String attractors and pseudopalindromic closures

L'ubomíra Dvořáková

Czech Technical University in Prague

October, 10, 2023

Program

1 String attractor
2 Attractors and palindromic closure

- Attractors of episturmian sequences

3 Attractors and antipalindromic closure

- Attractors of pseudostandard sequences

4 Attractors and pseudopalindromic closure

- Attractors of Rote sequences

5 Open problems

Program

1 String attractor
2 Attractors and palindromic closure

- Attractors of episturmian sequences

3 Attractors and antipalindromic closure
■ Attractors of pseudostandard sequences

4 Attractors and pseudopalindromic closure

- Attractors of Rote sequences

5 Open problems

String attractor

Let $v=v_{0} v_{1} \cdots v_{n}$ be a word and let $z=v_{i} v_{i+1} \cdots v_{j}$ be its factor. Then $\{i, i+1, \ldots, j\}$ is an occurrence of z in v.

String attractor

Let $v=v_{0} v_{1} \cdots v_{n}$ be a word and let $z=v_{i} v_{i+1} \cdots v_{j}$ be its factor. Then $\{i, i+1, \ldots, j\}$ is an occurrence of z in v.

Definition (Kempa \& Prezza, 2018)

Consider a finite word $v=v_{0} v_{1} \cdots v_{n}$, where v_{i} are letters. Then $\Gamma \subset\{0,1, \ldots, n\}$ is a (string) attractor of v if each factor of v has an occurrence containing an element of Γ.

-String attractor

String attractor

Let $v=v_{0} v_{1} \cdots v_{n}$ be a word and let $z=v_{i} v_{i+1} \cdots v_{j}$ be its factor. Then $\{i, i+1, \ldots, j\}$ is an occurrence of z in v.

Definition (Kempa \& Prezza, 2018)

Consider a finite word $v=v_{0} v_{1} \cdots v_{n}$, where v_{i} are letters. Then $\Gamma \subset\{0,1, \ldots, n\}$ is a (string) attractor of v if each factor of v has an occurrence containing an element of Γ.

Example

$$
\begin{aligned}
& \Gamma_{1}=\{0,1,2,5\}: v=\underline{012013012} . \\
& \Gamma_{2}=\{3,4,5,8\}: v=012013012 .
\end{aligned}
$$

— String attractor

String attractor

Let $v=v_{0} v_{1} \cdots v_{n}$ be a word and let $z=v_{i} v_{i+1} \cdots v_{j}$ be its factor. Then $\{i, i+1, \ldots, j\}$ is an occurrence of z in v.

Definition (Kempa \& Prezza, 2018)

Consider a finite word $v=v_{0} v_{1} \cdots v_{n}$, where v_{i} are letters. Then $\Gamma \subset\{0,1, \ldots, n\}$ is a (string) attractor of v if each factor of v has an occurrence containing an element of Γ.

Example

$$
\begin{aligned}
& \Gamma_{1}=\{0,1,2,5\}: v=\underline{012013012} . \\
& \Gamma_{2}=\{3,4,5,8\}: v=012013012 .
\end{aligned}
$$

Remark

The size of minimal attractor is not monotone. $1 \underline{10100}$ vs $1 \underline{1010010}$

Attractors in CoW

In general, to find an attractor is NP-complete.

Attractors in CoW

In general, to find an attractor is NP-complete.
In CoW, attractors of minimum size have been determined:

- for particular prefixes:
- of standard Sturmian sequences by Mantaci, Restivo, Romana, Rosone, Sciortino, 2021
- of the Thue-Morse sequence by Kutsukake et al., 2020
- for prefixes:
- of standard Sturmian sequences by Restivo, Romana, Sciortino, 2022
- of the Tribonacci sequence by Schaeffer \& Shallit, 2021
- of the Thue-Morse sequence by Schaeffer \& Shallit, 2021

■ of the period-doubling sequence by Schaeffer \& Shallit, 2021

- of the powers of two sequence by Schaeffer \& Shallit, 2021
- for factors:
- of the Thue-Morse sequence by Dolce, 2023

