Analogs of overlap-freeness

James D. Currie

University of Winnipeg

September 26, 2023

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへの

The *Thue-Morse word* \mathbf{t} is a fixed point of the morphism $\mu = [01, 10]$:

$$\boldsymbol{t} = \lim_{n \to \infty} \mu^n(0) = 0110100110010110 \cdots$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

The *Thue-Morse word* \mathbf{t} is a fixed point of the morphism $\mu = [01, 10]$:

$$t = \lim_{n \to \infty} \mu^n(0) = 0110100110010110 \cdots$$

The *period-doubling word* **d** is the fixed point of $\delta = [01, 00]$:

$$\boldsymbol{d} = \lim_{n \to \infty} \delta^n(0) = 0100010101000100 \cdots$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The *Thue-Morse word* \mathbf{t} is a fixed point of the morphism $\mu = [01, 10]$:

$$t = \lim_{n \to \infty} \mu^n(0) = 0110100110010110 \cdots$$

The *period-doubling word* **d** is the fixed point of $\delta = [01, 00]$:

$$\boldsymbol{d} = \lim_{n \to \infty} \delta^n(0) = 0100010101000100 \cdots$$

The *Fibonacci word* f is the fixed point of $\phi = [01, 0]$:

$$f = \lim_{n \to \infty} \phi^n(0) = 01001010010010010100100100$$

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

Factors and Patterns

Factors and Patterns

Factors

Word w contains word v as a *factor* if w = uvz for words u, z. For example, *adoration* contains *ratio* as a factor, letting u = ado, z = n.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Factors

Word w contains word v as a *factor* if w = uvz for words u, z. For example, *adoration* contains *ratio* as a factor, letting u = ado, z = n.

Patterns

Word *w* encounters pattern *p* if h(p) is a factor of *w* for some non-erasing morphism *h*. Word *illegible* encounters xyx. (Let h(x) = le, h(y) = gib, for example.)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

▲□▶▲圖▶▲≣▶▲≣▶ ≣ の�?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

A binary word w is overlap-free if

A binary word w is overlap-free if

▶ Word *w* does not contain 000 or 111 as a factor.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

A binary word w is overlap-free if

▶ Word *w* does not contain 000 or 111 as a factor.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

▶ Word *w* doesn't encounter the pattern *xyxyx*.

A binary word w is overlap-free if

- ▶ Word *w* does not contain 000 or 111 as a factor.
- ▶ Word *w* doesn't encounter the pattern *xyxyx*.

When we study overlap-free binary words, the Thue-Morse morphism μ always shows up:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

A binary word w is overlap-free if

- ▶ Word *w* does not contain 000 or 111 as a factor.
- ▶ Word *w* doesn't encounter the pattern *xyxyx*.

When we study overlap-free binary words, the Thue-Morse morphism μ always shows up:

Theorem

A binary word w is overlap-free if and only if $\mu(w)$ is overlap-free.

A binary word w is overlap-free if

- ▶ Word *w* does not contain 000 or 111 as a factor.
- ▶ Word *w* doesn't encounter the pattern *xyxyx*.

When we study overlap-free binary words, the Thue-Morse morphism μ always shows up:

Theorem

A binary word w is overlap-free if and only if $\mu(w)$ is overlap-free.

Structure Theorem

If w is a finite overlap-free binary word, then $w = x\mu(y)z$ where y is an overlap-free binary word, and $|x|, |z| \le 2$.

A binary word w is overlap-free if

- ▶ Word *w* does not contain 000 or 111 as a factor.
- ▶ Word *w* doesn't encounter the pattern *xyxyx*.

When we study overlap-free binary words, the Thue-Morse morphism μ always shows up:

Theorem

A binary word w is overlap-free if and only if $\mu(w)$ is overlap-free.

Structure Theorem

If w is a finite overlap-free binary word, then $w = x\mu(y)z$ where y is an overlap-free binary word, and $|x|, |z| \le 2$.

Theorem

If **u** is an infinite binary overlap-free word, then $\mathbf{u} = x\mu(\mathbf{w})$, where **w** is overlap-free, and $x \in \{\epsilon, 0, 1\}$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

▲□▶▲圖▶▲≣▶▲≣▶ ≣ の�?

