

Density of Rational Languages Under Invariant Measures

Valérie Berthé, Herman Goulet-Ouellet, Carl-Frederik Nyberg-Brodda, Dominique Perrin and Karl Petersen

- October 24, 2023
- One-World Combinatorics on Words Seminar

Content

1. Densities

Content

1. Densities
2. Skew Product

Content

1. Densities
2. Skew Product
3. Coloring

Content

1. Densities
2. Skew Product
3. Coloring
4. Return Words

Part 1

Densities

Notation

(i) A is a finite alphabet (discrete topology).

Notation

(i) A is a finite alphabet (discrete topology).
(ii) A^{*} is the set of all finite words on A (free monoid).

Notation

(i) A is a finite alphabet (discrete topology).
(ii) A^{*} is the set of all finite words on A (free monoid).
(iii) $A^{\mathbb{Z}}$ is the space of bi-infinite words (product topology).

Notation

(i) A is a finite alphabet (discrete topology).
(ii) A^{*} is the set of all finite words on A (free monoid).
(iii) $A^{\mathbb{Z}}$ is the space of bi-infinite words (product topology).
(iv) $S: A^{\mathbb{Z}} \rightarrow A^{\mathbb{Z}}$ is the shift map, $S x=\left(x_{n+1}\right)_{n \in \mathbb{N}}$.

Notation

(i) A is a finite alphabet (discrete topology).
(ii) A^{*} is the set of all finite words on A (free monoid).
(iii) $A^{\mathbb{Z}}$ is the space of bi-infinite words (product topology).
(iv) $S: A^{\mathbb{Z}} \rightarrow A^{\mathbb{Z}}$ is the shift map, $S x=\left(x_{n+1}\right)_{n \in \mathbb{N}}$.
(v) Measures μ on $A^{\mathbb{Z}}$ are viewed as maps on words,

$$
\begin{gathered}
\mu(u)=\mu\left(\left\{x \in A^{\mathbb{Z}} \mid x_{[0,|u|)}=u\right\}\right), \\
\mu(u)=\sum_{a \in A} \mu(u a), \quad \mu(\varepsilon)=1 .
\end{gathered}
$$

Notation

(i) A is a finite alphabet (discrete topology).
(ii) A^{*} is the set of all finite words on A (free monoid).
(iii) $A^{\mathbb{Z}}$ is the space of bi-infinite words (product topology).
(iv) $S: A^{\mathbb{Z}} \rightarrow A^{\mathbb{Z}}$ is the shift map, $S x=\left(x_{n+1}\right)_{n \in \mathbb{N}}$.
(v) Measures μ on $A^{\mathbb{Z}}$ are viewed as maps on words,

$$
\begin{gathered}
\mu(u)=\mu\left(\left\{x \in A^{\mathbb{Z}} \mid x_{[0,|u|)}=u\right\}\right), \\
\mu(u)=\sum_{a \in A} \mu(u a), \quad \mu(\varepsilon)=1 .
\end{gathered}
$$

(vi) A shift space is a closed, shift invariant subset of A^{Z}.

Notation

(i) A is a finite alphabet (discrete topology).
(ii) A^{*} is the set of all finite words on A (free monoid).
(iii) $A^{\mathbb{Z}}$ is the space of bi-infinite words (product topology).
(iv) $S: A^{\mathbb{Z}} \rightarrow A^{\mathbb{Z}}$ is the shift map, $S x=\left(x_{n+1}\right)_{n \in \mathbb{N}}$.
(v) Measures μ on $A^{\mathbb{Z}}$ are viewed as maps on words,

$$
\begin{gathered}
\mu(u)=\mu\left(\left\{x \in A^{\mathbb{Z}} \mid x_{[0,|u|)}=u\right\}\right), \\
\mu(u)=\sum_{a \in A} \mu(u a), \quad \mu(\varepsilon)=1 .
\end{gathered}
$$

(vi) A shift space is a closed, shift invariant subset of $A^{\mathbb{Z}}$.
(vii) For shift spaces, minimal means minimal for inclusion.

Density

Let $L \subseteq A^{*}$ be a language and μ be a probability measure on A^{Z}.

Density

Let $L \subseteq A^{*}$ be a language and μ be a probability measure on $A^{\mathbb{Z}}$.
Definition
The density of L under μ, when it exists, is the limit:

$$
\delta_{\mu}(L)=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=0}^{n-1} \mu\left(L \cap A^{i}\right)=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=0}^{n-1} \mu\left(\left\{x \in A^{\mathbb{Z}} \mid x_{[0, i)} \in L\right\}\right) .
$$

Density

Let $L \subseteq A^{*}$ be a language and μ be a probability measure on $A^{\mathbb{Z}}$.
Definition
The density of L under μ, when it exists, is the limit:

$$
\delta_{\mu}(L)=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=0}^{n-1} \mu\left(L \cap A^{i}\right)=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=0}^{n-1} \mu\left(\left\{x \in A^{\mathbb{Z}} \mid x_{[0, i)} \in L\right\}\right) .
$$

(i) $\delta_{\mu}\left(A^{*}\right)=1$ and $\delta_{\mu}(F)=0$ when $|F|<\infty$.

Density

Let $L \subseteq A^{*}$ be a language and μ be a probability measure on $A^{\mathbb{Z}}$.
Definition
The density of L under μ, when it exists, is the limit:

$$
\delta_{\mu}(L)=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=0}^{n-1} \mu\left(L \cap A^{i}\right)=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=0}^{n-1} \mu\left(\left\{x \in A^{\mathbb{Z}} \mid x_{[0, i)} \in L\right\}\right) .
$$

(i) $\delta_{\mu}\left(A^{*}\right)=1$ and $\delta_{\mu}(F)=0$ when $|F|<\infty$.
(ii) $\delta_{\mu}(L \cup K)=\delta_{\mu}(L)+\delta_{\mu}(K)$ when $L \cap K=\emptyset$.