Attractors in CoW

■ Schaeffer \& Shallit, 2021: study of attractors in linearly recurrent and in automatic sequences

Attractors in CoW

■ Schaeffer \& Shallit, 2021: study of attractors in linearly recurrent and in automatic sequences

- Restivo, Romana, Sciortino, 2022: combinatorial properties of attractors (relation to factor complexity, recurrence function, etc.), study of attractors in fixed points of morphisms

Attractors in CoW

■ Schaeffer \& Shallit, 2021: study of attractors in linearly recurrent and in automatic sequences
■ Restivo, Romana, Sciortino, 2022: combinatorial properties of attractors (relation to factor complexity, recurrence function, etc.), study of attractors in fixed points of morphisms
■ Gheeraert, Romana, Stipulanti, 2023: study of attractors in fixed points of k-bonacci-like morphisms

Attractors in CoW

■ Schaeffer \& Shallit, 2021: study of attractors in linearly recurrent and in automatic sequences

- Restivo, Romana, Sciortino, 2022: combinatorial properties of attractors (relation to factor complexity, recurrence function, etc.), study of attractors in fixed points of morphisms
■ Gheeraert, Romana, Stipulanti, 2023: study of attractors in fixed points of k-bonacci-like morphisms
- Romana: String Attractor: a Combinatorial Object from Data Compression, October 2022

Program

1 String attractor
2 Attractors and palindromic closure

- Attractors of episturmian sequences

3 Attractors and antipalindromic closure
■ Attractors of pseudostandard sequences

4 Attractors and pseudopalindromic closure

- Attractors of Rote sequences

5 Open problems

Reversal and exchange antimorphism

■ $R:\{0,1, \ldots, \mathrm{~d}-1\}^{*} \rightarrow\{0,1, \ldots, \mathrm{~d}-1\}^{*}$, called reversal, is defined by $R\left(w_{0} w_{1} \cdots w_{n-1}\right)=w_{n-1} \cdots w_{1} w_{0}$.

Reversal and exchange antimorphism

■ $R:\{0,1, \ldots, \mathrm{~d}-1\}^{*} \rightarrow\{0,1, \ldots, \mathrm{~d}-1\}^{*}$, called reversal, is defined by $R\left(w_{0} w_{1} \cdots w_{n-1}\right)=w_{n-1} \cdots w_{1} w_{0}$.
■ $E:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$, called exchange antimorphism, is defined by $E\left(w_{0} w_{1} \cdots w_{n-1}\right)=\overline{w_{n-1}} \cdots \overline{w_{1}} \overline{w_{0}}$.

Reversal and exchange antimorphism

$\square R:\{0,1, \ldots, \mathrm{~d}-1\}^{*} \rightarrow\{0,1, \ldots, \mathrm{~d}-1\}^{*}$, called reversal, is defined by $R\left(w_{0} w_{1} \cdots w_{n-1}\right)=w_{n-1} \cdots w_{1} w_{0}$.
■ $E:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$, called exchange antimorphism, is defined by $E\left(w_{0} w_{1} \cdots w_{n-1}\right)=\overline{w_{n-1}} \cdots \overline{w_{1}} \overline{w_{0}}$.

- A word w is a palindrome if $w=R(w)$ and w is an antipalindrome if $w=E(w)$. A word is a pseudopalindrome if it is a palindrome or an antipalindrome.

Reversal and exchange antimorphism

■ $R:\{0,1, \ldots, \mathrm{~d}-1\}^{*} \rightarrow\{0,1, \ldots, \mathrm{~d}-1\}^{*}$, called reversal, is defined by $R\left(w_{0} w_{1} \cdots w_{n-1}\right)=w_{n-1} \cdots w_{1} w_{0}$.
■ $E:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$, called exchange antimorphism, is defined by $E\left(w_{0} w_{1} \cdots w_{n-1}\right)=\overline{w_{n-1}} \cdots \overline{w_{1}} \overline{w_{0}}$.

