

Density of Rational Languages Under Invariant Measures

- Valérie Berthé, Herman Goulet-Ouellet,
- Carl-Frederik Nyberg-Brodda, Dominique Perrin and Karl Petersen
- October 24, 2023
 - One-World Combinatorics on Words Seminar
- INSTITUT DE RECHERCHE EN INFORMATIQUE FONDAMENTALE

:

Content

1. Densities

1. Densities

2. Skew Product

- 1. Densities
- 2. Skew Product
- 3. Coloring

- 1. Densities
- 2. Skew Product
- 3. Coloring
- 4. Return Words

Part 1

Densities

(i) A is a finite alphabet (discrete topology).

- (i) *A* is a finite alphabet (discrete topology).
- (ii) A^* is the set of all finite words on A (free monoid).

- (i) *A* is a finite alphabet (discrete topology).
- (ii) A^* is the set of all finite words on A (free monoid).
- (iii) $A^{\mathbb{Z}}$ is the space of bi-infinite words (product topology).

- (i) *A* is a finite alphabet (discrete topology).
- (ii) A^* is the set of all finite words on A (free monoid).
- (iii) $A^{\mathbb{Z}}$ is the space of bi-infinite words (product topology).
- (iv) $S: A^{\mathbb{Z}} \to A^{\mathbb{Z}}$ is the shift map, $Sx = (x_{n+1})_{n \in \mathbb{N}}$.

- (i) A is a finite alphabet (discrete topology).
- (ii) A^* is the set of all finite words on A (free monoid).
- (iii) $A^{\mathbb{Z}}$ is the space of bi-infinite words (product topology).
- (iv) $S: A^{\mathbb{Z}} \to A^{\mathbb{Z}}$ is the shift map, $Sx = (x_{n+1})_{n \in \mathbb{N}}$.
- (v) Measures μ on $A^{\mathbb{Z}}$ are viewed as maps on words,

$$\begin{split} \mu(u) &= \mu(\{x \in A^{\mathbb{Z}} \mid x_{[0,|u|)} = u\}), \\ \mu(u) &= \sum_{a \in A} \mu(ua), \quad \mu(\varepsilon) = 1. \end{split}$$

- (i) A is a finite alphabet (discrete topology).
- (ii) A^* is the set of all finite words on A (free monoid).
- (iii) $A^{\mathbb{Z}}$ is the space of bi-infinite words (product topology).
- (iv) $S: A^{\mathbb{Z}} \to A^{\mathbb{Z}}$ is the shift map, $Sx = (x_{n+1})_{n \in \mathbb{N}}$.
- (v) Measures μ on $A^{\mathbb{Z}}$ are viewed as maps on words,

$$\begin{split} \mu(u) &= \mu(\{x \in A^{\mathbb{Z}} \mid x_{[0,|u|)} = u\}), \\ \mu(u) &= \sum_{a \in A} \mu(ua), \quad \mu(\varepsilon) = 1. \end{split}$$

(vi) A *shift space* is a closed, shift invariant subset of $A^{\mathbb{Z}}$.

- (i) A is a finite alphabet (discrete topology).
- (ii) A^* is the set of all finite words on A (free monoid).
- (iii) $A^{\mathbb{Z}}$ is the space of bi-infinite words (product topology).
- (iv) $S: A^{\mathbb{Z}} \to A^{\mathbb{Z}}$ is the shift map, $Sx = (x_{n+1})_{n \in \mathbb{N}}$.
- (v) Measures μ on $A^{\mathbb{Z}}$ are viewed as maps on words,

$$\begin{split} \mu(u) &= \mu(\{x \in A^{\mathbb{Z}} \mid x_{[0,|u|)} = u\}), \\ \mu(u) &= \sum_{a \in A} \mu(ua), \quad \mu(\varepsilon) = 1. \end{split}$$

(vi) A *shift space* is a closed, shift invariant subset of A^Z.
(vii) For shift spaces, *minimal* means *minimal for inclusion*.

Definition

The density of *L* under μ , when it exists, is the limit:

$$\delta_{\mu}(L) = \lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} \mu(L \cap A^{i}) = \lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} \mu(\{x \in A^{\mathbb{Z}} \mid x_{[0,i)} \in L\}).$$

Definition

The density of *L* under μ , when it exists, is the limit:

$$\delta_{\mu}(L) = \lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} \mu(L \cap A^{i}) = \lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} \mu(\{x \in A^{\mathbb{Z}} \mid x_{[0,i)} \in L\}).$$

(i) $\delta_{\mu}(A^*) = 1$ and $\delta_{\mu}(F) = 0$ when $|F| < \infty$.

Definition

The density of *L* under μ , when it exists, is the limit:

$$\delta_{\mu}(L) = \lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} \mu(L \cap A^{i}) = \lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} \mu(\{x \in A^{\mathbb{Z}} \mid x_{[0,i)} \in L\}).$$

(i)
$$\delta_{\mu}(A^*) = 1$$
 and $\delta_{\mu}(F) = 0$ when $|F| < \infty$.

(ii) $\delta_{\mu}(L \cup K) = \delta_{\mu}(L) + \delta_{\mu}(K)$ when $L \cap K = \emptyset$.

