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Three famous words

The Thue-Morse word t is a fixed point of the morphism
µ = [01, 10]:

t = lim
n→∞

µn(0) = 0110100110010110 · · ·

The period-doubling word d is the fixed point of δ = [01, 00]:

d = lim
n→∞

δn(0) = 0100010101000100 · · ·

The Fibonacci word f is the fixed point of ϕ = [01, 0]:

f = lim
n→∞

ϕn(0) = 010010100100101001010 · · ·
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Factors and Patterns

Factors
Word w contains word v as a factor if w = uvz for words u, z . For
example, adoration contains ratio as a factor, letting u = ado,
z = n.

Patterns
Word w encounters pattern p if h(p) is a factor of w for some
non-erasing morphism h. Word il legible encounters xyx . (Let
h(x) = le, h(y) = gib, for example.)
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The Thue-Morse morphism and overlap-freeness

A binary word w is overlap-free if

▶ Word w does not contain 000 or 111 as a factor.

▶ Word w doesn’t encounter the pattern xyxyx .

When we study overlap-free binary words, the Thue-Morse
morphism µ always shows up:

Theorem
A binary word w is overlap-free if and only if µ(w) is overlap-free.

Structure Theorem
If w is a finite overlap-free binary word, then w = xµ(y)z where y
is an overlap-free binary word, and |x |, |z | ≤ 2.

Theorem
If u is an infinite binary overlap-free word, then u = xµ(w), where
w is overlap-free, and x ∈ {ϵ, 0, 1}.
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The Thue-Morse morphism and overlap-freeness

Many results are known for overlap-free words. These structure
theorems often contribute to the proof:

▶ the number of binary overlap-free words of length n grows like
nσ, 1.3005 < σ < 1.3098 (Jungers, Protasov, Blondel);

▶ the lexicographically greatest infinite overlap-free word
starting with 0 is t (Berstel);

▶ Fife’s Theorem (a characterization of all infinite overlap-free
binary words);

▶ the only patterns encountered by t which are not factors of t
are 00100 and 11011 (Shur).
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The ϕ-good words

Say that a binary word w is ϕ-good if

▶ Word w does not contain 11 as a factor.

▶ Word w does not contain a factor XXXX−, where X− is
obtained from X by deleting the last letter.

▶ The word 01001010 is ϕ-good.

▶ The word 01001101 is not ϕ-good. (It contains factor 11.)

▶ The word 01010100 is not ϕ-good. (It contains factor
XXXX−, where X = 01.)
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The Fibonacci morphism and ϕ-goodness

When we study ϕ-good words, the Fibonacci morphism ϕ always
shows up:

Theorem
A binary word w is ϕ-good, if and only if ϕ(w) is ϕ-good.

Theorem
If u is an infinite ϕ-good word, then u = xϕ(w), where w is
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Lexicographically least ϕ-good word

Let ℓ be the lexicographically least infinite ϕ-good word, and let m
be the lexicographically greatest infinite ϕ-good word. (We skip
past the existence theorems.)

Theorem
We have ℓ = ϕ(m), and m = 1ϕ(ℓ).

Proof.
We show ℓ = ϕ(m). Since f has final segments beginning 00,
word ℓ begins 00. By our structure theorems on ϕ-good words,
ℓ = ϕ(u), some ϕ-good u. However, we see that ϕ is
order-reversing on infinite words. It follows that u = m.
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Lexicographically least ϕ-good word

Corollary

We have ℓ = 0ϕ2(ℓ), and m = 1ϕ2(m).

This allows us to calculate arbitrarily long prefixes of ℓ and m. For
example, ℓ begins with 0, hence with 0ϕ2(0) = 0010, hence with
0ϕ2(0010) = 001001001010.

Corollary

Every factor of f is a factor of ℓ, but there are infinitely many
factors of ℓ which are not factors of f . Word ℓ is not a fixed point
of a binary morphism.
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The δ-good words

Say that a binary word w is δ-good if

▶ Word w does not contain 11 or 1001 as a factor.

▶ Word w does not encounter the patterns xxxx or xxxyxyxx .

▶ The word 010001010 is δ-good.

▶ The word 01 01 0100010001 01 is not δ-good. (It encounters
xxxyxyxx .)

▶ The word 010101001 is not δ-good. (It contains factor 1001.)
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The δ-good words

When we study δ-good words, the period-doubling morphism δ
always shows up:

Theorem
Let u be a finite binary word. Then u is δ-good if and only if δ(u)
is δ-good.

Theorem
Let w be δ-good. Then we can write w = aδ(u)b where
a ∈ {ϵ, 0, 1}, b ∈ {ϵ, 0} and u is δ-good. If |w | ≥ 4 this
factorization is unique.

Theorem
If w is an infinite δ-good word, then w = aδ(u), for some δ-good
word u where a ∈ {ϵ, 0, 1}.
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Fife’s Theorem for δ-good words

Suppose w is an infinite δ-good word.