- A word w is a palindrome if $w=R(w)$ and w is an antipalindrome if $w=E(w)$. A word is a pseudopalindrome if it is a palindrome or an antipalindrome.

Example

$R(0110110)=0110110$ and $E(01001101)=01001101$

Palindromic closure

Let w be a word, then w^{R} is the shortest palindrome with the prefix w and it is called palindromic closure of w.

Palindromic closure

Let w be a word, then w^{R} is the shortest palindrome with the prefix w and it is called palindromic closure of w.

Example

$(000)^{R}=000, \quad(0001)^{R}=0001000, \quad(0010)^{R}=00100$

Palindromic closure

Let w be a word, then w^{R} is the shortest palindrome with the prefix w and it is called palindromic closure of w.

Example

$$
(000)^{R}=000, \quad(0001)^{R}=0001000, \quad(0010)^{R}=00100
$$

Definition (Droubay, Justin, Pirillo, 2001)

Let $\Delta=\delta_{0} \delta_{1} \delta_{2} \cdots$ be a sequence of letters and define $u_{0}=\varepsilon$ and $u_{n+1}=\left(u_{n} \delta_{n}\right)^{R}$ for all $n \in \mathbb{N}$. Then we denote $\mathbf{u}(\Delta)=\lim _{n \rightarrow \infty} u_{n}$.

Palindromic closure

Let w be a word, then w^{R} is the shortest palindrome with the prefix w and it is called palindromic closure of w.

Example

$(000)^{R}=000, \quad(0001)^{R}=0001000, \quad(0010)^{R}=00100$

Definition (Droubay, Justin, Pirillo, 2001)

Let $\Delta=\delta_{0} \delta_{1} \delta_{2} \cdots$ be a sequence of letters and define $u_{0}=\varepsilon$ and $u_{n+1}=\left(u_{n} \delta_{n}\right)^{R}$ for all $n \in \mathbb{N}$. Then we denote $\mathbf{u}(\Delta)=\lim _{n \rightarrow \infty} u_{n}$.

Example

Let $\Delta=(01)^{\omega}$. Then $\mathbf{u}(\Delta)$ is the Fibonacci sequence. The first six prefixes of $\mathbf{u}(\Delta)$ read: $u_{0}=\varepsilon, u_{1}=0, u_{2}=010$, $u_{3}=010010, u_{4}=01001010010, u_{5}=0100101001001010010$.

- Attractors of episturmian sequences

Episturmian sequences

Definition

Let \mathbf{u} be a sequence whose language is closed under reversal and such that for each length n it contains at most one left special factor. Then \mathbf{u} is called an episturmian sequence. An episturmian sequence is standard if all left special factors are prefixes.

- Attractors and palindromic closure

- Attractors of episturmian sequences

Episturmian sequences

Definition

Let \mathbf{u} be a sequence whose language is closed under reversal and such that for each length n it contains at most one left special factor. Then \mathbf{u} is called an episturmian sequence. An episturmian sequence is standard if all left special factors are prefixes.

Theorem (Droubay, Justin, Pirillo, 2001)

Let \mathbf{u} be a standard episturmian sequence over \mathcal{A}. Then $\mathbf{u}=\mathbf{u}(\Delta)$ for a unique sequence $\Delta=\delta_{0} \delta_{1} \delta_{2} \cdots$ with $\delta_{i} \in \mathcal{A}$.

Attractors of episturmian sequences

Theorem (D., 2022)
Let v be a non-empty palindromic prefix of a standard episturmian sequence. For every letter a occurring in v, denote $m_{a}=\max \{|p|: p$ is a palindrome and $p a$ is a prefix of $v\}$. Then $\Gamma=\left\{m_{a}:\right.$ a occurs in $\left.v\right\}$ is a minimal attractor of v.

Attractors of episturmian sequences

Theorem (D., 2022)

Let v be a non-empty palindromic prefix of a standard episturmian sequence. For every letter a occurring in v, denote $m_{a}=\max \{|p|: p$ is a palindrome and $p a$ is a prefix of $v\}$. Then $\Gamma=\left\{m_{a}:\right.$ a occurs in $\left.v\right\}$ is a minimal attractor of v.