(i) $X = \{a\}^{\mathbb{Z}} = \{\cdots aaa \cdots\}$ is the only possible shift space.

(i) $X = \{a\}^{\mathbb{Z}} = \{\cdots aaa \cdots\}$ is the only possible shift space.

(ii) There is trivially only one probability measure.

(i) $X = \{a\}^{\mathbb{Z}} = \{\cdots aaa \cdots\}$ is the only possible shift space.

(ii) There is trivially only one probability measure.

(iii) $\delta(L) = \lim |L \cap \{0, \dots, n-1\}|/n$ is the *natural density*.

(i) $X = \{a\}^{\mathbb{Z}} = \{\cdots aaa \cdots\}$ is the only possible shift space.

- (ii) There is trivially only one probability measure.
- (iii) $\delta(L) = \lim |L \cap \{0, \dots, n-1\}|/n$ is the *natural density*.
- (iv) A rational language of A^* , when viewed as a subset of \mathbb{N} , is a finite union of finite sets and arithmetic progressions.

(i) $X = \{a\}^{\mathbb{Z}} = \{\cdots aaa \cdots\}$ is the only possible shift space.

- (ii) There is trivially only one probability measure.
- (iii) $\delta(L) = \lim |L \cap \{0, \dots, n-1\}|/n$ is the *natural density*.
- (iv) A rational language of A^* , when viewed as a subset of \mathbb{N} , is a finite union of finite sets and arithmetic progressions.
- (v) An arithmetic progression with difference k has density 1/k, while a finite set has density 0.

- (i) $X = \{a\}^{\mathbb{Z}} = \{\cdots aaa \cdots\}$ is the only possible shift space.
- (ii) There is trivially only one probability measure.
- (iii) $\delta(L) = \lim |L \cap \{0, \dots, n-1\}|/n$ is the *natural density*.
- (iv) A rational language of A^* , when viewed as a subset of \mathbb{N} , is a finite union of finite sets and arithmetic progressions.
- (v) An arithmetic progression with difference k has density 1/k, while a finite set has density 0.

In other words rational subsets of $\mathbb N$ are evenly distributed.

When is a rational language evenly distributed in a minimal shift space?

When is a rational language evenly distributed in a minimal shift space?

When does the density depend *only* on the syntactic monoid?

A measure μ is *invariant* if $\mu(S^{-1}B) = \mu(B)$ for all measurable sets.

A measure μ is *invariant* if $\mu(S^{-1}B) = \mu(B)$ for all measurable sets.

() For measures on $A^{\mathbb{Z}}$ this means $\mu(u) = \sum_{a \in A} \mu(au)$.

A measure μ is *invariant* if $\mu(S^{-1}B) = \mu(B)$ for all measurable sets.

• For measures on $A^{\mathbb{Z}}$ this means $\mu(u) = \sum_{a \in A} \mu(au)$.

Theorem (Krylov & Bogolioubov, 1937)

Every compact dynamical space admits an invariant probability measure.

A measure μ is *invariant* if $\mu(S^{-1}B) = \mu(B)$ for all measurable sets.

• For measures on $A^{\mathbb{Z}}$ this means $\mu(u) = \sum_{a \in A} \mu(au)$.

Theorem (Krylov & Bogolioubov, 1937)

Every compact dynamical space admits an invariant probability measure.

Theorem (Michel, 1974)

Every primitive substitution has *exactly one* invariant probability measure.

Ergodicity

Definition

A probability measure μ is *ergodic* if $S^{-1}(B) = B \implies \mu(B) = 0$ or 1.

A probability measure μ is *ergodic* if $S^{-1}(B) = B \implies \mu(B) = 0$ or 1. Equivalently, for all measurable sets *B* and *C*,

$$\lim_{n\to\infty}\frac{1}{n}\sum_{i=0}^{n-1}\mu(S^{-n}C\cap B)=\mu(B)\mu(C).$$

These are called *ergodic sums*.

A probability measure μ is *ergodic* if $S^{-1}(B) = B \implies \mu(B) = 0$ or 1. Equivalently, for all measurable sets *B* and *C*,

$$\lim_{n\to\infty}\frac{1}{n}\sum_{i=0}^{n-1}\mu(S^{-n}C\cap B)=\mu(B)\mu(C).$$

These are called *ergodic sums*.

• When there is *exactly one* invariant measure, it must be ergodic. This property is called *unique ergodicity*.

A probability measure μ is *ergodic* if $S^{-1}(B) = B \implies \mu(B) = 0$ or 1. Equivalently, for all measurable sets *B* and *C*,

$$\lim_{n\to\infty}\frac{1}{n}\sum_{i=0}^{n-1}\mu(S^{-n}C\cap B)=\mu(B)\mu(C).$$

These are called *ergodic sums*.

• When there is *exactly one* invariant measure, it must be ergodic. This property is called *unique ergodicity*.

By Michel's theorem, shift spaces defined by primitive substitutions are uniquely ergodic.

