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String attractor

Let v = v0v1 · · · vn be a word and let z = vivi+1 · · · vj be its factor.
Then {i , i + 1, . . . , j} is an occurrence of z in v .

Definition (Kempa & Prezza, 2018)

Consider a finite word v = v0v1 · · · vn, where vi are letters. Then
Γ ⊂ {0, 1, . . . , n} is a (string) attractor of v if each factor of v has
an occurrence containing an element of Γ.

Example

Γ1 = {0, 1, 2, 5}: v = 012013012.
Γ2 = {3, 4, 5, 8}: v = 012013012.

Remark

The size of minimal attractor is not monotone.
110100 vs 11010010
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String attractor

Attractors in CoW

In general, to find an attractor is NP-complete.

In CoW, attractors of minimum size have been determined:

for particular prefixes:

of standard Sturmian sequences by Mantaci, Restivo, Romana,
Rosone, Sciortino, 2021
of the Thue-Morse sequence by Kutsukake et al., 2020

for prefixes:

of standard Sturmian sequences by Restivo, Romana,
Sciortino, 2022
of the Tribonacci sequence by Schaeffer & Shallit, 2021
of the Thue-Morse sequence by Schaeffer & Shallit, 2021
of the period-doubling sequence by Schaeffer & Shallit, 2021
of the powers of two sequence by Schaeffer & Shallit, 2021

for factors:

of the Thue-Morse sequence by Dolce, 2023
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String attractor

Attractors in CoW

Schaeffer & Shallit, 2021: study of attractors in linearly
recurrent and in automatic sequences

Restivo, Romana, Sciortino, 2022: combinatorial properties of
attractors (relation to factor complexity, recurrence function,
etc.), study of attractors in fixed points of morphisms

Gheeraert, Romana, Stipulanti, 2023: study of attractors in
fixed points of k-bonacci-like morphisms

Romana: String Attractor: a Combinatorial Object from Data
Compression, October 2022
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Attractors and palindromic closure

Reversal and exchange antimorphism

R : {0, 1, . . . , d− 1}∗ → {0, 1, . . . , d− 1}∗, called reversal, is
defined by R(w0w1 · · ·wn−1) = wn−1 · · ·w1w0.

E : {0, 1}∗ → {0, 1}∗, called exchange antimorphism, is
defined by E (w0w1 · · ·wn−1) = wn−1 · · ·w1 w0.

A word w is a palindrome if w = R(w) and w is an
antipalindrome if w = E (w). A word is a pseudopalindrome if
it is a palindrome or an antipalindrome.

Example

R(0110110) = 0110110 and E (01001101) = 01001101
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Palindromic closure

Let w be a word, then wR is the shortest palindrome with the
prefix w and it is called palindromic closure of w .

Example

(000)R = 000, (0001)R = 0001000, (0010)R = 00100

Definition (Droubay, Justin, Pirillo, 2001)

Let ∆ = δ0δ1δ2 · · · be a sequence of letters and define u0 = ε and
un+1 = (unδn)

R for all n ∈ N. Then we denote u(∆) = limn→∞ un.

Example

Let ∆ = (01)ω. Then u(∆) is the Fibonacci sequence. The first
six prefixes of u(∆) read: u0 = ε, u1 = 0, u2 = 010,
u3 = 010010, u4 = 01001010010, u5 = 0100101001001010010.
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Attractors of episturmian sequences

Episturmian sequences

Definition

Let u be a sequence whose language is closed under reversal and
such that for each length n it contains at most one left special
factor. Then u is called an episturmian sequence. An episturmian
sequence is standard if all left special factors are prefixes.

Theorem (Droubay, Justin, Pirillo, 2001)

Let u be a standard episturmian sequence over A. Then u = u(∆)
for a unique sequence ∆ = δ0δ1δ2 · · · with δi ∈ A.



String attractors and pseudopalindromic closures

Attractors and palindromic closure

Attractors of episturmian sequences

Episturmian sequences

Definition

Let u be a sequence whose language is closed under reversal and
such that for each length n it contains at most one left special
factor. Then u is called an episturmian sequence. An episturmian
sequence is standard if all left special factors are prefixes.

Theorem (Droubay, Justin, Pirillo, 2001)

Let u be a standard episturmian sequence over A. Then u = u(∆)
for a unique sequence ∆ = δ0δ1δ2 · · · with δi ∈ A.



