Well distributed occurrences property in infinite words

S. Puzynina (joint work with M. Bucci, A. de Luca, L. Dvořáková, J. Hladký, V. Schavelev)

Outline

Outline:

- WellDoc: abelian-type property of infinite words
- Motivation: PRNGs, lattice structure
- Welldoc for Sturmian and AR words
- Welldoc for morphic words

The talk is based on

- L. Balková, M. Bucci, A. De Luca, J. Hladký, S. Puzynina:

Aperiodic pseudorandom number generators based on infinite words. Theor. Comput. Sci. 647: 85-100 (2016)

- S. Puzynina, V. Schavelev, Welldoc property of morphic words, 2023 [in preparation]

WellDoc Property

Alphabet: $\mathcal{A}=\{0,1, \ldots, d-1\}$
w a finite word
Parikh vector of $w: \operatorname{PV}(w)=\left(|w|_{0},|w|_{1}, \ldots,|w|_{d-1}\right)$.
Example: $\mathrm{PV}(0102210)=(3,2,2)$.
u finite or infinite word
$\operatorname{Pref}_{n} u$ the prefix of length n of u : $\operatorname{Pref}_{n} u=u_{0} u_{1} \cdots u_{n-1}$.

WellDoc Property

Alphabet: $\mathcal{A}=\{0,1, \ldots, d-1\}$
u an aperiodic infinite word

Definition (The WELLDOC property)

u has well distributed occurrences (or has the WELLDOC property) if for each $m \in \mathbb{N}$ and each factor w of u we have

$$
\left\{\left(\left|\operatorname{Pref}_{i_{j}} u\right|_{0}, \ldots,\left|\operatorname{Pref}_{i_{j}} u\right|_{d-1}\right) \bmod m \mid j \in \mathbb{N}\right\}=\mathbb{Z}_{m}^{d}
$$

where i_{0}, i_{1}, \ldots are the positions of the occurrences of w in u.
that is, the Parikh vectors of $\operatorname{Pref}_{j_{j}} u$ for $j \in \mathbb{N}$, when reduced modulo m, give the whole set \mathbb{Z}_{m}^{d}.

Example: Fibonacci word

Example

The Fibonacci word has the WellDoc property.
E.g., for 001 and $m=2$:

i_{j}	$\operatorname{Pref}_{i_{j}} u$	$\mathrm{PV}\left(\operatorname{Pref}_{i_{j}} u\right)$	$\mathrm{PV} \bmod 2$
$i_{1}=2$	01	$(1,1)$	$(1,1)$
$i_{2}=7$	0100101	$(4,3)$	$(0,1)$
$i_{3}=10$	0100101001	$(6,4)$	$(0,0)$
$i_{4}=15$	010010100100101	$(9,6)$	$(1,0)$

Example: Thue-Morse word

Example

The Thue-Morse word
$01101001100101101001011001101001 \ldots$
$\begin{array}{lllll}5 & 9 & 23 & 29\end{array}$
does not satisfy the WellDOc property.
Indeed, e.g. for $m=2$ the factor $w=00$ occurs only in odd positions i_{j}, so that $\left(\left|\operatorname{Pref}_{i_{j}} u\right|_{0}+\left|\operatorname{Pref}_{i_{j}} u\right|_{1}\right)=i_{j}$ is odd. Thus

$$
\left\{\left(\left|\operatorname{Pref}_{j_{j}} u\right|_{0},\left|\operatorname{Pref}_{j_{j}} u\right|_{1}\right) \bmod 2 \mid j \in \mathbb{N}\right\} \neq \mathbb{Z}_{2}^{2} .
$$

Universal word

An infinite word u on an alphabet \mathcal{A} is universal if it contains all finite words over \mathcal{A} as its factors.