On 1 letter

When $A=\{$ a $\}$ has 1 letter, $A^{*} \cong(\mathbb{N},+)$ via $a^{n} \equiv n$.

On 1 letter

When $A=\{$ a $\}$ has 1 letter, $A^{*} \cong(\mathbb{N},+)$ via $a^{n} \equiv n$.
(i) $X=\{a\}^{\mathbb{Z}}=\{\cdots$ aaa $\cdots\}$ is the only possible shift space.

On 1 letter

When $A=\left\{\right.$ a\} has 1 letter, $A^{*} \cong(\mathbb{N},+)$ via $a^{n} \equiv n$.
(i) $X=\{\text { a }\}^{\mathbb{Z}}=\{\cdots$ aaa $\cdots\}$ is the only possible shift space.
(ii) There is trivially only one probability measure.

On 1 letter

When $A=\left\{\right.$ a\} has 1 letter, $A^{*} \cong(\mathbb{N},+)$ via $a^{n} \equiv n$.
(i) $X=\{\text { a }\}^{\mathbb{Z}}=\{\cdots$ aaa $\cdots\}$ is the only possible shift space.
(ii) There is trivially only one probability measure.
(iii) $\delta(L)=\lim |L \cap\{0, \cdots, n-1\}| / n$ is the natural density.

When $A=\{$ a $\}$ has 1 letter, $A^{*} \cong(\mathbb{N},+)$ via $a^{n} \equiv n$.
(i) $X=\{\text { a }\}^{\mathbb{Z}}=\{\cdots$ aaa $\cdots\}$ is the only possible shift space.
(ii) There is trivially only one probability measure.
(iii) $\delta(L)=\lim |L \cap\{0, \cdots, n-1\}| / n$ is the natural density.
(iv) A rational language of A^{*}, when viewed as a subset of \mathbb{N}, is a finite union of finite sets and arithmetic progressions.

When $A=\{$ a $\}$ has 1 letter, $A^{*} \cong(\mathbb{N},+)$ via $a^{n} \equiv n$.
(i) $X=\{\text { a }\}^{\mathbb{Z}}=\{\cdots$ aaa $\cdots\}$ is the only possible shift space.
(ii) There is trivially only one probability measure.
(iii) $\delta(L)=\lim |L \cap\{0, \cdots, n-1\}| / n$ is the natural density.
(iv) A rational language of A^{*}, when viewed as a subset of \mathbb{N}, is a finite union of finite sets and arithmetic progressions.
(v) An arithmetic progression with difference k has density $1 / k$, while a finite set has density 0 .

When $A=\{$ a $\}$ has 1 letter, $A^{*} \cong(\mathbb{N},+)$ via $a^{n} \equiv n$.
(i) $X=\{a\}^{\mathbb{Z}}=\{\cdots$ aaa $\cdots\}$ is the only possible shift space.
(ii) There is trivially only one probability measure.
(iii) $\delta(L)=\lim |L \cap\{0, \cdots, n-1\}| / n$ is the natural density.
(iv) A rational language of A^{*}, when viewed as a subset of \mathbb{N}, is a finite union of finite sets and arithmetic progressions.
(v) An arithmetic progression with difference k has density $1 / k$, while a finite set has density 0 .

In other words rational subsets of \mathbb{N} are evenly distributed.

When is a rational language evenly distributed in a minimal shift space?

When is a rational language evenly distributed in a minimal shift space?

When does the density depend only on the syntactic monoid?

Invariance

Definition

A measure μ is invariant if $\mu\left(S^{-1} B\right)=\mu(B)$ for all measurable sets.

Invariance

Definition

A measure μ is invariant if $\mu\left(S^{-1} B\right)=\mu(B)$ for all measurable sets.
(i) For measures on $A^{\mathbb{Z}}$ this means $\mu(u)=\sum_{a \in A} \mu(a u)$.

Invariance

Definition

A measure μ is invariant if $\mu\left(S^{-1} B\right)=\mu(B)$ for all measurable sets.
(i) For measures on $A^{\mathbb{Z}}$ this means $\mu(u)=\sum_{a \in A} \mu(a u)$.

Theorem (Krylov \& Bogolioubov, 1937)
Every compact dynamical space admits an invariant probability measure.

Invariance

Definition

A measure μ is invariant if $\mu\left(S^{-1} B\right)=\mu(B)$ for all measurable sets.
(i) For measures on $A^{\mathbb{Z}}$ this means $\mu(u)=\sum_{a \in A} \mu(a u)$.

Theorem (Krylov \& Bogolioubov, 1937)
Every compact dynamical space admits an invariant probability measure.

Theorem (Michel, 1974)
Every primitive substitution has exactly one invariant probability measure.

Ergodicity

Definition

A probability measure μ is ergodic if $S^{-1}(B)=B \Longrightarrow \mu(B)=0$ or 1 .

Ergodicity

Definition

A probability measure μ is ergodic if $S^{-1}(B)=B \Longrightarrow \mu(B)=0$ or 1 .
Equivalently, for all measurable sets B and C,

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=0}^{n-1} \mu\left(S^{-n} C \cap B\right)=\mu(B) \mu(C)
$$

These are called ergodic sums.

Ergodicity

Definition

A probability measure μ is ergodic if $S^{-1}(B)=B \Longrightarrow \mu(B)=0$ or 1 .
Equivalently, for all measurable sets B and C,

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=0}^{n-1} \mu\left(S^{-n} C \cap B\right)=\mu(B) \mu(C)
$$

These are called ergodic sums.
(i) When there is exactly one invariant measure, it must be ergodic. This property is called unique ergodicity.

Ergodicity

Definition

A probability measure μ is ergodic if $S^{-1}(B)=B \Longrightarrow \mu(B)=0$ or 1 .
Equivalently, for all measurable sets B and C,

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=0}^{n-1} \mu\left(S^{-n} C \cap B\right)=\mu(B) \mu(C)
$$

These are called ergodic sums.
(i) When there is exactly one invariant measure, it must be ergodic. This property is called unique ergodicity.