Invariant measures

Values of ergodic measures on cylinders.

$$\varphi \colon {a, b}^* \to \mathbb{Z}/2\mathbb{Z}, a \mapsto 1, b \mapsto 0, \quad L = \varphi^{-1}(0).$$

 $\delta_{\mu}(L)$ estimates the probability of having an even number of a.
$$\varphi \colon \{\mathsf{a},\mathsf{b}\}^* \to \mathbb{Z}/2\mathbb{Z}, \ \mathsf{a} \mapsto 1, \ \mathsf{b} \mapsto 0, \quad L = \varphi^{-1}(0).$$

 $\delta_\mu(L)$ estimates the probability of having an even number of a. Example 1

For the invariant measure of the Fibonacci shift, $\delta_{\mu}(L) = 1/2$. The parity of occurrences of a is evenly distributed.

$$\varphi\colon \{\mathsf{a},\mathsf{b}\}^* \to \mathbb{Z}/2\mathbb{Z}, \ \mathsf{a} \mapsto 1, \ \mathsf{b} \mapsto 0, \quad L = \varphi^{-1}(0).$$

 $\delta_\mu(L)$ estimates the probability of having an even number of a. Example 1

For the invariant measure of the Fibonacci shift, $\delta_{\mu}(L) = 1/2$. The parity of occurrences of a is evenly distributed.

Example 2

 $X = \{(\mathsf{abc})^{\infty}, (\mathsf{bca})^{\infty}, (\mathsf{cab})^{\infty}\}, \quad \varphi \colon \mathsf{a}, \mathsf{c} \mapsto 1, \ \mathsf{b} \mapsto 0, \quad L = \varphi^{-1}(0).$

$$\varphi\colon \{\mathsf{a},\mathsf{b}\}^* \to \mathbb{Z}/2\mathbb{Z}, \ \mathsf{a} \mapsto 1, \ \mathsf{b} \mapsto 0, \quad L = \varphi^{-1}(0).$$

 $\delta_{\mu}(L)$ estimates the probability of having an even number of a. Example 1

For the invariant measure of the Fibonacci shift, $\delta_{\mu}(L) = 1/2$. The parity of occurrences of a is evenly distributed.

Example 2

 $X=\{(\mathsf{abc})^\infty,(\mathsf{bca})^\infty,(\mathsf{cab})^\infty\},\quad \varphi\colon\mathsf{a},\mathsf{c}\mapsto\mathsf{1},\ \mathsf{b}\mapsto\mathsf{0},\quad L=\varphi^{-1}(\mathsf{0}).$

For the invariant measure of *X*, $\delta_{\mu}(L) = 5/9$. The parity of occurrences of a + c is not evenly distributed. Part 2

Skew Product

Let $\varphi \colon A^* \to G$ be a morphism onto a finite group and X be a minimal shift space.

We will focus on languages of the form $\varphi^{-1}(g)$ for $g \in G$, called *group languages*.

Let $\varphi : A^* \to G$ be a morphism onto a finite group and X be a minimal shift space.

We will focus on languages of the form $\varphi^{-1}(g)$ for $g \in G$, called *group languages*.

Definition

 $T_{\varphi} \colon G \times X \to G \times X, \quad T_{\varphi}(g, x) = (g\varphi(x_0), Sx).$

The system $G \times_{\varphi} X = (G \times X, T_{\varphi})$ is called a *skew product*.

Let $\varphi \colon A^* \to G$ be a morphism onto a finite group and X be a minimal shift space.

We will focus on languages of the form $\varphi^{-1}(g)$ for $g \in G$, called *group languages*.

Definition

$$T_{\varphi} \colon G \times X \to G \times X, \quad T_{\varphi}(g, x) = (g\varphi(x_0), Sx).$$

The system $G \times_{\varphi} X = (G \times X, T_{\varphi})$ is called a *skew product*.

Let v be the uniform probability distribution on G and μ be an invariant probability measure on X.

Let $\varphi \colon A^* \to G$ be a morphism onto a finite group and X be a minimal shift space.

We will focus on languages of the form $\varphi^{-1}(g)$ for $g \in G$, called *group languages*.

Definition

$$T_{\varphi} \colon G \times X \to G \times X, \quad T_{\varphi}(g, x) = (g\varphi(x_0), Sx).$$

The system $G \times_{\varphi} X = (G \times X, T_{\varphi})$ is called a *skew product*.

Let v be the uniform probability distribution on G and μ be an invariant probability measure on X.

() $v \times \mu$ is an invariant probability measure on $G \times_{\varphi} X$.