Many results are known for overlap-free words. These structure theorems often contribute to the proof:

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Many results are known for overlap-free words. These structure theorems often contribute to the proof:

 the number of binary overlap-free words of length n grows like n^σ, 1.3005 < σ < 1.3098 (Jungers, Protasov, Blondel);

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Many results are known for overlap-free words. These structure theorems often contribute to the proof:

 the number of binary overlap-free words of length n grows like n^σ, 1.3005 < σ < 1.3098 (Jungers, Protasov, Blondel);

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 the lexicographically greatest infinite overlap-free word starting with 0 is t (Berstel);

Many results are known for overlap-free words. These structure theorems often contribute to the proof:

- the number of binary overlap-free words of length n grows like n^σ, 1.3005 < σ < 1.3098 (Jungers, Protasov, Blondel);
- the lexicographically greatest infinite overlap-free word starting with 0 is t (Berstel);
- Fife's Theorem (a characterization of all infinite overlap-free binary words);

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Many results are known for overlap-free words. These structure theorems often contribute to the proof:

- the number of binary overlap-free words of length n grows like n^σ, 1.3005 < σ < 1.3098 (Jungers, Protasov, Blondel);
- the lexicographically greatest infinite overlap-free word starting with 0 is t (Berstel);
- Fife's Theorem (a characterization of all infinite overlap-free binary words);
- the only patterns encountered by t which are not factors of t are 00100 and 11011 (Shur).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The ϕ -good words

Say that a binary word w is ϕ -good if

Say that a binary word w is ϕ -good if

▶ Word *w* does not contain 11 as a factor.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Say that a binary word w is ϕ -good if

- ▶ Word *w* does not contain 11 as a factor.
- Word w does not contain a factor XXXX⁻, where X⁻ is obtained from X by deleting the last letter.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Say that a binary word w is ϕ -good if

- ▶ Word *w* does not contain 11 as a factor.
- Word w does not contain a factor XXXX⁻, where X⁻ is obtained from X by deleting the last letter.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

• The word 01001010 is ϕ -good.

Say that a binary word w is ϕ -good if

- ▶ Word *w* does not contain 11 as a factor.
- Word w does not contain a factor XXXX⁻, where X⁻ is obtained from X by deleting the last letter.
- The word 01001010 is ϕ -good.
- ▶ The word 01001101 is not *φ*-good. (It contains factor 11.)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

The ϕ -good words

Say that a binary word w is ϕ -good if

- ▶ Word *w* does not contain 11 as a factor.
- Word w does not contain a factor XXXX⁻, where X⁻ is obtained from X by deleting the last letter.
- The word 01001010 is ϕ -good.
- ▶ The word 01001101 is not *φ*-good. (It contains factor 11.)

The word 01010100 is not φ-good. (It contains factor XXXX⁻, where X = 01.)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

When we study $\phi\text{-good}$ words, the Fibonacci morphism ϕ always shows up:

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

When we study $\phi\text{-}\mathsf{good}$ words, the Fibonacci morphism ϕ always shows up:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Theorem

A binary word w is ϕ -good, if and only if $\phi(w)$ is ϕ -good.

When we study $\phi\text{-good}$ words, the Fibonacci morphism ϕ always shows up:

Theorem

A binary word w is ϕ -good, if and only if $\phi(w)$ is ϕ -good.

Theorem

If **u** is an infinite ϕ -good word, then $\mathbf{u} = x\phi(\mathbf{w})$, where **w** is ϕ -good, and $x \in {\epsilon, 1}$.

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ○ のへで

Let ℓ be the lexicographically least infinite ϕ -good word, and let m be the lexicographically greatest infinite ϕ -good word. (We skip past the existence theorems.)

Let ℓ be the lexicographically least infinite ϕ -good word, and let m be the lexicographically greatest infinite ϕ -good word. (We skip past the existence theorems.)

Theorem

We have $\ell = \phi(\mathbf{m})$, and $\mathbf{m} = 1\phi(\ell)$.