By Michel's theorem, shift spaces defined by primitive substitutions are uniquely ergodic.

Invariant measures

Fibonacci $\left(\lambda^{2}=\lambda+1\right)$
Thue-Morse

Values of ergodic measures on cylinders.

Examples

$$
\varphi:\{\mathrm{a}, \mathrm{~b}\}^{*} \rightarrow \mathbb{Z} / 2 \mathbb{Z}, \mathrm{a} \mapsto 1, \mathrm{~b} \mapsto 0, \quad L=\varphi^{-1}(0)
$$

$\delta_{\mu}(L)$ estimates the probability of having an even number of a.

Examples

$$
\varphi:\{\mathrm{a}, \mathrm{~b}\}^{*} \rightarrow \mathbb{Z} / 2 \mathbb{Z}, \mathrm{a} \mapsto 1, \mathrm{~b} \mapsto 0, \quad L=\varphi^{-1}(0)
$$

$\delta_{\mu}(L)$ estimates the probability of having an even number of a.

Example 1

For the invariant measure of the Fibonacci shift, $\delta_{\mu}(L)=1 / 2$.
The parity of occurrences of a is evenly distributed.

Examples

$$
\varphi:\{\mathrm{a}, \mathrm{~b}\}^{*} \rightarrow \mathbb{Z} / 2 \mathbb{Z}, \mathrm{a} \mapsto 1, \mathrm{~b} \mapsto 0, \quad L=\varphi^{-1}(0) .
$$

$\delta_{\mu}(L)$ estimates the probability of having an even number of a.

Example 1

For the invariant measure of the Fibonacci shift, $\delta_{\mu}(L)=1 / 2$.
The parity of occurrences of a is evenly distributed.

Example 2

$$
X=\left\{(\mathrm{abc})^{\infty},(\mathrm{bca})^{\infty},(\mathrm{cab})^{\infty}\right\}, \quad \varphi: \mathrm{a}, \mathrm{c} \mapsto 1, \mathrm{~b} \mapsto 0, \quad L=\varphi^{-1}(0) .
$$

Examples

$$
\varphi:\{\mathrm{a}, \mathrm{~b}\}^{*} \rightarrow \mathbb{Z} / 2 \mathbb{Z}, \mathrm{a} \mapsto 1, \mathrm{~b} \mapsto 0, \quad L=\varphi^{-1}(0) .
$$

$\delta_{\mu}(L)$ estimates the probability of having an even number of a.

Example 1

For the invariant measure of the Fibonacci shift, $\delta_{\mu}(L)=1 / 2$.
The parity of occurrences of a is evenly distributed.

Example 2

$$
X=\left\{(\mathrm{abc})^{\infty},(\mathrm{bca})^{\infty},(\mathrm{cab})^{\infty}\right\}, \quad \varphi: \mathrm{a}, \mathrm{c} \mapsto 1, \mathrm{~b} \mapsto 0, \quad L=\varphi^{-1}(0) .
$$

For the invariant measure of $X, \delta_{\mu}(L)=5 / 9$.
The parity of occurrences of $\mathrm{a}+\mathrm{c}$ is not evenly distributed.

Part 2

Skew Product

Skew product

Let $\varphi: A^{*} \rightarrow G$ be a morphism onto a finite group and X be a minimal shift space.
We will focus on languages of the form $\varphi^{-1}(g)$ for $g \in G$, called group languages.

Skew product

Let $\varphi: A^{*} \rightarrow G$ be a morphism onto a finite group and X be a minimal shift space.
We will focus on languages of the form $\varphi^{-1}(g)$ for $g \in G$, called group languages.
Definition

$$
T_{\varphi}: G \times X \rightarrow G \times X, \quad T_{\varphi}(g, x)=\left(g \varphi\left(x_{0}\right), S x\right) .
$$

The system $G \times_{\varphi} X=\left(G \times X, T_{\varphi}\right)$ is called a skew product.

Skew product

Let $\varphi: A^{*} \rightarrow G$ be a morphism onto a finite group and X be a minimal shift space.
We will focus on languages of the form $\varphi^{-1}(g)$ for $g \in G$, called group languages.

Definition

$$
T_{\varphi}: G \times X \rightarrow G \times X, \quad T_{\varphi}(g, x)=\left(g \varphi\left(x_{0}\right), S x\right) .
$$

The system $G \times_{\varphi} X=\left(G \times X, T_{\varphi}\right)$ is called a skew product.
Let v be the uniform probability distribution on G and μ be an invariant probability measure on X.

Skew product

Let $\varphi: A^{*} \rightarrow G$ be a morphism onto a finite group and X be a minimal shift space.
We will focus on languages of the form $\varphi^{-1}(g)$ for $g \in G$, called group languages.

Definition

$$
T_{\varphi}: G \times X \rightarrow G \times X, \quad T_{\varphi}(g, x)=\left(g \varphi\left(x_{0}\right), S x\right) .
$$

The system $G \times_{\varphi} X=\left(G \times X, T_{\varphi}\right)$ is called a skew product.
Let v be the uniform probability distribution on G and μ be an invariant probability measure on X.
(i) $v \times \mu$ is an invariant probability measure on $G \times_{\varphi} X$.

