} \in G\right\}$.

Ingredients for Fife's Theorem

Let $\boldsymbol{u} \in\{\alpha, \beta, \gamma\}^{k}$ and let \boldsymbol{f} be an infinite word over $\{\alpha, \beta, \gamma\}$ such that $01 \bullet \boldsymbol{f}=\boldsymbol{x}$. Then

$$
01 \bullet u \boldsymbol{f}=(01 \bullet u) \delta^{k}(01)^{-1} \delta^{k}(\boldsymbol{x})
$$

Ingredients for Fife's Theorem

Getting the automaton in our theorem means proving identities such as $(\beta \gamma)^{-1} W=\gamma^{-1} W$. However,

$$
\begin{aligned}
\beta \gamma \boldsymbol{f} \in W & \Longleftrightarrow 01 \bullet \beta \gamma \boldsymbol{f} \in G \\
& \Longleftrightarrow(01 \bullet \beta \gamma) \delta^{2}(01)^{-1} \delta^{2}(\boldsymbol{x}) \in G \\
& \Longleftrightarrow 010100010001000101(01000101)^{-1} \delta^{2}(\boldsymbol{x}) \in G \\
& \Longleftrightarrow \delta(0 \delta(00 x)) \in G \\
& \Longleftrightarrow 0 \delta(00 \boldsymbol{x}) \in G \\
& \Longleftrightarrow 100 \boldsymbol{x} \in G \text { or } 00 x \in G_{001} \\
& \Longleftrightarrow 00 x \in G
\end{aligned}
$$

Similarly, we calculate that

$$
\gamma \boldsymbol{f} \in W \Longleftrightarrow 00 x \in G
$$

Patterns in \boldsymbol{d}

Lemma

Any factor $0 u$ of \boldsymbol{d} can be written as $\phi(p)$ for some word p. Any factor $u 0$ of \boldsymbol{d} can be written as $\phi^{R}(p)$ for some word p where $\phi^{R}=[10,0]$. Word d thus has an inverse image under each of ϕ and ϕ^{R}.

Patterns in \boldsymbol{d}

Theorem

Word p is a binary pattern encountered by \boldsymbol{d} if and only if one of the following holds:

1. One of p and \bar{p} is a factor of $\boldsymbol{d}, \phi_{1}^{-1}(\boldsymbol{d})$, or $\left(\phi^{R}\right)^{-1}(\boldsymbol{d})$.
2. One of p and \bar{p} is among 0010100, 01001001000, 00100100100, 001001001000, 00010010010, 000100100100, 0010001000100, 00100010001000, 00010001000100, and 000100010001000.
The two possibilities are distinct.