Let ℓ be the lexicographically least infinite ϕ -good word, and let **m** be the lexicographically greatest infinite ϕ -good word. (We skip past the existence theorems.)

Theorem

We have
$$\boldsymbol{\ell} = \phi(\boldsymbol{m})$$
, and $\boldsymbol{m} = 1\phi(\boldsymbol{\ell})$.

Proof.

We show $\ell = \phi(\mathbf{m})$. Since \mathbf{f} has final segments beginning 00, word ℓ begins 00. By our structure theorems on ϕ -good words, $\ell = \phi(\mathbf{u})$, some ϕ -good \mathbf{u} . However, we see that ϕ is order-reversing on infinite words. It follows that $\mathbf{u} = \mathbf{m}$.

Lexicographically least ϕ -good word

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ○ のへで

Lexicographically least ϕ -good word

Corollary We have $\ell = 0\phi^2(\ell)$, and $\mathbf{m} = 1\phi^2(\mathbf{m})$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Lexicographically least ϕ -good word

Corollary

We have $\boldsymbol{\ell} = 0\phi^2(\boldsymbol{\ell})$, and $\boldsymbol{m} = 1\phi^2(\boldsymbol{m})$.

This allows us to calculate arbitrarily long prefixes of ℓ and m. For example, ℓ begins with 0, hence with $0\phi^2(0) = 0010$, hence with $0\phi^2(0010) = 001001001010$.

Corollary

Every factor of \mathbf{f} is a factor of ℓ , but there are infinitely many factors of ℓ which are not factors of \mathbf{f} . Word ℓ is not a fixed point of a binary morphism.

Say that a binary word w is $\delta\operatorname{-good}$ if

Say that a binary word w is δ -good if

Word w does not contain 11 or 1001 as a factor.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

The δ -good words

Say that a binary word w is δ -good if

- ▶ Word *w* does not contain 11 or 1001 as a factor.
- ▶ Word *w* does not encounter the patterns *xxxx* or *xxxyxyxx*.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

The δ -good words

Say that a binary word w is δ -good if

- ▶ Word *w* does not contain 11 or 1001 as a factor.
- ▶ Word *w* does not encounter the patterns *xxxx* or *xxxyxyxx*.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Say that a binary word w is δ -good if

- ▶ Word *w* does not contain 11 or 1001 as a factor.
- ▶ Word *w* does not encounter the patterns *xxxx* or *xxxyxyxx*.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

• The word 010001010 is δ -good.

Say that a binary word w is δ -good if

- ▶ Word *w* does not contain 11 or 1001 as a factor.
- ▶ Word *w* does not encounter the patterns *xxxx* or *xxxyxyxx*.
- The word 010001010 is δ -good.
- The word 01 01 0100010001 01 is not δ -good. (It encounters *xxxyxyxx*.)

The δ -good words

Say that a binary word w is δ -good if

- Word w does not contain 11 or 1001 as a factor.
- ▶ Word *w* does not encounter the patterns *xxxx* or *xxxyxyxx*.
- The word 010001010 is δ -good.
- The word 01 01 0100010001 01 is not δ-good. (It encounters xxxyxyxx.)
- The word 010101001 is not δ -good. (It contains factor 1001.)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

When we study $\delta\text{-good}$ words, the period-doubling morphism δ always shows up:

When we study $\delta\text{-good}$ words, the period-doubling morphism δ always shows up:

Theorem

Let u be a finite binary word. Then u is δ -good if and only if $\delta(u)$ is δ -good.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

When we study $\delta\text{-good}$ words, the period-doubling morphism δ always shows up:

Theorem

Let u be a finite binary word. Then u is δ -good if and only if $\delta(u)$ is δ -good.

Theorem

Let w be δ -good. Then we can write $w = a\delta(u)b$ where $a \in \{\epsilon, 0, 1\}$, $b \in \{\epsilon, 0\}$ and u is δ -good. If $|w| \ge 4$ this factorization is unique.

When we study $\delta\text{-good}$ words, the period-doubling morphism δ always shows up:

Theorem

Let u be a finite binary word. Then u is δ -good if and only if $\delta(u)$ is δ -good.