By the previous structure
theorem, w ∈ (0, 1, ϵ)(00, 01)∗. Write w = y1(01)

n1u1, where 01
is not a factor of y1, and n1 is as large as possible. Thus n1 = 1, 2,
or 3, and u1 starts with 00. Then 01u1 starts with δ(01), which is
not a factor of y2 = y1(01)

n1−1. Write w = y2(δ(01))
n2u2, where

n2 is as large as possible. Then n2 = 1, 2, or 3, and u2 starts with
δ(00). Continue to parse off maximal blocks δni (01) near the
beginning of w . These are analogous to Morse blocks in
overlap-free words.We get a sequence of finite words of the form
yδn(01) where n is maximal and δn(01) doesn’t appear in y .
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Fife’s Theorem for δ-good words

Suppose w ∈ {0, 1}∗ has a suffix δn(01), n ≥ 0, where n is as large
as possible. Write w = yδn(01). Define mappings α, β and γ on
w by

α(w) = yδn+1(01)

β(w) = yδn+1(001)

γ(w) = yδn+1(0001).

Each of these has a w as a prefix, and a suffix δn+1(01).
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as possible. Write w = yδn(01). Define mappings α, β and γ on
w by
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γ(w) = yδn+1(0001).

Each of these has a w as a prefix, and a suffix δn+1(01).



The δ-good words

An example

Let w = 00 0100 0101. Here y = 00, n = 2, δn(0) = 0100,
δn(1) = 0101, so that

α(w) = 00 0100 0101 0100 0100

β(w) = 00 0100 0101 0100 0101 0100 0100

γ(w) = 00 0100 0101 0100 0101 0100 0101 0100 0100.



Fife’s Theorem for δ-good words

Suppose u ∈ {α, β, γ}∗, u = u1u2 · · · un, ui ∈ {α, β, γ}. We define

01 • u = un(un−1(· · · (u2(u1(01)) · · · )).

For an infinite sequence u over {α, β, γ}, u = u1u2 · · · , we define
01 • u to be the binary sequence having each 01 • u1u2 · · · un as a
prefix.



Fife’s Theorem for δ-good words

Example

01 • αβγ =(01 • α)βγ
=(δ0(01) • α)βγ
=δ1(01) • βγ
=(δ1(01)) • β)γ
=δ2(001) • γ
=(δ2(0)δ2(01)) • γ
=(δ2(0)δ3(0001))

=δ(δ(0δ(0001)))

=δ(δ(001010100))

=δ(010100010001000101)

=010001000101010001010100010101000100



Fife’s Theorem for δ-good words

Theorem
The infinite δ-good words starting with 01 are precisely the words
01 • u, where u can be walked on this automaton:

astart

b

c

dα

β

β

α

γ β

γ

γ

α

α

Figure: ‘Fife’ automaton for δ-good words



Ingredients for Fife’s Theorem

Let G be the set of one-sided infinite δ-good words. Let Gu stand
for those starting with finite word u.

Lemma
Let w be a one-sided infinite binary word.

(a) δ(w) ∈ G ⇐⇒ w ∈ G;

(b) 1δ(w) ∈ G ⇐⇒ 0w ∈ G;

(c) 0δ(w) ∈ G ⇐⇒ (1w ∈ G) or (w ∈ G001).

Let W = {f ∈ {α, β, γ}ω : 01 • f ∈ G}.



Ingredients for Fife’s Theorem

Let u ∈ {α, β, γ}k and let f be an infinite word over {α, β, γ}
such that 01 • f = x . Then

01 • uf = (01 • u)δk(01)−1δk(x).



Ingredients for Fife’s Theorem

Getting the automaton in our theorem means proving identities
such as (βγ)−1W = γ−1W . However,

βγf ∈ W ⇐⇒ 01 • βγf ∈ G

⇐⇒ (01 • βγ)δ2(01)−1δ2(x) ∈ G

⇐⇒ 0101000100 01000101(01000101)−1δ2(x) ∈ G

⇐⇒ δ(0δ(00x)) ∈ G

⇐⇒ 0δ(00x) ∈ G

⇐⇒ 100x ∈ G or 00x ∈ G001

⇐⇒ 00x ∈ G .

Similarly, we calculate that

γf ∈ W ⇐⇒ 00x ∈ G .



Patterns in d

Lemma
Any factor 0u of d can be written as ϕ(p) for some word p . Any
factor u0 of d can be written as ϕR(p) for some word p where
ϕR = [10, 0]. Word d thus has an inverse image under each of ϕ
and ϕR .



Patterns in d

Theorem
Word p is a binary pattern encountered by d if and only if one of
the following holds:

1. One of p and p is a factor of d , ϕ−1
1 (d ), or (ϕR)−1(d ).

2. One of p and p is among
0010100, 01001001000, 00100100100, 001001001000,
00010010010, 000100100100, 0010001000100,
00100010001000, 00010001000100, and 000100010001000.

The two possibilities are distinct.