Skew product

 $T_{\varphi} \colon G \times X \to G \times X, \quad T_{\varphi}(g, x) = (g\varphi(x_0), Sx).$

Skew product

$$T_{\varphi} \colon G \times X \to G \times X, \quad T_{\varphi}(g, x) = (g\varphi(x_0), Sx).$$

$$\begin{split} X = \{(\mathsf{abc})^{\infty}, (\mathsf{bca})^{\infty}, (\mathsf{cab})^{\infty}\}, \quad \varphi \colon \{\mathsf{a}, \mathsf{b}, \mathsf{c}\}^* \to \mathbb{Z}/2\mathbb{Z}, \\ \varphi \colon \mathsf{a} \mapsto \mathsf{1}, \ \mathsf{b} \mapsto \mathsf{0}, \ \mathsf{c} \mapsto \mathsf{1}. \end{split}$$

Skew product

$$T_{\varphi} \colon G \times X \to G \times X, \quad T_{\varphi}(g, x) = (g\varphi(x_0), Sx).$$

$$\begin{split} X = \{(\mathsf{abc})^{\infty}, (\mathsf{bca})^{\infty}, (\mathsf{cab})^{\infty}\}, \quad \varphi \colon \{\mathsf{a}, \mathsf{b}, \mathsf{c}\}^* \to \mathbb{Z}/2\mathbb{Z}, \\ \varphi \colon \mathsf{a} \mapsto 1, \ \mathsf{b} \mapsto 0, \ \mathsf{c} \mapsto 1. \end{split}$$

Let $\varphi \colon A^* \to G$ be a morphism onto a finite group G. Let X be a minimal shift space with invariant probability μ . Let $\varphi: A^* \to G$ be a morphism onto a finite group G. Let X be a minimal shift space with invariant probability μ .

Theorem 1

If $G \times_{\varphi} X$ is ergodic, then $\delta_{\mu}(\varphi^{-1}(g)) = 1/|G|$ for all $g \in G$. The languages $\varphi^{-1}(g)$ are evenly distributed in X. Let $\varphi: A^* \to G$ be a morphism onto a finite group *G*. Let *X* be a minimal shift space with invariant probability μ .

Theorem 1

If $G \times_{\varphi} X$ is ergodic, then $\delta_{\mu}(\varphi^{-1}(g)) = 1/|G|$ for all $g \in G$. The languages $\varphi^{-1}(g)$ are evenly distributed in X.

Theorem 2

The skew product $G \times_{\varphi} X$ is ergodic if and only if it is minimal.

Let $\varphi: A^* \to G$ be a morphism onto a finite group G. Let X be a minimal shift space with invariant probability μ .

Theorem 1

If $G \times_{\varphi} X$ is ergodic, then $\delta_{\mu}(\varphi^{-1}(g)) = 1/|G|$ for all $g \in G$. *The languages* $\varphi^{-1}(g)$ *are evenly distributed in* X.

Theorem 2

The skew product $G \times_{\varphi} X$ is ergodic if and only if it is minimal.

Theorem 3

When *X* is dendric all skew products are ergodic. *This includes in particular all Sturmian shifts.*

$$\cdots \quad x_{-1} \quad \boxed{\begin{array}{c} \varphi(x_{[0,3]}) = g \\ x_0 \quad x_1 \quad x_2 \end{array}} \quad x_3 \quad \cdots$$

A cylinder in $\varphi^{-1}(g) \cap A^3$.

$$\cdots \quad x_{-1} \quad \boxed{\begin{array}{c} \varphi(x_{[0,3]}) = g \\ x_0 \quad x_1 \quad x_2 \end{array}} \quad x_3 \quad \cdots$$

A cylinder in $\varphi^{-1}(g) \cap A^3$.

Density is a limit of ergodic sums in the skew product.

$$\cdots \quad x_{-1} \quad \boxed{\begin{array}{c} \varphi(x_{[0,3]}) = g \\ x_0 \quad x_1 \quad x_2 \end{array}} \quad x_3 \quad \cdots$$

A cylinder in $\varphi^{-1}(g) \cap A^3$.

Density is a limit of ergodic sums in the skew product.

(1)
$$G \times X = \bigcup_{h \in G} U_h, \quad U_h = \{(h, x) \mid x \in X\}.$$

$$\cdots \quad x_{-1} \quad \boxed{\begin{array}{c} \varphi(x_{[0,3]}) = g \\ x_0 \quad x_1 \quad x_2 \end{array}} \quad x_3 \quad \cdots$$

A cylinder in $\varphi^{-1}(g) \cap A^3$.

Density is a limit of ergodic sums in the skew product.

(1)
$$G \times X = \bigcup_{h \in G} U_h, \quad U_h = \{(h, x) \mid x \in X\}.$$

(2)
$$\mu(\varphi^{-1}(g) \cap A^{i}) = \sum_{h \in G} (\nu \times \mu) (U_{h} \cap T_{\varphi}^{-i} U_{hg}).$$

$$\cdots \quad x_{-1} \quad \boxed{\begin{array}{c} \varphi(x_{[0,3]}) = g \\ x_0 \quad x_1 \quad x_2 \end{array}} \quad x_3 \quad \cdots$$

A cylinder in $\varphi^{-1}(g) \cap A^3$.

Density is a limit of ergodic sums in the skew product.