Theorem

Let w be δ -good. Then we can write $w = a\delta(u)b$ where $a \in \{\epsilon, 0, 1\}$, $b \in \{\epsilon, 0\}$ and u is δ -good. If $|w| \ge 4$ this factorization is unique.

Theorem

If **w** is an infinite δ -good word, then $\mathbf{w} = a\delta(\mathbf{u})$, for some δ -good word \mathbf{u} where $a \in \{\epsilon, 0, 1\}$.

Suppose \boldsymbol{w} is an infinite δ -good word.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Suppose \boldsymbol{w} is an infinite δ -good word. By the previous structure theorem, $\boldsymbol{w} \in (0, 1, \epsilon)(00, 01)^*$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Suppose \boldsymbol{w} is an infinite δ -good word. By the previous structure theorem, $\boldsymbol{w} \in (0, 1, \epsilon)(00, 01)^*$. Write $\boldsymbol{w} = y_1(01)^{n_1}\boldsymbol{u}_1$, where 01 is not a factor of y_1 , and n_1 is as large as possible.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Suppose \boldsymbol{w} is an infinite δ -good word. By the previous structure theorem, $\boldsymbol{w} \in (0, 1, \epsilon)(00, 01)^*$. Write $\boldsymbol{w} = y_1(01)^{n_1}\boldsymbol{u}_1$, where 01 is not a factor of y_1 , and n_1 is as large as possible. Thus $n_1 = 1, 2$, or 3, and \boldsymbol{u}_1 starts with 00.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Suppose \boldsymbol{w} is an infinite δ -good word. By the previous structure theorem, $\boldsymbol{w} \in (0, 1, \epsilon)(00, 01)^*$. Write $\boldsymbol{w} = y_1(01)^{n_1}\boldsymbol{u}_1$, where 01 is not a factor of y_1 , and n_1 is as large as possible. Thus $n_1 = 1, 2$, or 3, and \boldsymbol{u}_1 starts with 00. Then $01\boldsymbol{u}_1$ starts with $\delta(01)$, which is not a factor of $y_2 = y_1(01)^{n_1-1}$.

A D N A 目 N A E N A E N A B N A C N

Suppose \boldsymbol{w} is an infinite δ -good word. By the previous structure theorem, $\boldsymbol{w} \in (0, 1, \epsilon)(00, 01)^*$. Write $\boldsymbol{w} = y_1(01)^{n_1}\boldsymbol{u}_1$, where 01 is not a factor of y_1 , and n_1 is as large as possible. Thus $n_1 = 1, 2$, or 3, and \boldsymbol{u}_1 starts with 00. Then $01\boldsymbol{u}_1$ starts with $\delta(01)$, which is not a factor of $y_2 = y_1(01)^{n_1-1}$. Write $\boldsymbol{w} = y_2(\delta(01))^{n_2}\boldsymbol{u}_2$, where n_2 is as large as possible.

Suppose \boldsymbol{w} is an infinite δ -good word. By the previous structure theorem, $\boldsymbol{w} \in (0, 1, \epsilon)(00, 01)^*$. Write $\boldsymbol{w} = y_1(01)^{n_1}\boldsymbol{u}_1$, where 01 is not a factor of y_1 , and n_1 is as large as possible. Thus $n_1 = 1, 2$, or 3, and \boldsymbol{u}_1 starts with 00. Then $01\boldsymbol{u}_1$ starts with $\delta(01)$, which is not a factor of $y_2 = y_1(01)^{n_1-1}$. Write $\boldsymbol{w} = y_2(\delta(01))^{n_2}\boldsymbol{u}_2$, where n_2 is as large as possible. Then $n_2 = 1, 2$, or 3, and \boldsymbol{u}_2 starts with $\delta(00)$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Suppose \boldsymbol{w} is an infinite δ -good word. By the previous structure theorem, $\boldsymbol{w} \in (0, 1, \epsilon)(00, 01)^*$. Write $\boldsymbol{w} = y_1(01)^{n_1}\boldsymbol{u}_1$, where 01 is not a factor of y_1 , and n_1 is as large as possible. Thus $n_1 = 1, 2$, or 3, and \boldsymbol{u}_1 starts with 00. Then $01\boldsymbol{u}_1$ starts with $\delta(01)$, which is not a factor of $y_2 = y_1(01)^{n_1-1}$. Write $\boldsymbol{w} = y_2(\delta(01))^{n_2}\boldsymbol{u}_2$, where n_2 is as large as possible. Then $n_2 = 1, 2$, or 3, and \boldsymbol{u}_2 starts with $\delta(00)$. Continue to parse off maximal blocks $\delta^{n_i}(01)$ near the beginning of \boldsymbol{w} . These are analogous to Morse blocks in overlap-free words.

