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Part 1

Densities



Notation

(i) A is a finite alphabet (discrete topology).

(ii) A∗ is the set of all finite words on A (free monoid).

(iii) AZ is the space of bi-infinite words (product topology).

(iv) S : AZ → AZ is the shift map, Sx = (xn+1)n∈N.
(v) Measures ` on AZ are viewed as maps on words,

`(u) = `({x ∈ AZ | x[0, |u | ) = u}),
`(u) = ∑

a∈A `(ua), `(Y) = 1.

(vi) A shift space is a closed, shift invariant subset of AZ.

(vii) For shift spaces,minimalmeansminimal for inclusion.
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Density

Let L ⊆ A∗ be a language and ` be a probability measure on AZ.

Definition
The density of L under `, when it exists, is the limit:

X` (L) = lim
n→∞

1

n

n−1∑
i=0

`(L ∩ Ai) = lim
n→∞

1

n

n−1∑
i=0

`({x ∈ AZ | x[0,i) ∈ L}).

(i) X` (A∗) = 1 and X` (F) = 0 when |F | < ∞.

(ii) X` (L ∪ K) = X` (L) + X` (K) when L ∩ K = ∅.

3



Density

Let L ⊆ A∗ be a language and ` be a probability measure on AZ.

Definition
The density of L under `, when it exists, is the limit:

X` (L) = lim
n→∞

1

n

n−1∑
i=0

`(L ∩ Ai) = lim
n→∞

1

n

n−1∑
i=0

`({x ∈ AZ | x[0,i) ∈ L}).

(i) X` (A∗) = 1 and X` (F) = 0 when |F | < ∞.

(ii) X` (L ∪ K) = X` (L) + X` (K) when L ∩ K = ∅.

3



Density

Let L ⊆ A∗ be a language and ` be a probability measure on AZ.

Definition
The density of L under `, when it exists, is the limit:

X` (L) = lim
n→∞

1

n

n−1∑
i=0

`(L ∩ Ai) = lim
n→∞

1

n

n−1∑
i=0

`({x ∈ AZ | x[0,i) ∈ L}).

(i) X` (A∗) = 1 and X` (F) = 0 when |F | < ∞.

(ii) X` (L ∪ K) = X` (L) + X` (K) when L ∩ K = ∅.

3



Density

Let L ⊆ A∗ be a language and ` be a probability measure on AZ.

Definition
The density of L under `, when it exists, is the limit:

X` (L) = lim
n→∞

1

n

n−1∑
i=0

`(L ∩ Ai) = lim
n→∞

1

n

n−1∑
i=0

`({x ∈ AZ | x[0,i) ∈ L}).

(i) X` (A∗) = 1 and X` (F) = 0 when |F | < ∞.

(ii) X` (L ∪ K) = X` (L) + X` (K) when L ∩ K = ∅.

3



On 1 letter

When A = {a} has 1 letter, A∗ � (N, +) via an ≡ n.

(i) X = {a}Z = {· · · aaa · · · } is the only possible shift space.
(ii) There is trivially only one probability measure.

(iii) X(L) = lim |L ∩ {0, · · · ,n − 1}|/n is the natural density.

(iv) A rational language of A∗, when viewed as a subset of N, is a

finite union of finite sets and arithmetic progressions.

(v) An arithmetic progression with difference k has density 1/k,
while a finite set has density 0.

In other words rational subsets of N are evenly distributed.
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When is a rational language evenly
distributed in a minimal shift space?

When does the density depend only
on the syntactic monoid?



When is a rational language evenly
distributed in a minimal shift space?

When does the density depend only
on the syntactic monoid?



Invariance

Definition

A measure ` is invariant if `(S−1B) = `(B) for all measurable sets.

i For measures on AZ this means `(u) = ∑
a∈A `(au).

Theorem (Krylov & Bogolioubov, 1937)
Every compact dynamical space admits an invariant probability

measure.

Theorem (Michel, 1974)
Every primitive substitution has exactly one invariant probability

measure.
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Ergodicity

Definition

A probability measure ` is ergodic if S−1 (B) = B =⇒ `(B) = 0 or 1.