Skew product

$$
T_{\varphi}: G \times X \rightarrow G \times X, \quad T_{\varphi}(g, x)=\left(g \varphi\left(x_{0}\right), S x\right)
$$

Skew product

$$
\begin{gathered}
T_{\varphi}: G \times X \rightarrow G \times X, \quad T_{\varphi}(g, x)=\left(g \varphi\left(x_{0}\right), S x\right) . \\
X=\left\{(\mathrm{abc})^{\infty},(\mathrm{bca})^{\infty},(\mathrm{cab})^{\infty}\right\}, \quad \varphi:\{\mathrm{a}, \mathrm{~b}, \mathrm{c}\}^{*} \rightarrow \mathbb{Z} / 2 \mathbb{Z}, \\
\varphi: \mathrm{a} \mapsto 1, \mathrm{~b} \mapsto 0, \mathrm{c} \mapsto 1 .
\end{gathered}
$$

Skew product

$$
\begin{gathered}
T_{\varphi}: G \times X \rightarrow G \times X, \quad T_{\varphi}(g, x)=\left(g \varphi\left(x_{0}\right), S x\right) . \\
X=\left\{(\mathrm{abc})^{\infty},(\mathrm{bca})^{\infty},(\mathrm{cab})^{\infty}\right\}, \quad \varphi:\{\mathrm{a}, \mathrm{~b}, \mathrm{c}\}^{*} \rightarrow \mathbb{Z} / 2 \mathbb{Z}, \\
\varphi: \mathrm{a} \mapsto 1, \mathrm{~b} \mapsto 0, \mathrm{c} \mapsto 1 .
\end{gathered}
$$

Main results

Let $\varphi: A^{*} \rightarrow G$ be a morphism onto a finite group G.
Let X be a minimal shift space with invariant probability μ.

Main results

Let $\varphi: A^{*} \rightarrow G$ be a morphism onto a finite group G.
Let X be a minimal shift space with invariant probability μ.
Theorem 1
If $G \times_{\varphi} X$ is ergodic, then $\delta_{\mu}\left(\varphi^{-1}(g)\right)=1 /|G|$ for all $g \in G$.
The languages $\varphi^{-1}(g)$ are evenly distributed in X.

Main results

Let $\varphi: A^{*} \rightarrow G$ be a morphism onto a finite group G.
Let X be a minimal shift space with invariant probability μ.
Theorem 1
If $G \times_{\varphi} X$ is ergodic, then $\delta_{\mu}\left(\varphi^{-1}(g)\right)=1 /|G|$ for all $g \in G$.
The languages $\varphi^{-1}(g)$ are evenly distributed in X.
Theorem 2
The skew product $G \times_{\varphi} X$ is ergodic if and only if it is minimal.

Main results

Let $\varphi: A^{*} \rightarrow G$ be a morphism onto a finite group G.
Let X be a minimal shift space with invariant probability μ.
Theorem 1
If $G \times_{\varphi} X$ is ergodic, then $\delta_{\mu}\left(\varphi^{-1}(g)\right)=1 /|G|$ for all $g \in G$.
The languages $\varphi^{-1}(g)$ are evenly distributed in X.
Theorem 2
The skew product $G \times_{\varphi} X$ is ergodic if and only if it is minimal.
Theorem 3
When X is dendric all skew products are ergodic.
This includes in particular all Sturmian shifts.

Ergodic sums in skew product

\[

\]

A cylinder in $\varphi^{-1}(g) \cap A^{3}$.

Ergodic sums in skew product

\[

\]

A cylinder in $\varphi^{-1}(g) \cap A^{3}$.

Density is a limit of ergodic sums in the skew product.

Ergodic sums in skew product

\[

\]

A cylinder in $\varphi^{-1}(g) \cap A^{3}$.

Density is a limit of ergodic sums in the skew product.
(1)

$$
G \times X=\bigcup_{h \in G} U_{h}, \quad U_{h}=\{(h, x) \mid x \in X\} .
$$

Ergodic sums in skew product

\[

\]

A cylinder in $\varphi^{-1}(g) \cap A^{3}$.

Density is a limit of ergodic sums in the skew product.
(1)

$$
G \times X=\bigcup_{h \in G} U_{h}, \quad U_{h}=\{(h, x) \mid x \in X\} .
$$

(2)

$$
\mu\left(\varphi^{-1}(g) \cap A^{i}\right)=\sum_{h \in G}(v \times \mu)\left(U_{h} \cap T_{\varphi}^{-i} U_{h g}\right) .
$$

Ergodic sums in skew product

\[

\]

A cylinder in $\varphi^{-1}(g) \cap A^{3}$.

Density is a limit of ergodic sums in the skew product.
(1)

$$
G \times X=\bigcup_{h \in G} U_{h}, \quad U_{h}=\{(h, x) \mid x \in X\} .
$$

$$
\begin{equation*}
\mu\left(\varphi^{-1}(g) \cap A^{i}\right)=\sum_{h \in G}(v \times \mu)\left(U_{h} \cap T_{\varphi}^{-i} U_{h g}\right) . \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
\delta_{\mu}\left(\varphi^{-1}(g)\right)=\sum_{h \in G} \lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=0}^{n-1}(\nu \times \mu)\left(U_{h} \cap T_{\varphi}^{-i} U_{h g}\right) . \tag{3}
\end{equation*}
$$

Non-minimal example

$$
\sigma: \mathrm{a} \mapsto \mathrm{ab}, \mathrm{~b} \mapsto \mathrm{ba}, \quad \varphi:\{\mathrm{a}, \mathrm{~b}\}^{*} \rightarrow \mathbb{Z} / 2 \mathbb{Z}, \mathrm{a} \mapsto 1, \mathrm{~b} \mapsto 0 .
$$

Non-minimal example

Coloring $\alpha: X \rightarrow \mathbb{Z} / 2 \mathbb{Z}$ defined on cylinders, $0=\bullet, 1=\bullet$.

Non-minimal example

Coloring $\alpha: X \rightarrow \mathbb{Z} / 2 \mathbb{Z}$ defined on cylinders, $0=\bullet, 1=\bullet$.
$\{(g, x) \mid \alpha(x)=g\}$ is a closed invariant subspace of the skew product.

Part 3

Coloring

Coloring

For a subgroup $H \leq G$ let $H \backslash G=\{H g \mid g \in G\}$, the right cosets of H.

Coloring

For a subgroup $H \leq G$ let $H \backslash G=\{H g \mid g \in G\}$, the right cosets of H. Let X be a minimal shift space, $\varphi: A^{*} \rightarrow G$ be a morphism.