Suppose \boldsymbol{w} is an infinite δ -good word. By the previous structure theorem, $\boldsymbol{w} \in (0, 1, \epsilon)(00, 01)^*$. Write $\boldsymbol{w} = y_1(01)^{n_1}\boldsymbol{u}_1$, where 01 is not a factor of y_1 , and n_1 is as large as possible. Thus $n_1 = 1, 2$, or 3, and \boldsymbol{u}_1 starts with 00. Then $01\boldsymbol{u}_1$ starts with $\delta(01)$, which is not a factor of $y_2 = y_1(01)^{n_1-1}$. Write $\boldsymbol{w} = y_2(\delta(01))^{n_2}\boldsymbol{u}_2$, where n_2 is as large as possible. Then $n_2 = 1, 2$, or 3, and \boldsymbol{u}_2 starts with $\delta(00)$. Continue to parse off maximal blocks $\delta^{n_i}(01)$ near the beginning of \boldsymbol{w} . These are analogous to Morse blocks in overlap-free words. We get a sequence of finite words of the form $y\delta^n(01)$ where n is maximal and $\delta^n(01)$ doesn't appear in y.

Suppose $w \in \{0,1\}^*$ has a suffix $\delta^n(01)$, $n \ge 0$, where *n* is as large as possible. Write $w = y\delta^n(01)$. Define mappings α , β and γ on *w* by

$$\begin{aligned} \alpha(w) &= y \delta^{n+1}(01) \\ \beta(w) &= y \delta^{n+1}(001) \\ \gamma(w) &= y \delta^{n+1}(0001). \end{aligned}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Suppose $w \in \{0,1\}^*$ has a suffix $\delta^n(01)$, $n \ge 0$, where *n* is as large as possible. Write $w = y\delta^n(01)$. Define mappings α , β and γ on *w* by

$$\alpha(w) = y\delta^{n+1}(01)$$

$$\beta(w) = y\delta^{n+1}(001)$$

$$\gamma(w) = y\delta^{n+1}(0001).$$

Each of these has a *w* as a prefix, and a suffix $\delta^{n+1}(01)$.

An example

Let $w = 00\ 0100\ 0101$. Here y = 00, n = 2, $\delta^n(0) = 0100$, $\delta^n(1) = 0101$, so that

 $\begin{aligned} \alpha(w) &= 00 \ 0100 \ 0101 \ 0100 \ 0100 \\ \beta(w) &= 00 \ 0100 \ 0101 \ 0100 \ 0101 \ 0100 \ 0100 \\ \gamma(w) &= 00 \ 0100 \ 0101 \ 0100 \ 0101 \ 0100 \ 0101 \ 0100 \ 0100. \end{aligned}$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Suppose $u \in \{\alpha, \beta, \gamma\}^*$, $u = u_1 u_2 \cdots u_n$, $u_i \in \{\alpha, \beta, \gamma\}$. We define

$$01 \bullet u = u_n(u_{n-1}(\cdots(u_2(u_1(01))\cdots))).$$

For an infinite sequence \boldsymbol{u} over $\{\alpha, \beta, \gamma\}$, $\boldsymbol{u} = u_1 u_2 \cdots$, we define $01 \bullet \boldsymbol{u}$ to be the binary sequence having each $01 \bullet u_1 u_2 \cdots u_n$ as a prefix.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