(1)
$$G \times X = \bigcup_{h \in G} U_h, \quad U_h = \{(h, x) \mid x \in X\}.$$

(2)
$$\mu(\varphi^{-1}(g) \cap A^{i}) = \sum_{h \in G} (\nu \times \mu) (U_h \cap T_{\varphi}^{-i} U_{hg}).$$

(3)
$$\delta_{\mu}(\varphi^{-1}(g)) = \sum_{h \in G} \lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} (\nu \times \mu) (U_h \cap T_{\varphi}^{-i} U_{hg}).$$

| | | |

Non-minimal example

 $\sigma \colon \mathsf{a} \mapsto \mathsf{ab}, \ \mathsf{b} \mapsto \mathsf{ba}, \quad \varphi \colon \{\mathsf{a},\mathsf{b}\}^* \to \mathbb{Z}/2\mathbb{Z}, \ \mathsf{a} \mapsto 1, \ \mathsf{b} \mapsto 0.$

Non-minimal example

 $\sigma: a \mapsto ab, b \mapsto ba, \quad \varphi: \{a, b\}^* \to \mathbb{Z}/2\mathbb{Z}, a \mapsto 1, b \mapsto 0.$

Coloring $\alpha: X \to \mathbb{Z}/2\mathbb{Z}$ defined on cylinders, $0 = \bullet, 1 = \bullet$.

Non-minimal example

 $\sigma: a \mapsto ab, b \mapsto ba, \quad \varphi: \{a, b\}^* \to \mathbb{Z}/2\mathbb{Z}, a \mapsto 1, b \mapsto 0.$

Coloring $\alpha: X \to \mathbb{Z}/2\mathbb{Z}$ defined on cylinders, $0 = \bullet, 1 = \bullet$.

 $\{(g, x) \mid \alpha(x) = g\}$ is a closed invariant subspace of the skew product.

Part 3

Coloring

For a subgroup $H \leq G$ let $H \setminus G = \{Hg \mid g \in G\}$, the right cosets of H.

For a subgroup $H \leq G$ let $H \setminus G = \{Hg \mid g \in G\}$, the right cosets of H. Let X be a minimal shift space, $\varphi \colon A^* \to G$ be a morphism. For a subgroup $H \leq G$ let $H \setminus G = \{Hg \mid g \in G\}$, the right cosets of H. Let X be a minimal shift space, $\varphi \colon A^* \to G$ be a morphism. Definition

A (right coset) *coloring* is a continuous map $\alpha \colon X \to H \setminus G$ such that

 $\alpha(Sx) = \alpha(x)\varphi(x_0).$

For a subgroup $H \leq G$ let $H \setminus G = \{Hg \mid g \in G\}$, the right cosets of H. Let X be a minimal shift space, $\varphi \colon A^* \to G$ be a morphism. Definition

A (right coset) *coloring* is a continuous map $\alpha: X \to H \setminus G$ such that

$$\alpha(Sx) = \alpha(x)\varphi(x_0).$$

Lemma

A coloring α defines a closed invariant subspace of $G \times_{\varphi} X$,

 $Y_{\alpha} = \{(g, x) \mid \alpha(x) = Hg\}.$

(i) A *cocycle* is a continuous map $\varphi : \mathbb{Z} \times X \to G$ such that

$$\varphi^{(n+m)}(x) = \varphi^{(n)}(x)\varphi^{(m)}(\mathcal{S}^n x).$$

(i) A *cocycle* is a continuous map $\varphi : \mathbb{Z} \times X \to G$ such that

$$\varphi^{(n+m)}(x) = \varphi^{(n)}(x)\varphi^{(m)}(S^n x).$$

(ii) Two cocycles are *cohomologous* when

 $\alpha(x)\varphi^{(n)}(x) = \alpha(S^n x)\psi^{(n)}(x), \quad \alpha: X \to G \text{ continuous}$

(i) A *cocycle* is a continuous map $\varphi : \mathbb{Z} \times X \to G$ such that

$$\varphi^{(n+m)}(x) = \varphi^{(n)}(x)\varphi^{(m)}(S^n x).$$

(ii) Two cocycles are *cohomologous* when

 $\alpha(x)\varphi^{(n)}(x) = \alpha(S^n x)\psi^{(n)}(x), \quad \alpha: X \to G \text{ continuous}$

(iii) A cocycle is a *coboundary* when

 $\alpha(x)\varphi^{(n)}(x) = \alpha(S^n x), \quad \alpha \colon X \to G \text{ continuous.}$

$$\begin{aligned} \varphi^{(n+m)}(x) &= \varphi^{(n)}(x)\varphi^{(m)}(S^nx) & \alpha(x)\varphi^{(n)}(x) = \alpha(S^nx) \\ Cocycles & Coboundaries \end{aligned}$$

$$\varphi^{(n+m)}(x) = \varphi^{(n)}(x)\varphi^{(m)}(S^{n}x) \quad \alpha(x)\varphi^{(n)}(x) = \alpha(S^{n}x)$$

Cocycles Coboundaries

Morphisms $\varphi \colon A^* \to G$ define cocycles.

 $\varphi^{(n)}(x) = \varphi(x_{[0,n)}) \text{ if } n \ge 0, \quad \varphi^{(n)}(x) = \varphi(x_{[n,0)})^{-1} \text{ if } n < 0.$

$$\varphi^{(n+m)}(x) = \varphi^{(n)}(x)\varphi^{(m)}(S^{n}x) \quad \alpha(x)\varphi^{(n)}(x) = \alpha(S^{n}x)$$

Cocycles Coboundaries

Morphisms $\varphi : A^* \to G$ define cocycles.