String attractors and pseudopalindromic closures

Attractors and palindromic closure

Attractors of episturmian sequences

Attractors of episturmian sequences

Theorem (D., 2022)

Let v be a non-empty palindromic prefix of a standard episturmian
sequence. For every letter a occurring in v , denote

ma = max{|p| : p is a palindrome and pa is a prefix of v}.
Then Γ = {ma : a occurs in v} is a minimal attractor of v .

Example

Let ∆ = (012)ω, then u(∆) is the Tribonacci sequence.
u1 = 0

u2 = 010

u3 = 0102010

u4 = 01020100102010

u5 = 010201001020101020100102010 .
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Attractors of Sturmian sequences

For a standard Sturmian sequence u(∆), a minimal attractor of un:
Γ = ∪a letter in un max{|p| : p palindrome, pa prefix of un}.

Proof.

by mathematical induction on n, WLOG ∆ = 0 · · · , u1 = 0 and for
n ≥ 2, un = (un−1a)

R has three possible forms:

un = un−1a =

n times︷ ︸︸ ︷
0 · · · 0

un = un−1aun−1 =

n−1 times︷ ︸︸ ︷
0 · · · 0 1

n−1 times︷ ︸︸ ︷
0 · · · 0

un = (un−10)
R = (u0p0)R = u0p0R(u) = un−10R(u) =

u0 p0R(u)︸ ︷︷ ︸
un−1

, where u ̸= ε, |u| < |un−1|, assume {m0,m1} is an

attractor of un−1, then {|un−1|,m1} is an attractor of un
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Attractors of episturmian sequences

Theorem (D., 2022)

Let u be an episturmian sequence. Each factor of u containing d
distinct letters has an attractor of size d .
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Attractors and antipalindromic closure

Program

1 String attractor

2 Attractors and palindromic closure
Attractors of episturmian sequences

3 Attractors and antipalindromic closure
Attractors of pseudostandard sequences

4 Attractors and pseudopalindromic closure
Attractors of Rote sequences

5 Open problems



String attractors and pseudopalindromic closures

Attractors and antipalindromic closure

Antipalindromic closure

Let w be a binary word, then wE is the shortest antipalindrome
with the prefix w and it is called antipalindromic closure of w .

Example

(000)E = 000111, (0101)E = 0101, (0010)E = 001011

Definition (de Luca, De Luca, 2006)

Let ∆ = δ0δ1δ2 · · · be a sequence of letters and define u0 = ε and
un+1 = (unδn)

E for all n ∈ N. Then u = limn→∞ un is a
pseudostandard sequence.
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Attractors of pseudostandard sequences

Attractors of pseudostandard sequences

Theorem (D., Hendychová, 2023)

Let v be a non-empty antipalindromic prefix of a pseudostandard
sequence starting with the letter 0. Denote

ma = max{|q| : q is an antipalindrome and qa is a prefix of v}.
Then Γ = {m0,m1, |v | −m1 − 1} is an attractor of v .
Γ is minimal (with only minor exceptions).

Example

Consider ∆ = 01001 · · · .
u1 = 01

u2 = 011001

u3 = 011001011001

u4 = 011001011001011001

u5 = 0110010110010110011001011001011001 .
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Pseudopalindromic closure

Let w be a binary word, then wϑ, where ϑ ∈ {R,E}, is called
pseudopalindromic closure of w .

Definition (de Luca, De Luca, 2006)

Let ∆ = δ0δ1 · · · and Θ = ϑ0ϑ1 · · · , where δi ∈ {0, 1} and
ϑi ∈ {E ,R} for all i ∈ N. Define u0 = ε and un+1 = (unδn)

ϑn for
all n ∈ N. Then u(∆,Θ) = limn→∞ un is called generalized
pseudostandard sequence.

Example

Let ∆ = 01ω and Θ = (RE )ω, then u = u(∆,Θ) is the
Thue-Morse sequence. The first six prefixes of u read:
u0 = ε, u1 = 0, u2 = 01, u3 = 0110,
u4 = 01101001, u5 = 0110100110010110.
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Attractors of generalized pseudostandard sequence

factors of Sturmian sequences have minimal attractors of
size 2

antipalindromic prefixes of pseudostandard sequences have
minimal attractors of size 3

prefixes of the Thue-Morse sequence have minimal attractors
of size 4 (Schaeffer & Shallit, 2021)

factors of the Thue-Morse sequence have minimal attractors
of size ≤ 5 (Dolce, 2023)

pseudopalindromic prefixes of complementary-symmetric Rote
sequences have minimal attractors of size 2 (D., Hendrychová,
2023)
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Attractors of Rote sequences

Rote sequences

Definition

Complementary-symmetric (CS) Rote sequences are binary
sequences having complexity 2n and such that their language is
closed under the letter exchange.