= 010001000101010001010100010101000100

 $=\delta(01010001000100101)$

 $\beta\gamma$

 $=\delta(\delta(001010100))$

 $=\delta(\delta(0\delta(0001)))$

 $=(\delta^2(0)\delta^3(0001))$

 $=(\delta^2(0)\delta^2(01))\bullet\gamma$

$$=\delta^2(001)\bullet\gamma$$

$$= (\delta^1(01)) \bullet \beta)\gamma$$

$$=\delta^1(01)\bullet\beta\gamma$$

$$=(\delta^0(01) \bullet \alpha)$$

$$=(\delta^0(01)\bullet\alpha)$$

$$01 \bullet \alpha \beta \gamma = (01 \bullet \alpha) \beta \gamma$$

Fife's Theorem for
$$\delta$$
-good words

Example

Theorem

The infinite δ -good words starting with 01 are precisely the words 01 • \boldsymbol{u} , where \boldsymbol{u} can be walked on this automaton:

Figure: 'Fife' automaton for δ -good words

Let G be the set of one-sided infinite δ -good words. Let G_u stand for those starting with finite word u.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Lemma

Let w be a one-sided infinite binary word.

(a)
$$\delta(w) \in G \iff w \in G;$$

(b) $1\delta(w) \in G \iff 0w \in G;$
(c) $0\delta(w) \in G \iff (1w \in G) \text{ or } (w \in G_{001}).$

Let $W = \{ \boldsymbol{f} \in \{ \alpha, \beta, \gamma \}^{\omega} : 01 \bullet \boldsymbol{f} \in \boldsymbol{G} \}.$

Ingredients for Fife's Theorem

Let $u \in \{\alpha, \beta, \gamma\}^k$ and let f be an infinite word over $\{\alpha, \beta, \gamma\}$ such that $01 \bullet f = x$. Then

$$01 \bullet u\mathbf{f} = (01 \bullet u)\delta^k(01)^{-1}\delta^k(\mathbf{x}).$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Ingredients for Fife's Theorem

Getting the automaton in our theorem means proving identities such as $(\beta\gamma)^{-1}W = \gamma^{-1}W$. However,

$$\begin{split} \beta \gamma \boldsymbol{f} \in \boldsymbol{W} \iff 01 \bullet \beta \gamma \boldsymbol{f} \in \boldsymbol{G} \\ \iff (01 \bullet \beta \gamma) \delta^2 (01)^{-1} \delta^2 (\boldsymbol{x}) \in \boldsymbol{G} \\ \iff 0101000100 \ \boldsymbol{01000101} (\boldsymbol{01000101})^{-1} \delta^2 (\boldsymbol{x}) \in \boldsymbol{G} \\ \iff 0101000100 \ \boldsymbol{01000101} (\boldsymbol{01000101})^{-1} \delta^2 (\boldsymbol{x}) \in \boldsymbol{G} \\ \iff \delta (0\delta (00\boldsymbol{x})) \in \boldsymbol{G} \\ \iff 0\delta (00\boldsymbol{x}) \in \boldsymbol{G} \\ \iff 100\boldsymbol{x} \in \boldsymbol{G} \text{ or } 00\boldsymbol{x} \in \boldsymbol{G}_{001} \\ \iff 00\boldsymbol{x} \in \boldsymbol{G}. \end{split}$$

Similarly, we calculate that

$$\gamma \mathbf{f} \in \mathbf{W} \iff \mathbf{00x} \in \mathbf{G}.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Patterns in *d*

Lemma

Any factor 0u of **d** can be written as $\phi(p)$ for some word p. Any factor u0 of **d** can be written as $\phi^R(p)$ for some word p where $\phi^R = [10, 0]$. Word **d** thus has an inverse image under each of ϕ and ϕ^R .

Patterns in **d**

Theorem

Word p is a binary pattern encountered by **d** if and only if one of the following holds:

- 1. One of p and \overline{p} is a factor of \boldsymbol{d} , $\phi_1^{-1}(\boldsymbol{d})$, or $(\phi^R)^{-1}(\boldsymbol{d})$.

The two possibilities are distinct.