Coloring

For a subgroup $H \leq G$ let $H \backslash G=\{H g \mid g \in G\}$, the right cosets of H. Let X be a minimal shift space, $\varphi: A^{*} \rightarrow G$ be a morphism.

Definition

A (right coset) coloring is a continuous map $\alpha: X \rightarrow H \backslash G$ such that

$$
\alpha(S x)=\alpha(x) \varphi\left(x_{0}\right)
$$

Coloring

For a subgroup $H \leq G$ let $H \backslash G=\{H g \mid g \in G\}$, the right cosets of H.
Let X be a minimal shift space, $\varphi: A^{*} \rightarrow G$ be a morphism.
Definition
A (right coset) coloring is a continuous map $\alpha: X \rightarrow H \backslash G$ such that

$$
\alpha(S X)=\alpha(x) \varphi\left(X_{0}\right) .
$$

Lemma
A coloring α defines a closed invariant subspace of $G \times{ }_{\varphi} X$,

$$
Y_{\alpha}=\{(g, x) \mid \alpha(x)=H g\} .
$$

Cohomological inspiration

Some of our inspirations: Furstenberg, 1961; Mackey, 1966; Veech, 1975; Zimmer, 1976; Conze, 1976; Schmidt, 1977; Lemańczyk \& Mentzen, 2002.

Cohomological inspiration

Some of our inspirations: Furstenberg, 1961; Mackey, 1966; Veech, 1975; Zimmer, 1976; Conze, 1976; Schmidt, 1977; Lemańczyk \& Mentzen, 2002.
(i) A cocycle is a continuous map $\varphi: \mathbb{Z} \times X \rightarrow G$ such that

$$
\varphi^{(n+m)}(x)=\varphi^{(n)}(x) \varphi^{(m)}\left(S^{n} x\right) .
$$

Cohomological inspiration

Some of our inspirations: Furstenberg, 1961; Mackey, 1966; Veech, 1975; Zimmer, 1976; Conze, 1976; Schmidt, 1977; Lemańczyk \& Mentzen, 2002.
(i) A cocycle is a continuous map $\varphi: \mathbb{Z} \times X \rightarrow G$ such that

$$
\varphi^{(n+m)}(x)=\varphi^{(n)}(x) \varphi^{(m)}\left(S^{n} x\right)
$$

(ii) Two cocycles are cohomologous when

$$
\alpha(X) \varphi^{(n)}(x)=\alpha\left(S^{n} x\right) \psi^{(n)}(x), \quad \alpha: X \rightarrow G \text { continuous }
$$

Cohomological inspiration

Some of our inspirations: Furstenberg, 1961; Mackey, 1966; Veech, 1975; Zimmer, 1976; Conze, 1976; Schmidt, 1977; Lemańczyk \& Mentzen, 2002.
(i) A cocycle is a continuous map $\varphi: \mathbb{Z} \times X \rightarrow G$ such that

$$
\varphi^{(n+m)}(x)=\varphi^{(n)}(x) \varphi^{(m)}\left(S^{n} x\right) .
$$

(ii) Two cocycles are cohomologous when

$$
\alpha(X) \varphi^{(n)}(x)=\alpha\left(S^{n} x\right) \psi^{(n)}(x), \quad \alpha: X \rightarrow G \text { continuous }
$$

(iii) A cocycle is a coboundary when

$$
\alpha(x) \varphi^{(n)}(x)=\alpha\left(S^{n} x\right), \quad \alpha: X \rightarrow G \text { continuous. }
$$

Cohomological inspiration

$$
\varphi^{(n+m)}(x)=\varphi^{(n)}(x) \varphi^{(m)}\left(S^{n} x\right) \quad \alpha(x) \varphi^{(n)}(x)=\alpha\left(S^{n} x\right)
$$

Cocycles Coboundaries

Cohomological inspiration

$$
\varphi^{(n+m)}(x)=\varphi^{(n)}(x) \varphi^{(m)}\left(S^{n} x\right) \quad \alpha(x) \varphi^{(n)}(x)=\alpha\left(S^{n} x\right)
$$

Cocycles Coboundaries
Morphisms $\varphi: A^{*} \rightarrow G$ define cocycles.

$$
\varphi^{(n)}(x)=\varphi\left(x_{[0, n)}\right) \text { if } n \geq 0, \quad \varphi^{(n)}(x)=\varphi\left(x_{[n, 0)}\right)^{-1} \text { if } n<0 .
$$

Cohomological inspiration

$$
\varphi^{(n+m)}(x)=\varphi^{(n)}(x) \varphi^{(m)}\left(S^{n} x\right) \quad \alpha(x) \varphi^{(n)}(x)=\alpha\left(S^{n} x\right)
$$

Cocycles Coboundaries
Morphisms $\varphi: A^{*} \rightarrow G$ define cocycles.

$$
\varphi^{(n)}(x)=\varphi\left(x_{[0, n)}\right) \text { if } n \geq 0, \quad \varphi^{(n)}(x)=\varphi\left(x_{[n, 0)}\right)^{-1} \text { if } n<0 .
$$

$$
\begin{gathered}
\\
\cdots \\
\end{gathered}
$$

Cohomological inspiration

$$
\varphi^{(n+m)}(x)=\varphi^{(n)}(x) \varphi^{(m)}\left(S^{n} x\right) \quad \alpha(x) \varphi^{(n)}(x)=\alpha\left(S^{n} x\right)
$$

Cocycles Coboundaries
Coset colorings $\alpha: X \rightarrow H \backslash G$ exhibit coboundaries $\bmod H$.

$$
\alpha(x) \varphi^{(n)}(x)=\alpha\left(S^{n} x\right), \quad \alpha: X \rightarrow H \backslash G \text { continuous. }
$$

Cohomological inspiration

$$
\varphi^{(n+m)}(x)=\varphi^{(n)}(x) \varphi^{(m)}\left(S^{n} x\right) \quad \alpha(x) \varphi^{(n)}(x)=\alpha\left(S^{n} x\right)
$$

Cocycles Coboundaries
Coset colorings $\alpha: X \rightarrow H \backslash G$ exhibit coboundaries $\bmod H$.

$$
\alpha(x) \varphi^{(n)}(x)=\alpha\left(S^{n} x\right), \quad \alpha: X \rightarrow H \backslash G \text { continuous. }
$$

(i) Trivially, everything is a coboundary $\bmod G$.