Example

Let $\Delta=(012)^{\omega}$, then $\mathbf{u}(\Delta)$ is the Tribonacci sequence.

$$
\begin{aligned}
& u_{1}=\underline{0} \\
& u_{2}=\underline{010} \\
& u_{3}=\underline{010} \underline{2} 010 \\
& u_{4}=0 \underline{\underline{2}} 010 \underline{0} 102010 \\
& u_{5}=010 \underline{2} 010 \underline{0} 102010 \underline{1020100102010} .
\end{aligned}
$$

-Attractors of episturmian sequences

Attractors of Sturmian sequences

For a standard Sturmian sequence $\mathbf{u}(\Delta)$, a minimal attractor of u_{n} : $\Gamma=\cup_{a}$ letter in $u_{n} \max \left\{|p|: p\right.$ palindrome, pa prefix of $\left.u_{n}\right\}$.

Attractors of Sturmian sequences

For a standard Sturmian sequence $\mathbf{u}(\Delta)$, a minimal attractor of u_{n} : $\Gamma=\cup_{a}$ letter in $u_{n} \max \left\{|p|: p\right.$ palindrome, pa prefix of $\left.u_{n}\right\}$.

Proof.

by mathematical induction on n, WLOG $\Delta=0 \cdots, u_{1}=\underline{0}$ and for $n \geq 2, u_{n}=\left(u_{n-1} a\right)^{R}$ has three possible forms:
n times
■ $u_{n}=u_{n-1} a=\overbrace{0 \cdots \underline{0}}^{\text {(in }}$
\square Attractors of episturmian sequences

Attractors of Sturmian sequences

For a standard Sturmian sequence $\mathbf{u}(\Delta)$, a minimal attractor of u_{n} : $\Gamma=\cup_{a}$ letter in $u_{n} \max \left\{|p|: p\right.$ palindrome, pa prefix of $\left.u_{n}\right\}$.

Proof.

by mathematical induction on n, WLOG $\Delta=0 \cdots, u_{1}=\underline{0}$ and for $n \geq 2, u_{n}=\left(u_{n-1} a\right)^{R}$ has three possible forms:
n times

- $u_{n}=u_{n-1} a=\overbrace{0 \cdots \underline{0}}$

$$
n-1 \text { times } n-1 \text { times }
$$

- $u_{n}=u_{n-1} a u_{n-1}=\overbrace{0 \cdots \underline{0}} 1 \overbrace{0 \cdots 0}^{1}$

Attractors of Sturmian sequences

For a standard Sturmian sequence $\mathbf{u}(\Delta)$, a minimal attractor of u_{n} : $\Gamma=\cup_{a}$ letter in $u_{n} \max \left\{|p|: p\right.$ palindrome, pa prefix of $\left.u_{n}\right\}$.

Proof.

by mathematical induction on n, WLOG $\Delta=0 \cdots, u_{1}=\underline{0}$ and for $n \geq 2, u_{n}=\left(u_{n-1} a\right)^{R}$ has three possible forms:
n times
$\square u_{n}=u_{n-1} a=\overbrace{0 \cdots \underline{0}}^{\text {(1) }}$

$$
n-1 \text { times } n-1 \text { times }
$$

- $u_{n}=u_{n-1} a u_{n-1}=\overbrace{0 \cdots \underline{0}}^{1} \overbrace{0 \cdots 0}^{1}$
- $u_{n}=\left(u_{n-1} \underline{0}\right)^{R}=(u 0 p \underline{0})^{R}=u 0 p \underline{0} R(u)=u_{n-1} \underline{0} R(u)=$ $u 0 \underbrace{p \underline{0} R(u)}_{u_{n-1}}$, where $u \neq \varepsilon,|u|<\left|u_{n-1}\right|$,

Attractors of Sturmian sequences

For a standard Sturmian sequence $\mathbf{u}(\Delta)$, a minimal attractor of u_{n} : $\Gamma=\cup_{a}$ letter in $u_{n} \max \left\{|p|: p\right.$ palindrome, pa prefix of $\left.u_{n}\right\}$.