 $\varphi^{(n)}(x) = \varphi(x_{[0,n)}) \text{ if } n \ge 0, \quad \varphi^{(n)}(x) = \varphi(x_{[n,0)})^{-1} \text{ if } n < 0.$

$$\varphi^{(n+m)}(x) = \varphi^{(n)}(x)\varphi^{(m)}(S^nx) \quad \alpha(x)\varphi^{(n)}(x) = \alpha(S^nx)$$

Cocycles Coboundaries

Coset colorings $\alpha: X \to H \setminus G$ exhibit *coboundaries mod* H.

 $\alpha(x)\varphi^{(n)}(x) = \alpha(S^n x), \quad \alpha: X \to H \setminus G$ continuous.
Cohomological inspiration

 $\varphi^{(n+m)}(x) = \varphi^{(n)}(x)\varphi^{(m)}(S^nx) \quad \alpha(x)\varphi^{(n)}(x) = \alpha(S^nx)$ Cocycles Coboundaries

Coset colorings $\alpha \colon X \to H \setminus G$ exhibit *coboundaries mod* H.

 $\alpha(x)\varphi^{(n)}(x) = \alpha(S^n x), \quad \alpha: X \to H \setminus G$ continuous.

(i) Trivially, everything is a coboundary mod G.

Cohomological inspiration

 $\varphi^{(n+m)}(x) = \varphi^{(n)}(x)\varphi^{(m)}(S^nx) \quad \alpha(x)\varphi^{(n)}(x) = \alpha(S^nx)$ Cocycles Coboundaries

Coset colorings $\alpha \colon X \to H \setminus G$ exhibit *coboundaries mod* H.

 $\alpha(x)\varphi^{(n)}(x) = \alpha(S^n x), \quad \alpha: X \to H \setminus G$ continuous.

(i) Trivially, everything is a coboundary mod *G*.

(ii) Coboundaries mod 1 correspond to "classical" coboundaries.

 $\varphi^{(n+m)}(x) = \varphi^{(n)}(x)\varphi^{(m)}(S^{n}x) \quad \alpha(x)\varphi^{(n)}(x) = \alpha(S^{n}x)$ Cocycles Coboundaries

Coset colorings $\alpha: X \to H \setminus G$ exhibit *coboundaries mod* H.

 $\alpha(x)\varphi^{(n)}(x) = \alpha(S^n x), \quad \alpha: X \to H \setminus G$ continuous.

- (i) Trivially, everything is a coboundary mod *G*.
- (ii) Coboundaries mod 1 correspond to "classical" coboundaries.
- (iii) Smaller subgroups give stronger coboundary conditions.

Take two colorings $\alpha \colon X \to H \setminus G$ and $\beta \colon X \to K \setminus G$.

Take two colorings $\alpha \colon X \to H \setminus G$ and $\beta \colon X \to K \setminus G$.

Say that $\alpha \leq \beta$ when:

- (i) $H \leq K$.
- (ii) $\forall g \in G, \alpha^{-1}(Hg) \subseteq \beta^{-1}(Kg).$

Take two colorings $\alpha: X \to H \setminus G$ and $\beta: X \to K \setminus G$.

Say that $\alpha \leq \beta$ when:

(i) $H \leq K$.

(ii) $\forall g \in G, \alpha^{-1}(Hg) \subseteq \beta^{-1}(Kg)$.

Lemma 1

 $Y_{\alpha} = \{(g, x) \mid \alpha(x) = Hg\}$ is a closed invariant subspace.

Take two colorings $\alpha: X \to H \setminus G$ and $\beta: X \to K \setminus G$.

Say that $\alpha \leq \beta$ when:

(i) $H \leq K$. (ii) $\forall g \in G, \alpha^{-1}(Hg) \subseteq \beta^{-1}(Kg)$.

 $(11) \quad (12) = p \quad (12)$

Lemma 1

 $Y_{\alpha} = \{(g, x) \mid \alpha(x) = Hg\}$ is a closed invariant subspace.

Lemma 2 $Y_{\alpha} \subseteq Y_{\beta} \iff \alpha \leq \beta.$

Take two colorings $\alpha \colon X \to H \setminus G$ and $\beta \colon X \to K \setminus G$. Say that $\alpha \leq \beta$ when:

(i) $H \le K$. (ii) $\forall g \in G, \alpha^{-1}(Hg) \subseteq \beta^{-1}(Kg)$.

Lemma 1

 $Y_{\alpha} = \{(g, x) \mid \alpha(x) = Hg\}$ is a closed invariant subspace.

Lemma 2

 $Y_{\alpha} \subseteq Y_{\beta} \iff \alpha \leq \beta.$

Lemma 3

All *minimal* closed invariant subspaces are of the form Y_{α} .

Theorem

The following are equivalent.

Theorem

The following are equivalent.

(i) The trivial coloring $X \to G \setminus G$ is minimal for the ordering \leq .

Theorem

The following are equivalent.

(i) The trivial coloring $X \to G \setminus G$ is minimal for the ordering \leq .

(ii) If H < G is a proper subgroup, φ is *not* a coboundary mod H.

Theorem

The following are equivalent.