Equivalently, for all measurable sets B and C,

lim
n→∞

1

n

n−1∑
i=0

`(S−nC ∩ B) = `(B)`(C).

These are called ergodic sums.

i When there is exactly one invariant measure, it must be

ergodic. This property is called unique ergodicity.

By Michel’s theorem, shift spaces defined by primitive

substitutions are uniquely ergodic.
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Invariant measures

1

_−1 _−2

_−3 _−2 _−2

_−3 _−2 _−3 _−4

a b

a b a

b a a b

1

1
2

1
2

1
6

1
3

1
3

1
6

1
6

1
6

1
6

1
6

1
6

1
6

a b

a b a b

b a b a b a

Fibonacci (_2 = _ + 1) Thue–Morse

Values of ergodic measures on cylinders.
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Examples

i : {a, b}∗ → Z/2Z, a ↦→ 1, b ↦→ 0, L = i−1 (0).

X` (L) estimates the probability of having an even number of a.

Example 1
For the invariant measure of the Fibonacci shift, X` (L) = 1/2.
The parity of occurrences of a is evenly distributed.

Example 2

X = {(abc)∞, (bca)∞, (cab)∞}, i : a, c ↦→ 1, b ↦→ 0, L = i−1 (0).

For the invariant measure of X , X` (L) = 5/9.
The parity of occurrences of a + c is not evenly distributed.
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Part 2

Skew Product



Skew product

Let i : A∗ → G be a morphism onto a finite group and X be a

minimal shift space.

We will focus on languages of the form i−1 (g) for g ∈ G, called

group languages.

Definition

Ti : G × X → G × X , Ti (g, x) = (gi(x0), Sx).

The system G ×i X = (G × X ,Ti) is called a skew product.

Let a be the uniform probability distribution on G and ` be an

invariant probability measure on X .

i a × ` is an invariant probability measure on G ×i X .
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Skew product

Ti : G × X → G × X , Ti (g, x) = (gi(x0), Sx).

X = {(abc)∞, (bca)∞, (cab)∞}, i : {a, b, c}∗ → Z/2Z,
i : a ↦→ 1, b ↦→ 0, c ↦→ 1.

abc1
3

bca1
3

cab1
3

(0, abc)1
6

(0, bca)1
6

(0, cab)1
6

(1, abc) 1
6

(1, bca) 1
6

(1, cab) 1
6

(X , S) (Z/2Z ×i X ,Ti)
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Main results

Let i : A∗ → G be a morphism onto a finite group G.

Let X be a minimal shift space with invariant probability `.

Theorem 1

If G ×i X is ergodic, then X` (i−1 (g)) = 1/|G| for all g ∈ G.

The languages i−1 (g) are evenly distributed in X.

Theorem 2
The skew product G ×i X is ergodic if and only if it is minimal.

Theorem 3
When X is dendric all skew products are ergodic.

This includes in particular all Sturmian shifts.
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Ergodic sums in skew product

· · · x−1 x0 x1

i(x[0,3) ) = g

x2 x3 · · ·

A cylinder in i−1 (g) ∩ A3.

Density is a limit of ergodic sums in the skew product.

(1) G × X =
⋃
h∈G

Uh, Uh = {(h, x) | x ∈ X}.

(2) `(i−1 (g) ∩ Ai) =
∑
h∈G

(a × `) (Uh ∩ T−i
i Uhg ).

(3) X` (i−1 (g)) =
∑
h∈G

lim
n→∞

1

n

n−1∑
i=0

(a × `)(Uh ∩ T−i
i Uhg ).
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Non-minimal example

f : a ↦→ ab, b ↦→ ba, i : {a, b}∗ → Z/2Z, a ↦→ 1, b ↦→ 0.

abbabaa

1
12

bbabaab

1
12

babaabb

1
24

babaaba 1
24

abaabba

1
24

baabbaa1
24

aabbaab1
24

abbaaba

1
24bbaabab

1
24

baababb

1
12

abaabab 1
24

aababba

1
12

ababbab1
24

babbaba1
24

ababbaa

1
24

babbaab

1
24

abbaabb 1
24

bbaabba 1
24

baabbab

1
24 aabbaba

1
24

a b

b
a

b

a

b

b

a

b

a

a

b

a

b

a

b

a b

aa

b

Coloring U : X → Z/2Z defined on cylinders, 0 = , 1 = .