Proof.

by mathematical induction on n, WLOG $\Delta=0 \cdots, u_{1}=\underline{0}$ and for $n \geq 2, u_{n}=\left(u_{n-1} a\right)^{R}$ has three possible forms:
n times
■ $u_{n}=u_{n-1} a=\overbrace{0 \cdots \underline{0}}^{\text {(1) }}$

$$
n-1 \text { times } n-1 \text { times }
$$

- $u_{n}=u_{n-1} a u_{n-1}=\overbrace{0 \cdots \underline{0}} \underline{1} \overbrace{0 \cdots 0}^{1}$
- $u_{n}=\left(u_{n-1} \underline{0}\right)^{R}=(u 0 p \underline{0})^{R}=u 0 p \underline{0} R(u)=u_{n-1} \underline{0} R(u)=$ $u 0 \underbrace{p \underline{0} R(u)}_{u_{n-1}}$, where $u \neq \varepsilon,|u|<\left|u_{n-1}\right|$, assume $\left\{m_{0}, m_{1}\right\}$ is an
attractor of u_{n-1}, then $\left\{\left|u_{n-1}\right|, m_{1}\right\}$ is an attractor of u_{n}
- Attractors of episturmian sequences

Attractors of episturmian sequences

Theorem (D., 2022)
Let \mathbf{u} be an episturmian sequence. Each factor of \mathbf{u} containing d distinct letters has an attractor of size d.

Program

1 String attractor

2 Attractors and palindromic closure

- Attractors of episturmian sequences

3 Attractors and antipalindromic closure

- Attractors of pseudostandard sequences

4 Attractors and pseudopalindromic closure

- Attractors of Rote sequences

5 Open problems

Antipalindromic closure

Let w be a binary word, then w^{E} is the shortest antipalindrome with the prefix w and it is called antipalindromic closure of w.

Antipalindromic closure

Let w be a binary word, then w^{E} is the shortest antipalindrome with the prefix w and it is called antipalindromic closure of w.

Example

$(000)^{E}=000111, \quad(0101)^{E}=0101, \quad(0010)^{E}=001011$

Antipalindromic closure

Let w be a binary word, then w^{E} is the shortest antipalindrome with the prefix w and it is called antipalindromic closure of w.

Example

$$
(000)^{E}=000111, \quad(0101)^{E}=0101, \quad(0010)^{E}=001011
$$

Definition (de Luca, De Luca, 2006)

Let $\Delta=\delta_{0} \delta_{1} \delta_{2} \cdots$ be a sequence of letters and define $u_{0}=\varepsilon$ and $u_{n+1}=\left(u_{n} \delta_{n}\right)^{E}$ for all $n \in \mathbb{N}$. Then $\mathbf{u}=\lim _{n \rightarrow \infty} u_{n}$ is a pseudostandard sequence.

Attractors of pseudostandard sequences

Theorem (D., Hendychová, 2023)

Let v be a non-empty antipalindromic prefix of a pseudostandard sequence starting with the letter 0. Denote $m_{a}=\max \{|q|: q$ is an antipalindrome and qa is a prefix of $v\}$. Then $\Gamma=\left\{m_{0}, m_{1},|v|-m_{1}-1\right\}$ is an attractor of v. Γ is minimal (with only minor exceptions).

Attractors of pseudostandard sequences

Theorem (D., Hendychová, 2023)

Let v be a non-empty antipalindromic prefix of a pseudostandard sequence starting with the letter 0. Denote $m_{a}=\max \{|q|: q$ is an antipalindrome and $q a$ is a prefix of $v\}$. Then $\Gamma=\left\{m_{0}, m_{1},|v|-m_{1}-1\right\}$ is an attractor of v. Γ is minimal (with only minor exceptions).