Cohomological inspiration

$$
\varphi^{(n+m)}(x)=\varphi^{(n)}(x) \varphi^{(m)}\left(S^{n} x\right) \quad \alpha(x) \varphi^{(n)}(x)=\alpha\left(S^{n} x\right)
$$

Cocycles Coboundaries
Coset colorings $\alpha: X \rightarrow H \backslash G$ exhibit coboundaries $\bmod H$.

$$
\alpha(x) \varphi^{(n)}(x)=\alpha\left(S^{n} x\right), \quad \alpha: X \rightarrow H \backslash G \text { continuous. }
$$

(i) Trivially, everything is a coboundary $\bmod G$.
(ii) Coboundaries mod 1 correspond to "classical" coboundaries.

Cohomological inspiration

$$
\varphi^{(n+m)}(x)=\varphi^{(n)}(x) \varphi^{(m)}\left(S^{n} x\right) \quad \alpha(x) \varphi^{(n)}(x)=\alpha\left(S^{n} x\right)
$$

Cocycles Coboundaries
Coset colorings $\alpha: X \rightarrow H \backslash G$ exhibit coboundaries $\bmod H$.

$$
\alpha(x) \varphi^{(n)}(x)=\alpha\left(S^{n} x\right), \quad \alpha: X \rightarrow H \backslash G \text { continuous. }
$$

(i) Trivially, everything is a coboundary $\bmod G$.
(ii) Coboundaries mod 1 correspond to "classical" coboundaries.
(iii) Smaller subgroups give stronger coboundary conditions.

Ordering colorings

Take two colorings $\alpha: X \rightarrow H \backslash G$ and $\beta: X \rightarrow K \backslash G$.

Ordering colorings

Take two colorings $\alpha: X \rightarrow H \backslash G$ and $\beta: X \rightarrow K \backslash G$.
Say that $\alpha \leq \beta$ when:
(i) $H \leq K$.
(ii) $\forall g \in G, \alpha^{-1}(H g) \subseteq \beta^{-1}(K g)$.

Ordering colorings

Take two colorings $\alpha: X \rightarrow H \backslash G$ and $\beta: X \rightarrow K \backslash G$.
Say that $\alpha \leq \beta$ when:
(i) $H \leq K$.
(ii) $\forall g \in G, \alpha^{-1}(H g) \subseteq \beta^{-1}(K g)$.

Lemma 1
$Y_{\alpha}=\{(g, x) \mid \alpha(x)=H g\}$ is a closed invariant subspace.

Ordering colorings

Take two colorings $\alpha: X \rightarrow H \backslash G$ and $\beta: X \rightarrow K \backslash G$.
Say that $\alpha \leq \beta$ when:
(i) $H \leq K$.
(ii) $\forall g \in G, \alpha^{-1}(H g) \subseteq \beta^{-1}(K g)$.

Lemma 1
$Y_{\alpha}=\{(g, x) \mid \alpha(x)=H g\}$ is a closed invariant subspace.
Lemma 2
$Y_{\alpha} \subseteq Y_{\beta} \Longleftrightarrow \alpha \leq \beta$.

Ordering colorings

Take two colorings $\alpha: X \rightarrow H \backslash G$ and $\beta: X \rightarrow K \backslash G$.
Say that $\alpha \leq \beta$ when:
(i) $H \leq K$.
(ii) $\forall g \in G, \alpha^{-1}(H g) \subseteq \beta^{-1}(K g)$.

Lemma 1
$Y_{\alpha}=\{(g, x) \mid \alpha(x)=H g\}$ is a closed invariant subspace.
Lemma 2
$Y_{\alpha} \subseteq Y_{\beta} \Longleftrightarrow \alpha \leq \beta$.
Lemma 3
All minimal closed invariant subspaces are of the form Y_{α}.

Minimality conditions

Let X be a minimal shift space with an invariant measure μ. Let $\varphi: A^{*} \rightarrow G$ be a morphism onto a finite group.

Minimality conditions

Let X be a minimal shift space with an invariant measure μ. Let $\varphi: A^{*} \rightarrow G$ be a morphism onto a finite group.

Theorem
The following are equivalent.

Minimality conditions

Let X be a minimal shift space with an invariant measure μ. Let $\varphi: A^{*} \rightarrow G$ be a morphism onto a finite group.

Theorem
The following are equivalent.
(i) The trivial coloring $X \rightarrow G \backslash G$ is minimal for the ordering \leq.

Minimality conditions

Let X be a minimal shift space with an invariant measure μ. Let $\varphi: A^{*} \rightarrow G$ be a morphism onto a finite group.

Theorem
The following are equivalent.
(i) The trivial coloring $X \rightarrow G \backslash G$ is minimal for the ordering \leq.
(ii) If $H<G$ is a proper subgroup, φ is not a coboundary $\bmod H$.

Minimality conditions

Let X be a minimal shift space with an invariant measure μ. Let $\varphi: A^{*} \rightarrow G$ be a morphism onto a finite group.

Theorem
The following are equivalent.
(i) The trivial coloring $X \rightarrow G \backslash G$ is minimal for the ordering \leq.
(ii) If $H<G$ is a proper subgroup, φ is not a coboundary $\bmod H$.
(iii) The skew product $G \times_{\varphi} X$ is minimal.

