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Three famous words

The Thue-Morse word t is a fixed point of the morphism
w = [01,10]:

t= lim 4"(0) = 0110100110010110--

The period-doubling word d is the fixed point of § = [01, 00]:

d = lim §"(0) = 0100010101000100- - -

n—oo

The Fibonacci word f is the fixed point of ¢ = [01,0]:

f = lim ¢"(0) = 010010100100101001010- - -

n—o0
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Factors and Patterns

Factors
Word w contains word v as a factor if w = uvz for words u, z. For

example, adoration contains ratio as a factor, letting u = ado,
z=n.

Patterns

Word w encounters pattern p if h(p) is a factor of w for some
non-erasing morphism h. Word illegible encounters xyx. (Let
h(x) = le, h(y) = gib, for example.)
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The Thue-Morse morphism and overlap-freeness

A binary word w is overlap-free if
» Word w does not contain 000 or 111 as a factor.
> Word w doesn't encounter the pattern xyxyx.
When we study overlap-free binary words, the Thue-Morse

morphism p always shows up:

Theorem
A binary word w is overlap-free if and only if u(w) is overlap-free.

Structure Theorem
If w is a finite overlap-free binary word, then w = xu(y)z where y
is an overlap-free binary word, and |x|, |z| < 2.

Theorem
If u is an infinite binary overlap-free word, then u = xu(w), where
w is overlap-free, and x € {¢,0,1}.
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The Thue-Morse morphism and overlap-freeness

Many results are known for overlap-free words. These structure
theorems often contribute to the proof:

» the number of binary overlap-free words of length n grows like
n?, 1.3005 < o < 1.3098 (Jungers, Protasov, Blondel);

> the lexicographically greatest infinite overlap-free word
starting with O is t (Berstel);

» Fife's Theorem (a characterization of all infinite overlap-free
binary words);

» the only patterns encountered by t which are not factors of t
are 00100 and 11011 (Shur).
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The ¢-good words

Say that a binary word w is ¢-good if
» Word w does not contain 11 as a factor.

» Word w does not contain a factor XXXX~, where X~ is
obtained from X by deleting the last letter.

» The word 01001010 is ¢-good.
The word 01001101 is not ¢-good. (It contains factor 11.)

» The word 01010100 is not ¢-good. (It contains factor
XXXX~, where X =01.)

v
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The Fibonacci morphism and ¢-goodness

When we study ¢-good words, the Fibonacci morphism ¢ always
shows up:

Theorem
A binary word w is ¢-good, if and only if p(w) is ¢-good.

Theorem
If u is an infinite p-good word, then u = x¢(w), where w is
¢-good, and x € {¢,1}.
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Lexicographically least ¢-good word

Let £ be the lexicographically least infinite ¢-good word, and let m
be the lexicographically greatest infinite ¢-good word. (We skip
past the existence theorems.)

Theorem
We have £ = ¢(m), and m = 1¢(¥).

Proof.

We show £ = ¢(m). Since f has final segments beginning 00,
word £ begins 00. By our structure theorems on ¢-good words,
£ = ¢(u), some ¢p-good u. However, we see that ¢ is
order-reversing on infinite words. It follows that u = m.

O
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Lexicographically least ¢-good word

Corollary
We have £ = 0¢%(£), and m = 1¢*(m).
This allows us to calculate arbitrarily long prefixes of £ and m. For

example, £ begins with 0, hence with 0¢?(0) = 0010, hence with
0¢2(0010) = 001001001010.

Corollary

Every factor of f is a factor of £, but there are infinitely many
factors of £ which are not factors of F. Word £ is not a fixed point
of a binary morphism.
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The d-good words

Say that a binary word w is §-good if
» Word w does not contain 11 or 1001 as a factor.

> Word w does not encounter the patterns xxxx or xxxyxyxx.

» The word 010001010 is d-good.

» The word 01 01 0100010001 01 is not d-good. (It encounters
XXXYXYXX.)

» The word 010101001 is not J-good. (It contains factor 1001.)
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The d-good words

When we study d-good words, the period-doubling morphism §
always shows up:

Theorem

Let u be a finite binary word. Then u is 6-good if and only if 6(u)
is 6-good.

Theorem

Let w be 6-good. Then we can write w = ad(u)b where
a€{e0,1}, b e {¢,0} and u is §-good. If |w| > 4 this
factorization is unique.