{(g, x) | U(x) = g} is a closed invariant subspace of the skew product.
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Part 3

Coloring



Coloring

For a subgroup H ≤ G let H\G = {Hg | g ∈ G}, the right cosets of H.

Let X be a minimal shift space, i : A∗ → G be a morphism.

Definition
A (right coset) coloring is a continuous map U : X → H\G such that

U(Sx) = U(x)i(x0).

Lemma
A coloring U defines a closed invariant subspace of G ×i X ,

YU = {(g, x) | U(x) = Hg}.
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Cohomological inspiration

Some of our inspirations: Furstenberg, 1961; Mackey, 1966; Veech,

1975; Zimmer, 1976; Conze, 1976; Schmidt, 1977; Lemańczyk &

Mentzen, 2002.

(i) A cocycle is a continuous map i : Z × X → G such that

i(n+m) (x) = i(n) (x)i(m) (Snx).

(ii) Two cocycles are cohomologous when

U(x)i(n) (x) = U(Snx)k(n) (x), U : X → G continuous

(iii) A cocycle is a coboundary when

U(x)i(n) (x) = U(Snx), U : X → G continuous.
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Cohomological inspiration

i(n+m) (x) = i(n) (x)i(m) (Snx) U(x)i(n) (x) = U(Snx)

Cocycles Coboundaries

Morphisms i : A∗ → G define cocycles.

i(n) (x) = i(x[0,n) ) if n ≥ 0, i(n) (x) = i(x[n,0) )−1 if n < 0.

· · · x0 x1 x2 x3 x4 · · ·

i(x0x1x2) i(x3x4)

i(3+2) (x) = i(3) (x)i(2) (S3x)
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Cohomological inspiration

i(n+m) (x) = i(n) (x)i(m) (Snx) U(x)i(n) (x) = U(Snx)

Cocycles Coboundaries

Coset colorings U : X → H\G exhibit coboundaries mod H.

U(x)i(n) (x) = U(Snx), U : X → H\G continuous.

(i) Trivially, everything is a coboundary mod G.

(ii) Coboundaries mod 1 correspond to “classical” coboundaries.

(iii) Smaller subgroups give stronger coboundary conditions.

17
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Ordering colorings

Take two colorings U : X → H\G and V : X → K\G.

Say that U ≤ V when:

(i) H ≤ K .

(ii) ∀g ∈ G, U−1 (Hg) ⊆ V−1 (Kg).

Lemma 1
YU = {(g, x) | U(x) = Hg} is a closed invariant subspace.

Lemma 2
YU ⊆ YV ⇐⇒ U ≤ V.

Lemma 3
Allminimal closed invariant subspaces are of the form YU.

18
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Minimality conditions

Let X be a minimal shift space with an invariant measure `.

Let i : A∗ → G be a morphism onto a finite group.

Theorem
The following are equivalent.

(i) The trivial coloring X → G\G is minimal for the ordering ≤.
(ii) If H < G is a proper subgroup, i is not a coboundary mod H.

(iii) The skew product G ×i X is minimal.

(iv) The skew product G ×i X is ergodic.
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Non-commutative coloring

f : a ↦→ aab, b ↦→ acb, c ↦→ ba, G = Perm({1, 2, 3}),
i : a ↦→ (1 2 3), b ↦→ (1 2), c ↦→ (1 2 3).

abacbacb aaba

cbac abaa

acba cbaa baab

aacb aabb

baac bbaa abba

b

a a

ac

a

a

a

c

b

ba

ab

b a

id, (1 2)

(1 3) , (1 3 2) (2 3) , (1 2 3)
b

a, c a, c

a, c

Coloring mod {id, (1 2)} Right cosets of {id, (1 2)}
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Part 4

Return Words



Return words

Let L(X) = {x[i,j) | x ∈ X and i ≤ j ∈ Z} be the language of a shift
space X .

Definition
The set of return words to u in X is

RX (u) = {r ∈ A+ | ru ∈ L(X) ∩ uA∗ \ A+uA+}.