Minimality conditions

Let X be a minimal shift space with an invariant measure μ. Let $\varphi: A^{*} \rightarrow G$ be a morphism onto a finite group.

Theorem
The following are equivalent.
(i) The trivial coloring $X \rightarrow G \backslash G$ is minimal for the ordering \leq.
(ii) If $H<G$ is a proper subgroup, φ is not a coboundary $\bmod H$.
(iii) The skew product $G \times_{\varphi} X$ is minimal.
(iv) The skew product $G \times{ }_{\varphi} X$ is ergodic.

Non-commutative coloring

$$
\begin{gathered}
\sigma: \mathrm{a} \mapsto \mathrm{a} a b, \mathrm{~b} \mapsto \mathrm{acb}, \mathrm{c} \mapsto \mathrm{ba}, \quad G=\operatorname{Perm}(\{1,2,3\}), \\
\varphi: \mathrm{a} \mapsto(123), \mathrm{b} \mapsto(12), c \mapsto(123)
\end{gathered}
$$

Non-commutative coloring

$$
\begin{gathered}
\sigma: a \mapsto a a b, b \mapsto a c b, c \mapsto b a, \quad G=\operatorname{Perm}(\{1,2,3\}), \\
\varphi: a \mapsto(123), b \mapsto(12), c \mapsto(123)
\end{gathered}
$$

Coloring mod \{id, (1 2) \}

Right cosets of \{id, (1 2)\}

Part 4

Return Words

Return words

Let $L(X)=\left\{x_{[i, j)} \mid x \in X\right.$ and $\left.i \leq j \in \mathbb{Z}\right\}$ be the language of a shift space X.

Return words

Let $L(X)=\left\{x_{[i, j)} \mid x \in X\right.$ and $\left.i \leq j \in \mathbb{Z}\right\}$ be the language of a shift space X.

Definition

The set of return words to u in X is

$$
\mathcal{R}_{X}(u)=\left\{r \in A^{+} \mid r u \in L(X) \cap u A^{*} \backslash A^{+} u A^{+}\right\} .
$$

Return words

Let $L(X)=\left\{x_{[i, j)} \mid x \in X\right.$ and $\left.i \leq j \in \mathbb{Z}\right\}$ be the language of a shift space X.

Definition

The set of return words to u in X is

$$
\mathcal{R}_{X}(u)=\left\{r \in A^{+} \mid r u \in L(X) \cap u A^{*} \backslash A^{+} u A^{+}\right\} .
$$

Example

$$
X=X_{\sigma}, \quad \sigma: \mathrm{a} \mapsto \mathrm{ab}, \mathrm{~b} \mapsto \mathrm{ba} .
$$

$$
\mathcal{R}_{X}(\mathrm{ab})=\{\mathrm{abb}, \mathrm{aba}, \mathrm{abba}, \mathrm{ab}\} .
$$

Minimality and return words

Let X be a minimal shift space with an invariant measure μ.
Let $\varphi: A^{*} \rightarrow G$ be a morphism onto a finite group.
Theorem
The following are equivalent:

Minimality and return words

Let X be a minimal shift space with an invariant measure μ.
Let $\varphi: A^{*} \rightarrow G$ be a morphism onto a finite group.
Theorem
The following are equivalent:
(i) $G \times{ }_{\varphi} X$ is minimal.

Minimality and return words

Let X be a minimal shift space with an invariant measure μ.
Let $\varphi: A^{*} \rightarrow G$ be a morphism onto a finite group.
Theorem
The following are equivalent:
(i) $G \times{ }_{\varphi} X$ is minimal.
(ii) $\varphi\left(\mathcal{R}_{X}(u)\right)=G$ for every $u \in L(X)$.

Minimality and return words

Let X be a minimal shift space with an invariant measure μ.
Let $\varphi: A^{*} \rightarrow G$ be a morphism onto a finite group.
Theorem
The following are equivalent:
(i) $G \times_{\varphi} X$ is minimal.
(ii) $\varphi\left(\mathcal{R}_{X}(u)\right)=G$ for every $u \in L(X)$.

We have two different proofs for this,

Minimality and return words

Let X be a minimal shift space with an invariant measure μ.
Let $\varphi: A^{*} \rightarrow G$ be a morphism onto a finite group.
Theorem
The following are equivalent:
(i) $G \times_{\varphi} X$ is minimal.
(ii) $\varphi\left(\mathcal{R}_{X}(u)\right)=G$ for every $u \in L(X)$.

We have two different proofs for this,

- using the theory of bifix codes,

Minimality and return words

Let X be a minimal shift space with an invariant measure μ.
Let $\varphi: A^{*} \rightarrow G$ be a morphism onto a finite group.
Theorem
The following are equivalent:
(i) $G \times_{\varphi} X$ is minimal.
(ii) $\varphi\left(\mathcal{R}_{X}(u)\right)=G$ for every $u \in L(X)$.

We have two different proofs for this,

- using the theory of bifix codes,
- using colorings.

Colorings and return words

Proposition
Let $\alpha: X \rightarrow H \backslash G$ be a coloring. There exists $n \in \mathbb{N}$ such that for every $u \in L(X)$ with $|u| \geq n, \varphi\left(\mathcal{R}_{X}(u)\right) \subseteq g^{-1} H g$ for some $g \in G$.

Colorings and return words

Proposition

Let $\alpha: X \rightarrow H \backslash G$ be a coloring. There exists $n \in \mathbb{N}$ such that for every $u \in L(X)$ with $|u| \geq n, \varphi\left(\mathcal{R}_{X}(u)\right) \subseteq g^{-1} H g$ for some $g \in G$.

- By continuity, a coloring $\alpha: X \rightarrow H \backslash G$ must be constant on long enough cylinders.

Colorings and return words

Proposition

Let $\alpha: X \rightarrow H \backslash G$ be a coloring. There exists $n \in \mathbb{N}$ such that for every $u \in L(X)$ with $|u| \geq n, \varphi\left(\mathcal{R}_{X}(u)\right) \subseteq g^{-1} H g$ for some $g \in G$.