Example

Consider $\Delta=01001 \cdots$.

```
u
u}\mp@subsup{u}{2}{}=\underline{011001
u}\mp@subsup{u}{3}{}=01\underline{1001011001
u}\mp@subsup{u}{4}{}=011001011001\underline{011001
u}\mp@subsup{|}{5}{}=011001011001\underline{10110011001011001011001.
```


Program

1 String attractor

2 Attractors and palindromic closure

- Attractors of episturmian sequences

3 Attractors and antipalindromic closure

- Attractors of pseudostandard sequences

4 Attractors and pseudopalindromic closure

- Attractors of Rote sequences

5 Open problems

Pseudopalindromic closure

Let w be a binary word, then w^{ϑ}, where $\vartheta \in\{R, E\}$, is called pseudopalindromic closure of w.

Pseudopalindromic closure

Let w be a binary word, then w^{ϑ}, where $\vartheta \in\{R, E\}$, is called pseudopalindromic closure of w.

Definition (de Luca, De Luca, 2006)

Let $\Delta=\delta_{0} \delta_{1} \cdots$ and $\Theta=\vartheta_{0} \vartheta_{1} \cdots$, where $\delta_{i} \in\{0,1\}$ and $\vartheta_{i} \in\{E, R\}$ for all $i \in \mathbb{N}$. Define $u_{0}=\varepsilon$ and $u_{n+1}=\left(u_{n} \delta_{n}\right)^{\vartheta_{n}}$ for all $n \in \mathbb{N}$. Then $\mathbf{u}(\Delta, \Theta)=\lim _{n \rightarrow \infty} u_{n}$ is called generalized pseudostandard sequence.

Pseudopalindromic closure

Let w be a binary word, then w^{ϑ}, where $\vartheta \in\{R, E\}$, is called pseudopalindromic closure of w.

Definition (de Luca, De Luca, 2006)

Let $\Delta=\delta_{0} \delta_{1} \cdots$ and $\Theta=\vartheta_{0} \vartheta_{1} \cdots$, where $\delta_{i} \in\{0,1\}$ and $\vartheta_{i} \in\{E, R\}$ for all $i \in \mathbb{N}$. Define $u_{0}=\varepsilon$ and $u_{n+1}=\left(u_{n} \delta_{n}\right)^{\vartheta_{n}}$ for all $n \in \mathbb{N}$. Then $\mathbf{u}(\Delta, \Theta)=\lim _{n \rightarrow \infty} u_{n}$ is called generalized pseudostandard sequence.

Example

Let $\Delta=01^{\omega}$ and $\Theta=(R E)^{\omega}$, then $\mathbf{u}=\mathbf{u}(\Delta, \Theta)$ is the Thue-Morse sequence. The first six prefixes of \mathbf{u} read:

$$
\begin{aligned}
& u_{0}=\varepsilon, \quad u_{1}=0, \quad u_{2}=01, \quad u_{3}=0110 \\
& u_{4}=01101001, \quad u_{5}=0110100110010110
\end{aligned}
$$

Attractors of generalized pseudostandard sequence

- factors of Sturmian sequences have minimal attractors of size 2

Attractors of generalized pseudostandard sequence

- factors of Sturmian sequences have minimal attractors of size 2
- antipalindromic prefixes of pseudostandard sequences have minimal attractors of size 3

Attractors of generalized pseudostandard sequence

- factors of Sturmian sequences have minimal attractors of size 2
- antipalindromic prefixes of pseudostandard sequences have minimal attractors of size 3
- prefixes of the Thue-Morse sequence have minimal attractors of size 4 (Schaeffer \& Shallit, 2021)

Attractors of generalized pseudostandard sequence

- factors of Sturmian sequences have minimal attractors of size 2
- antipalindromic prefixes of pseudostandard sequences have minimal attractors of size 3
- prefixes of the Thue-Morse sequence have minimal attractors of size 4 (Schaeffer \& Shallit, 2021)
■ factors of the Thue-Morse sequence have minimal attractors of size ≤ 5 (Dolce, 2023)