Theorem

If w is an infinite §-good word, then w = ad(u), for some §-good
word u where a € {¢,0,1}.
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Fife's Theorem for 9-good words

Suppose w is an infinite J-good word. By the previous structure
theorem, w € (0, 1,¢)(00,01)*. Write w = y;(01)™u;, where 01
is not a factor of y;, and n; is as large as possible. Thus n; =1, 2,
or 3, and wu; starts with 00. Then 0lu; starts with 6(01), which is
not a factor of y» = y1(01)™ 1. Write w = y»(6(01))™2uy, where
ny is as large as possible. Then np =1, 2, or 3, and u» starts with
9(00). Continue to parse off maximal blocks §"(01) near the
beginning of w. These are analogous to Morse blocks in
overlap-free words.We get a sequence of finite words of the form
y0"(01) where n is maximal and 6"(01) doesn’t appear in y.
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Fife's Theorem for 9-good words

Suppose w € {0,1}* has a suffix 6”(01), n > 0, where n is as large
as possible. Write w = y4"(01). Define mappings «, 8 and «y on
w by

a(w) = ys"1(01)

B(w) = yo"+1(001)

v(w) = y6™1(0001).

Each of these has a w as a prefix, and a suffix 6"+1(01).



The d-good words

An example
Let w = 00 0100 0101. Here y =00, n =2, §"(0) = 0100,
0"(1) = 0101, so that

a(w) = 00 0100 0101 0100 0100
S(w) = 00 0100 0101 0100 0101 0100 0100
~(w) = 00 0100 0101 0100 0101 0100 0101 0100 0100.



Fife's Theorem for 9-good words

Suppose u € {a, 8,7y}, u=wua---uy ui € {a, 5,7}. We define
Oleu= Un(Un—l(' o (U2(U1(01)) te ))

For an infinite sequence u over {a, 8,7}, u = ujuy - -+, we define
01 e u to be the binary sequence having each 01 ® uup - - u, as a
prefix.



Fife's Theorem for 9-good words

Example

01 e affy =(01 @ )3y
=(6°(01) e ) By
=51(01) ® By
=(6*(01)) & B)y
:(52(001) o
=(6%(0)6*(01)) @ y
=(62(0)63(0001))
=5(5(05(0001)))
=0(6(001010100))
=4(010100010001000101)
—010001000101010001010100010101000100



Fife's Theorem for 9-good words

Theorem
The infinite §-good words starting with 01 are precisely the words
01 e u, where u can be walked on this automaton:

Figure: ‘Fife’ automaton for §-good words



Ingredients for Fife's Theorem

Let G be the set of one-sided infinite d-good words. Let G, stand
for those starting with finite word w.

Lemma

Let w be a one-sided infinite binary word.

(a) d(w) e G <= weG,

(b) 16(w) € G <= 0w € G;

(c) 00(w)e G <= (1w € G) or (w € Gyo1).

Let W={f € {c,3,7}*:01lef € G}.



Ingredients for Fife's Theorem

Let u € {a, 3,7}* and let f be an infinite word over {«, 3,7}
such that 01 e f = x. Then

01 e uf = (01 & u)5*(01)~15%(x).



Ingredients for Fife's Theorem

Getting the automaton in our theorem means proving identities
such as (Bv)"'W =y~ W. However,

pyfFeW < 0lepyfecG
< (01l e37)5%(01)*63(x) € G
0101000100 9}990}0}(91999}91—}_152(X) €G
5(05(00x)) € G
00(00x) € G
100x € G or 00x € Ggo1
<— 00x € G.

—
—
—
—

Similarly, we calculate that

~feW < 00x € G.



Patterns in d

Lemma

Any factor Ou of d can be written as ¢(p) for some word p . Any
factor u0 of d can be written as ¢(p) for some word p where
R =[10,0]. Word d thus has an inverse image under each of ¢

and ¢R.



Patterns in d

Theorem
Word p is a binary pattern encountered by d if and only if one of
the following holds:
1. One of p and B is a factor of d, ¢7 (d), or (¢7)~1(d).
2. One of p and p is among
0010100, 01001001000, 00100100100, 001001001000,

00010010010, 000100100100, 0010001000100,
00100010001000, 00010001000100, and 000100010001000.

The two possibilities are distinct.