- (i) The trivial coloring $X \to G \setminus G$ is minimal for the ordering \leq .
- (ii) If H < G is a proper subgroup, φ is *not* a coboundary mod H.
- (iii) The skew product $G \times_{\varphi} X$ is minimal.

Theorem

The following are equivalent.

- (i) The trivial coloring $X \to G \setminus G$ is minimal for the ordering \leq .
- (ii) If H < G is a proper subgroup, φ is *not* a coboundary mod H.
- (iii) The skew product $G \times_{\varphi} X$ is minimal.
- (iv) The skew product $G \times_{\varphi} X$ is ergodic.

Non-commutative coloring

$$\begin{split} \sigma &: \mathsf{a} \mapsto \mathsf{aab}, \ \mathsf{b} \mapsto \mathsf{acb}, \ \mathsf{c} \mapsto \mathsf{ba}, \quad G = \operatorname{Perm}(\{1,2,3\}), \\ \varphi &: \mathsf{a} \mapsto (1\ 2\ 3), \ \mathsf{b} \mapsto (1\ 2), \ \mathsf{c} \mapsto (1\ 2\ 3). \end{split}$$

Non-commutative coloring

$$\begin{split} \sigma &: \mathsf{a} \mapsto \mathsf{aab}, \ \mathsf{b} \mapsto \mathsf{acb}, \ \mathsf{c} \mapsto \mathsf{ba}, \quad G = \operatorname{Perm}(\{1,2,3\}), \\ \varphi &: \mathsf{a} \mapsto (1\ 2\ 3), \ \mathsf{b} \mapsto (1\ 2), \ \mathsf{c} \mapsto (1\ 2\ 3). \end{split}$$

Coloring mod {id, (1 2)}

Right cosets of {id, (1 2)}

Part 4

Return Words

Return words

Let $L(X) = \{x_{[ij)} \mid x \in X \text{ and } i \leq j \in \mathbb{Z}\}$ be the language of a shift space X.

Return words

Let $L(X) = \{x_{[ij)} \mid x \in X \text{ and } i \leq j \in \mathbb{Z}\}$ be the language of a shift space *X*.

Definition

The set of *return words* to *u* in *X* is

 $\mathcal{R}_X(u) = \{ r \in A^+ \mid ru \in L(X) \cap uA^* \setminus A^+ uA^+ \}.$

Return words

Let $L(X) = \{x_{[ij)} \mid x \in X \text{ and } i \leq j \in \mathbb{Z}\}$ be the language of a shift space X.

Definition

The set of *return words* to *u* in *X* is

 $\mathcal{R}_X(u) = \{ r \in A^+ \mid ru \in L(X) \cap uA^* \setminus A^+ uA^+ \}.$

Example

Theorem

The following are equivalent:

Theorem

The following are equivalent:

(i) $G \times_{\varphi} X$ is minimal.

Theorem

The following are equivalent:

- (i) $G \times_{\varphi} X$ is minimal.
- (ii) $\varphi(\mathcal{R}_X(u)) = G$ for every $u \in L(X)$.

Theorem

The following are equivalent:

- (i) $G \times_{\varphi} X$ is minimal.
- (ii) $\varphi(\mathcal{R}_X(u)) = G$ for every $u \in L(X)$.

We have two different proofs for this,

Theorem

The following are equivalent:

- (i) $G \times_{\varphi} X$ is minimal.
- (ii) $\varphi(\mathcal{R}_X(u)) = G$ for every $u \in L(X)$.

We have two different proofs for this,

• using the theory of bifix codes,

Theorem

The following are equivalent:

- (i) $G \times_{\varphi} X$ is minimal.
- (ii) $\varphi(\mathcal{R}_X(u)) = G$ for every $u \in L(X)$.

We have two different proofs for this,

- using the theory of bifix codes,
- using colorings.

Let $\alpha \colon X \to H \setminus G$ be a coloring. There exists $n \in \mathbb{N}$ such that for every $u \in L(X)$ with $|u| \ge n$, $\varphi(\mathcal{R}_X(u)) \subseteq g^{-1}Hg$ for some $g \in G$.

Let $\alpha \colon X \to H \setminus G$ be a coloring. There exists $n \in \mathbb{N}$ such that for every $u \in L(X)$ with $|u| \ge n$, $\varphi(\mathcal{R}_X(u)) \subseteq g^{-1}Hg$ for some $g \in G$.

• By continuity, a coloring $\alpha: X \to H \setminus G$ must be constant on *long enough cylinders*.

Let $\alpha: X \to H \setminus G$ be a coloring. There exists $n \in \mathbb{N}$ such that for every $u \in L(X)$ with $|u| \ge n$, $\varphi(\mathcal{R}_X(u)) \subseteq g^{-1}Hg$ for some $g \in G$.

- By continuity, a coloring $\alpha: X \to H \setminus G$ must be constant on *long enough cylinders*.
- Take *u* such that α is constant on $\{x \in X \mid x_{[0,|u|)} = u\}$. For $r \in \mathcal{R}_X(u)$, take $x \in X$ starting with *r*.