Example

X = Xf , f : a ↦→ ab, b ↦→ ba.

· · · · · ·a b b a b a a b b a a b a b b a b

RX (ab) = {abb, aba, abba, ab}.
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Minimality and return words

Let X be a minimal shift space with an invariant measure `.

Let i : A∗ → G be a morphism onto a finite group.

Theorem
The following are equivalent:

(i) G ×i X is minimal.

(ii) i(RX (u)) = G for every u ∈ L(X).

We have two different proofs for this,

• using the theory of bifix codes,

• using colorings.

22
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Colorings and return words

Proposition
Let U : X → H\G be a coloring. There exists n ∈ N such that for

every u ∈ L(X) with |u| ≥ n, i(RX (u)) ⊆ g−1Hg for some g ∈ G.

• By continuity, a coloring U : X → H\Gmust be constant on

long enough cylinders.

• Take u such that U is constant on {x ∈ X | x[0, |u | ) = u}.
For r ∈ RX (u), take x ∈ X starting with r.

· · · · · ·· · ·x0 x1 xn−1 xn xn+1

r

u u

U(x) = U(Snx) = U(x)i(n) (x) = U(x)i(r).

23
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r

u u

U(x) = U(Snx) = U(x)i(n) (x) = U(x)i(r).
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Recap

Let X be a minimal shift space, i : A∗ → G a morphism onto a

finite group.

(i) i is onto on all return sets iff the skew product is minimal.

(ii) When the skew product is minimal the languages i−1(g) are
evenly distributed.

Corollary
When all sets RX (u) generate the free group F (A), all rational
languages are evenly distributed.

i The Return Theorem of Berthé, De Felice, Dolce, Leroy, Perrin,

Reutenauer, & Rindone (2015) states that this is the case for all

dendric languages.

24



Recap

Let X be a minimal shift space, i : A∗ → G a morphism onto a

finite group.

(i) i is onto on all return sets iff the skew product is minimal.

(ii) When the skew product is minimal the languages i−1(g) are
evenly distributed.

Corollary
When all sets RX (u) generate the free group F (A), all rational
languages are evenly distributed.

i The Return Theorem of Berthé, De Felice, Dolce, Leroy, Perrin,

Reutenauer, & Rindone (2015) states that this is the case for all

dendric languages.

24



Recap

Let X be a minimal shift space, i : A∗ → G a morphism onto a

finite group.

(i) i is onto on all return sets iff the skew product is minimal.

(ii) When the skew product is minimal the languages i−1 (g) are
evenly distributed.

Corollary
When all sets RX (u) generate the free group F (A), all rational
languages are evenly distributed.

i The Return Theorem of Berthé, De Felice, Dolce, Leroy, Perrin,

Reutenauer, & Rindone (2015) states that this is the case for all

dendric languages.

24



Recap

Let X be a minimal shift space, i : A∗ → G a morphism onto a

finite group.

(i) i is onto on all return sets iff the skew product is minimal.

(ii) When the skew product is minimal the languages i−1 (g) are
evenly distributed.

Corollary
When all sets RX (u) generate the free group F (A), all rational
languages are evenly distributed.

i The Return Theorem of Berthé, De Felice, Dolce, Leroy, Perrin,

Reutenauer, & Rindone (2015) states that this is the case for all

dendric languages.

24



Recap

Let X be a minimal shift space, i : A∗ → G a morphism onto a

finite group.

(i) i is onto on all return sets iff the skew product is minimal.

(ii) When the skew product is minimal the languages i−1 (g) are
evenly distributed.

Corollary
When all sets RX (u) generate the free group F (A), all rational
languages are evenly distributed.

i The Return Theorem of Berthé, De Felice, Dolce, Leroy, Perrin,

Reutenauer, & Rindone (2015) states that this is the case for all

dendric languages.

24



Conclusions

1. The even distribution property for group languages is
encoded in skew products.

2. Minimality and ergodicity are equivalent for our skew
products.

3. Minimality of skew products can be stated either in terms
of colorings or of return words.

4. Dendricity entails even distribution for group languages.

5. Similar results for general rational languages should follow
from the group case (ongoing).

6. What about general formulas for densities when the skew
product is not ergodic?
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