Attractors of generalized pseudostandard sequence

- factors of Sturmian sequences have minimal attractors of size 2
- antipalindromic prefixes of pseudostandard sequences have minimal attractors of size 3
- prefixes of the Thue-Morse sequence have minimal attractors of size 4 (Schaeffer \& Shallit, 2021)
■ factors of the Thue-Morse sequence have minimal attractors of size ≤ 5 (Dolce, 2023)
- pseudopalindromic prefixes of complementary-symmetric Rote sequences have minimal attractors of size 2 (D., Hendrychová, 2023)
- Attractors of Rote sequences

Rote sequences

Definition

Complementary-symmetric (CS) Rote sequences are binary sequences having complexity $2 n$ and such that their language is closed under the letter exchange.

Rote sequences

Definition

Complementary-symmetric (CS) Rote sequences are binary sequences having complexity $2 n$ and such that their language is closed under the letter exchange.

Let $u=u_{0} u_{1} \cdots u_{n-1}, u_{i} \in\{0,1\}$. Then $S(u)$ is defined by

$$
S(u)_{i}=\left(u_{i+1}+u_{i}\right) \bmod 2 \text { for } i=0,1, \ldots, n-2
$$

For example, if $u=0011010$, then $S(u)=010111$.

Rote sequences

Definition

Complementary-symmetric (CS) Rote sequences are binary sequences having complexity $2 n$ and such that their language is closed under the letter exchange.

Let $u=u_{0} u_{1} \cdots u_{n-1}, u_{i} \in\{0,1\}$. Then $S(u)$ is defined by

$$
S(u)_{i}=\left(u_{i+1}+u_{i}\right) \bmod 2 \text { for } i=0,1, \ldots, n-2
$$

For example, if $u=0011010$, then $S(u)=010111$.
Theorem (Rote, 1994)
A binary sequence \mathbf{u} is a CS Rote sequence if and only if the sequence $S(\mathbf{u})$ is a Sturmian sequence.

Rote and Sturmian sequences

A sequence \mathbf{u} is standard $C S$ Rote if $S(\mathbf{u})$ is standard Sturmian.

Rote and Sturmian sequences

A sequence \mathbf{u} is standard CS Rote if $S(\mathbf{u})$ is standard Sturmian. If q is a pseudopalindromic prefix of \mathbf{u}, then $S(q)$ is a palindromic prefix of $S(\mathbf{u})$.

Rote and Sturmian sequences

A sequence \mathbf{u} is standard CS Rote if $S(\mathbf{u})$ is standard Sturmian. If q is a pseudopalindromic prefix of \mathbf{u}, then $S(q)$ is a palindromic prefix of $S(\mathbf{u})$.

Remark

There is no straightforward relation with known atractors in Sturmian sequences. Let $\Delta=0100 \cdots$. Then $u=010010010$ is a prefix of $\mathbf{u}(\Delta)$ and $w=0011100011$ is the prefix of the corresponding Rote sequence, i.e., $S(w)=u$.
"Prague attractor": $u=0 \underline{10010010}$
"Palermo attractor": $u=010010010$.
The factor 10 has a unique occurrence in w, therefore each attractor of w has to contain either the position 4 or 5 .

Rote and generalized pseudostandard sequences

Each CS Rote sequence is a generalized pseudostandard sequence.

Theorem (Blondin-Massé et al., 2013)

Let (Δ, Θ) be a directive bi-sequence. Then $\mathbf{u}=\mathbf{u}(\Delta, \Theta)$ is
a standard CS Rote sequence if and only if \mathbf{u} is aperiodic and no factor of length two of the directive bi-sequence is in the following sets:

$$
\begin{aligned}
& \{(a b, E E): a, b \in\{0,1\}\}, \\
& \{(a \bar{a}, R R): a \in\{0,1\}\} \\
& \{(a a, R E): a \in\{0,1\}\}
\end{aligned}
$$

Attractors of Rote sequences

Theorem (D., Hendrychová, 2023)