Let u = u0u1 · · · un−1, ui ∈ {0, 1}. Then S(u) is defined by

S(u)i = (ui+1 + ui ) mod 2 for i = 0, 1, . . . , n − 2.

For example, if u = 0011010, then S(u) = 010111.

Theorem (Rote, 1994)

A binary sequence u is a CS Rote sequence if and only if the
sequence S(u) is a Sturmian sequence.
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Attractors of Rote sequences

Rote and Sturmian sequences

A sequence u is standard CS Rote if S(u) is standard Sturmian.

If q is a pseudopalindromic prefix of u, then S(q) is a palindromic
prefix of S(u).

Remark

There is no straightforward relation with known atractors in
Sturmian sequences. Let ∆ = 0100 · · · . Then u = 010010010 is a
prefix of u(∆) and w = 0011100011 is the prefix of the
corresponding Rote sequence, i.e., S(w) = u.
“Prague attractor”: u = 010010010

“Palermo attractor”: u = 010010010.
The factor 10 has a unique occurrence in w , therefore each
attractor of w has to contain either the position 4 or 5.
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Attractors of Rote sequences

Rote and generalized pseudostandard sequences

Each CS Rote sequence is a generalized pseudostandard sequence.

Theorem (Blondin-Massé et al., 2013)

Let (∆,Θ) be a directive bi-sequence. Then u = u(∆,Θ) is
a standard CS Rote sequence if and only if u is aperiodic and no
factor of length two of the directive bi-sequence is in the following
sets:

{(ab,EE ) : a, b ∈ {0, 1}} ,
{(aa,RR) : a ∈ {0, 1}} ,
{(aa,RE ) : a ∈ {0, 1}} .
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Attractors of Rote sequences

Theorem (D., Hendrychová, 2023)

Assume (∆,Θ) is the directive bi-sequence of a standard CS Rote
sequence u and un contains both letters.

1 If un = E (un), δn−1 = a, and ui is the longest antipalindromic
prefix of un followed by a, then Γ = {|ui |, |un−1|} is an
attractor of un.

2 If un = R(un), δn−1 = a, un−1 = E (un−1), and uj is the
longest palindromic prefix of un followed by a, then
Γ = {|uj |, |un−1|} is an attractor of un.

3 If un = R(un), un−1 = R(un−1), then the attractor of un
equals the attractor of un−1.
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Attractors of Rote sequences

Example

Let (∆,Θ) start in (00111,RRERR)

u1 = 0

u2 = 00

u3 = 0011

If un = E (un), δn−1 = a, and ui is the longest antipalindromic
prefix of un followed by a, then Γ = {|ui |, |un−1|}. Here n = 3,
a = 1 and ui = ε.
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Attractors of Rote sequences

Example

Let (∆,Θ) start in (00111,RRERR)

u1 = 0

u2 = 00

u3 = 0011

u4 = 0011100

If un = R(un), δn−1 = a, un−1 = E (un−1), and uj is the longest
palindromic prefix of un followed by a, then Γ = {|uj |, |un−1|} is an
attractor of un. Here n = 4, a = 1 and uj = 0 = u1.
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Attractors of Rote sequences

Example

Let (∆,Θ) start in (00111,RRERR)

u1 = 0

u2 = 00

u3 = 0011

u4 = 0011100

u5 = 001110011100

If un = R(un), un−1 = R(un−1), then the attractor of un is the
same as of un−1.



String attractors and pseudopalindromic closures

Open problems

Program

1 String attractor

2 Attractors and palindromic closure
Attractors of episturmian sequences

3 Attractors and antipalindromic closure
Attractors of pseudostandard sequences

4 Attractors and pseudopalindromic closure
Attractors of Rote sequences

5 Open problems



String attractors and pseudopalindromic closures

Open problems

Find minimal attractors of pseudopalindromic prefixes of all
generalized pseudostandard sequences. We believe that
attractors of size 4 suffice for pseupalindromic prefixes.

Find minimal attractors of prefixes/factors of CS Rote
sequences (generalized pseudostandard sequences).

What about generalized pseudostandard sequences over larger
alphabets?
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Open problems

Thank you for attention!
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