Let $\alpha: X \to H \setminus G$ be a coloring. There exists $n \in \mathbb{N}$ such that for every $u \in L(X)$ with $|u| \ge n$, $\varphi(\mathcal{R}_X(u)) \subseteq g^{-1}Hg$ for some $g \in G$.

- By continuity, a coloring $\alpha: X \to H \setminus G$ must be constant on *long enough cylinders*.
- Take *u* such that α is constant on $\{x \in X \mid x_{[0,|u|)} = u\}$. For $r \in \mathcal{R}_X(u)$, take $x \in X$ starting with *r*.

Let $\alpha: X \to H \setminus G$ be a coloring. There exists $n \in \mathbb{N}$ such that for every $u \in L(X)$ with $|u| \ge n$, $\varphi(\mathcal{R}_X(u)) \subseteq g^{-1}Hg$ for some $g \in G$.

- By continuity, a coloring $\alpha: X \to H \setminus G$ must be constant on *long enough cylinders*.
- Take *u* such that α is constant on $\{x \in X \mid x_{[0,|u|)} = u\}$. For $r \in \mathcal{R}_X(u)$, take $x \in X$ starting with *r*.

$$\dots \qquad \underbrace{x_0 \quad x_1 \quad \dots \quad x_{n-1}}_{r} \quad \underbrace{x_n \quad x_{n+1} \quad \dots}_{x_{n+1} \quad \dots}$$
$$\alpha(x) = \alpha(S^n x) = \alpha(x)\varphi^{(n)}(x) = \alpha(x)\varphi(r).$$

(i) φ is onto on all return sets iff the skew product is minimal.

- (i) φ is onto on all return sets iff the skew product is minimal.
- (ii) When the skew product is minimal the languages $\varphi^{-1}(g)$ are evenly distributed.

- (i) φ is onto on all return sets iff the skew product is minimal.
- (ii) When the skew product is minimal the languages $\varphi^{-1}(g)$ are evenly distributed.

Corollary

When all sets $\mathcal{R}_X(u)$ generate the free group F(A), all rational languages are evenly distributed.

- (i) φ is onto on all return sets iff the skew product is minimal.
- (ii) When the skew product is minimal the languages $\varphi^{-1}(g)$ are evenly distributed.

Corollary

When all sets $\mathcal{R}_X(u)$ generate the free group F(A), all rational languages are evenly distributed.

• The *Return Theorem* of Berthé, De Felice, Dolce, Leroy, Perrin, Reutenauer, & Rindone (2015) states that this is the case for all dendric languages.
1. The even distribution property for group languages is encoded in skew products.

- 1. The even distribution property for group languages is encoded in skew products.
- 2. Minimality and ergodicity are equivalent for our skew products.

- 1. The even distribution property for group languages is encoded in skew products.
- 2. Minimality and ergodicity are equivalent for our skew products.
- 3. Minimality of skew products can be stated either in terms of *colorings* or of *return words*.

- 1. The even distribution property for group languages is encoded in skew products.
- 2. Minimality and ergodicity are equivalent for our skew products.
- 3. Minimality of skew products can be stated either in terms of *colorings* or of *return words*.
- 4. Dendricity entails even distribution for group languages.

- 1. The even distribution property for group languages is encoded in skew products.
- 2. Minimality and ergodicity are equivalent for our skew products.
- 3. Minimality of skew products can be stated either in terms of *colorings* or of *return words*.
- 4. Dendricity entails even distribution for group languages.
- 5. Similar results for general rational languages should follow from the group case (ongoing).

- 1. The even distribution property for group languages is encoded in skew products.
- 2. Minimality and ergodicity are equivalent for our skew products.
- 3. Minimality of skew products can be stated either in terms of *colorings* or of *return words*.
- 4. Dendricity entails even distribution for group languages.
- 5. Similar results for general rational languages should follow from the group case (ongoing).
- 6. What about general formulas for densities when the skew product is *not* ergodic?

References (i)

- Berthé, V. et al. (2015). Acyclic, connected and tree sets. *Monatsh. Math.* 176.4.
- Conze, J. P. (1976). Équirépartition et ergodicité de transformations cylindriques. *Publ. Séminaire Math. Info. Renne* 2.
- Furstenberg, H. (1961). Strict ergodicity and transformation of the torus. *Am. J. Math.* 83.4.
- Krylov, N. & N. Bogolioubov (1937). La théorie générale de la mesure dans son application à l'étude des systèmes dynamiques de la mécanique non linéaire. *Ann. Math.* 38.1.
- Lemańczyk, M. & M. K. Mentzen (2002). Topological ergodicity of real cocycles over minimal rotations. *Monatsh. Math.* 134.3.

References (ii)

- Mackey, G. W. (1966). Ergodic theory and virtual groups. *Math. Ann.* 166.3.
- Michel, P. (1974). Stricte ergodicité d'ensembles minimaux de substitution. *C. R. Acad. Sci. Paris* 278.
- Schmidt, K. (1977). Cocycles of ergodic transformation groups. MacMillan India.
- Veech, W. A. (1975). Finite group extensions of irrational rotations. *Israel J. Math.* 21.2.
- Zimmer, R. J. (1976). Extensions of ergodic group actions. *Illinois J. Math.* 20.3.