Assume (Δ, Θ) is the directive bi-sequence of a standard CS Rote sequence \mathbf{u} and u_{n} contains both letters.
1 If $u_{n}=E\left(u_{n}\right), \delta_{n-1}=a$, and u_{i} is the longest antipalindromic prefix of u_{n} followed by \bar{a}, then $\Gamma=\left\{\left|u_{i}\right|,\left|u_{n-1}\right|\right\}$ is an attractor of u_{n}.
2 If $u_{n}=R\left(u_{n}\right), \delta_{n-1}=a, u_{n-1}=E\left(u_{n-1}\right)$, and u_{j} is the longest palindromic prefix of u_{n} followed by \bar{a}, then $\Gamma=\left\{\left|u_{j}\right|,\left|u_{n-1}\right|\right\}$ is an attractor of u_{n}.
3 If $u_{n}=R\left(u_{n}\right), u_{n-1}=R\left(u_{n-1}\right)$, then the attractor of u_{n} equals the attractor of u_{n-1}.

- Attractors and pseudopalindromic closure
- Attractors of Rote sequences

Attractors of Rote sequences

Example

Let (Δ, Θ) start in $(00111$, RRERR)

$$
\begin{aligned}
& u_{1}=0 \\
& u_{2}=00 \\
& u_{3}=\underline{0} 0 \underline{11}
\end{aligned}
$$

If $u_{n}=E\left(u_{n}\right), \delta_{n-1}=a$, and u_{i} is the longest antipalindromic prefix of u_{n} followed by \bar{a}, then $\Gamma=\left\{\left|u_{i}\right|,\left|u_{n-1}\right|\right\}$. Here $n=3$, $a=1$ and $u_{i}=\varepsilon$.

Attractors of Rote sequences

Example

Let (Δ, Θ) start in $(00111$, RRERR $)$

$$
\begin{aligned}
& u_{1}=0 \\
& u_{2}=00 \\
& u_{3}=\underline{00} \underline{11} \\
& u_{4}=0 \underline{0} 11 \underline{100}
\end{aligned}
$$

If $u_{n}=R\left(u_{n}\right), \delta_{n-1}=a, u_{n-1}=E\left(u_{n-1}\right)$, and u_{j} is the longest palindromic prefix of u_{n} followed by \bar{a}, then $\Gamma=\left\{\left|u_{j}\right|,\left|u_{n-1}\right|\right\}$ is an attractor of u_{n}. Here $n=4, a=1$ and $u_{j}=0=u_{1}$.

- Attractors and pseudopalindromic closure
- Attractors of Rote sequences

Attractors of Rote sequences

Example

Let (Δ, Θ) start in $(00111$, RRERR $)$

$$
\begin{aligned}
& u_{1}=0 \\
& u_{2}=00 \\
& u_{3}=\underline{0} \underline{11} \\
& u_{4}=\underline{0} 11100 \\
& u_{5}=0 \underline{0} 1110011100
\end{aligned}
$$

If $u_{n}=R\left(u_{n}\right), u_{n-1}=R\left(u_{n-1}\right)$, then the attractor of u_{n} is the same as of u_{n-1}.

Program

1 String attractor

2 Attractors and palindromic closure

- Attractors of episturmian sequences

3 Attractors and antipalindromic closure

- Attractors of pseudostandard sequences

4 Attractors and pseudopalindromic closure

- Attractors of Rote sequences

5 Open problems

■ Find minimal attractors of pseudopalindromic prefixes of all generalized pseudostandard sequences. We believe that attractors of size 4 suffice for pseupalindromic prefixes.

- Find minimal attractors of pseudopalindromic prefixes of all generalized pseudostandard sequences. We believe that attractors of size 4 suffice for pseupalindromic prefixes.
- Find minimal attractors of prefixes/factors of CS Rote sequences (generalized pseudostandard sequences).
- Find minimal attractors of pseudopalindromic prefixes of all generalized pseudostandard sequences. We believe that attractors of size 4 suffice for pseupalindromic prefixes.
- Find minimal attractors of prefixes/factors of CS Rote sequences (generalized pseudostandard sequences).
■ What about generalized pseudostandard sequences over larger alphabets?

Thank you for attention!