- By continuity, a coloring $\alpha: X \rightarrow H \backslash G$ must be constant on long enough cylinders.
- Take u such that α is constant on $\left\{x \in X \mid x_{[0,|u|)}=u\right\}$. For $r \in \mathcal{R}_{X}(u)$, take $x \in X$ starting with r.

Colorings and return words

Proposition

Let $\alpha: X \rightarrow H \backslash G$ be a coloring. There exists $n \in \mathbb{N}$ such that for every $u \in L(X)$ with $|u| \geq n, \varphi\left(\mathcal{R}_{X}(u)\right) \subseteq g^{-1} H g$ for some $g \in G$.

- By continuity, a coloring $\alpha: X \rightarrow H \backslash G$ must be constant on long enough cylinders.
- Take u such that α is constant on $\left\{x \in X \mid x_{[0,|u|)}=u\right\}$. For $r \in \mathcal{R}_{X}(u)$, take $x \in X$ starting with r.

Colorings and return words

Proposition

Let $\alpha: X \rightarrow H \backslash G$ be a coloring. There exists $n \in \mathbb{N}$ such that for every $u \in L(X)$ with $|u| \geq n, \varphi\left(\mathcal{R}_{X}(u)\right) \subseteq g^{-1} H g$ for some $g \in G$.

- By continuity, a coloring $\alpha: X \rightarrow H \backslash G$ must be constant on long enough cylinders.
- Take u such that α is constant on $\left\{x \in X \mid x_{[0,|u|)}=u\right\}$. For $r \in \mathcal{R}_{X}(u)$, take $x \in X$ starting with r.

Recap

Let X be a minimal shift space, $\varphi: A^{*} \rightarrow G$ a morphism onto a finite group.

Recap

Let X be a minimal shift space, $\varphi: A^{*} \rightarrow G$ a morphism onto a finite group.
(i) φ is onto on all return sets iff the skew product is minimal.

Recap

Let X be a minimal shift space, $\varphi: A^{*} \rightarrow G$ a morphism onto a finite group.
(i) φ is onto on all return sets iff the skew product is minimal.
(ii) When the skew product is minimal the languages $\varphi^{-1}(g)$ are evenly distributed.

Recap

Let X be a minimal shift space, $\varphi: A^{*} \rightarrow G$ a morphism onto a finite group.
(i) φ is onto on all return sets iff the skew product is minimal.
(ii) When the skew product is minimal the languages $\varphi^{-1}(g)$ are evenly distributed.

Corollary
When all sets $\mathcal{R}_{X}(u)$ generate the free group $F(A)$, all rational languages are evenly distributed.

Recap

Let X be a minimal shift space, $\varphi: A^{*} \rightarrow G$ a morphism onto a finite group.
(i) φ is onto on all return sets iff the skew product is minimal.
(ii) When the skew product is minimal the languages $\varphi^{-1}(g)$ are evenly distributed.

Corollary
When all sets $\mathcal{R}_{X}(u)$ generate the free group $F(A)$, all rational languages are evenly distributed.
(i) The Return Theorem of Berthé, De Felice, Dolce, Leroy, Perrin, Reutenauer, \& Rindone (2015) states that this is the case for all dendric languages.

Conclusions

1. The even distribution property for group languages is encoded in skew products.

Conclusions

1. The even distribution property for group languages is encoded in skew products.
2. Minimality and ergodicity are equivalent for our skew products.

Conclusions

1. The even distribution property for group languages is encoded in skew products.
2. Minimality and ergodicity are equivalent for our skew products.
3. Minimality of skew products can be stated either in terms of colorings or of return words.

Conclusions

1. The even distribution property for group languages is encoded in skew products.
2. Minimality and ergodicity are equivalent for our skew products.
3. Minimality of skew products can be stated either in terms of colorings or of return words.
4. Dendricity entails even distribution for group languages.

Conclusions

1. The even distribution property for group languages is encoded in skew products.
2. Minimality and ergodicity are equivalent for our skew products.
3. Minimality of skew products can be stated either in terms of colorings or of return words.
4. Dendricity entails even distribution for group languages.
5. Similar results for general rational languages should follow from the group case (ongoing).

Conclusions

1. The even distribution property for group languages is encoded in skew products.
2. Minimality and ergodicity are equivalent for our skew products.
3. Minimality of skew products can be stated either in terms of colorings or of return words.
4. Dendricity entails even distribution for group languages.
5. Similar results for general rational languages should follow from the group case (ongoing).
6. What about general formulas for densities when the skew product is not ergodic?

References (i)

- Berthé, V. et al. (2015). Acyclic, connected and tree sets. Monatsh. Math. 176.4.
- Conze, J. P. (1976). Équirépartition et ergodicité de transformations cylindriques. Publ. Séminaire Math. Info. Renne 2.
- Furstenberg, H. (1961). Strict ergodicity and transformation of the torus. Am. J. Math. 83.4.
- Krylov, N. \& N. Bogolioubov (1937). La théorie générale de la mesure dans son application à l'étude des systèmes dynamiques de la mécanique non linéaire. Ann. Math. 38.1.
- Lemańczyk, M. \& M. K. Mentzen (2002). Topological ergodicity of real cocycles over minimal rotations. Monatsh. Math. 134.3.

References (ii)

- Mackey, G. W. (1966). Ergodic theory and virtual groups. Math. Ann. 166.3.
- Michel, P. (1974). Stricte ergodicité d'ensembles minimaux de substitution. C. R. Acad. Sci. Paris 278.
- Schmidt, K. (1977). Cocycles of ergodic transformation groups. MacMillan India.
- Veech, W. A. (1975). Finite group extensions of irrational rotations. Israel J. Math. 21.2.
- Zimmer, R. J. (1976). Extensions of ergodic group actions. Illinois J. Math. 20.3.