Example

Any universal word u satisfies the WellDOc property:

- given m and w, arrange a word v containing w at positions with prefixes congruent to all vectors from \mathbb{Z}_{m}^{d};
- w is universal $\Rightarrow v$ is its factor
- $\Rightarrow u$ also has all vectors from \mathbb{Z}_{m}^{d}, just shifted.

Recurrent word

Recurrent word $=$ each factor occurs infinitely often.

Remark

If a recurrent infinite word u has the WellDOc property, then for each vector $\mathbf{v} \in \mathbb{Z}_{m}^{d}$ there are infinitely many values of j such that $\operatorname{PV}\left(\operatorname{Pref}_{j_{j}} u\right) \equiv \mathbf{v} \bmod m$.

Pseudorandom number generators:

- aim to produce random numbers using a deterministic process.
- not truly random, because it is completely determined by an initial value (seed)

For us:
Pseudorandom number generator (PRNG) with output $M \subset \mathbb{N}, M$ finite, is an infinite word $Z=\left(Z_{n}\right)_{n \in \mathbb{N}}$ on the alphabet M.

Class of PRNGs:
A linear congruential generator (LCG) $\left(Z_{n}\right)_{n \in \mathbb{N}}$ with parameters
$a, m, c \in \mathbb{N}$ is defined by the recurrence relation

$$
Z_{n+1}=a Z_{n}+c \quad \bmod m
$$

Lattice Structure

$Z=\left(Z_{n}\right)_{n \in \mathbb{N}}:$ a PRNG with output $M \subset \mathbb{N}, M$ finite.
Z has the lattice structure if

- there exists $t \in \mathbb{N}$ such that the set

$$
\left\{\left(Z_{i}, Z_{i+1}, \ldots, Z_{i+t-1}\right) \mid i \in \mathbb{N}\right\}
$$

is covered by a family of parallel equidistant hyperplanes and

- this family does not cover the whole lattice M^{t}.

Lattice Structure: example

Example: RANDU, the LCG with $a=\left(2^{16}+3\right), m=2^{31}, c=0$.
For $t=3$, the triples of RANDU, i.e., $\left\{\left(Z_{i}, Z_{i+1}, Z_{i+2}\right) \mid i \in \mathbb{N}\right\}$, are covered by 15 parallel equidistant planes:

Combining PRNGs using infinite words

- $X=\left(X_{n}\right)_{n \in \mathbb{N}}$ and $Y=\left(Y_{n}\right)_{n \in \mathbb{N}}$ PRNGs with the same output $M \subset \mathbb{N}$ and the same period $m \in \mathbb{N}$
- $u=u_{0} u_{1} u_{2} \cdots$ a binary infinite word

The PRNG $Z=\left(Z_{n}\right)_{n \in \mathbb{N}}$ based on u is obtained as follows:

- replace the occurrences of 0 's in u with the word X
- replace the occurrences of 1 's in u with the word Y

Example
$01001010010010100101001 \ldots$
$X_{0} Y_{0} X_{1} X_{2} Y_{1} X_{3} Y_{2} X_{4} X_{5} Y_{3} X_{6} X_{7} Y_{4} X_{8} Y_{5} X_{9} X_{10} Y_{6} X_{11} Y_{7} X_{12} X_{13} Y_{8} \cdots$
In the same way one can take a non-binary word and combine several PRNGs.

Welldoc and PRNGs

Theorem (Bucci, De Luca, Dvořáková, Hladký, P., 2016)
Let Z be the PRNG based on an infinite word u with the WellDOc property. Then Z has no lattice structure.

Welldoc and PRNGs

Theorem (Bucci, De Luca, Dvořáková, Hladký, P., 2016)

Let Z be the PRNG based on an infinite word u with the WellDOc property. Then Z has no lattice structure.

Remark

WellDOc is not necessary for absence of the lattice structure.

Example

Consider a modified Fibonacci word \hat{u} where the letter 2 is inserted after each letter, i.e., $\hat{u}=0212020212021202 \ldots$.

- û does not have WellDOc.
- PRNG obtained by combining three generators according to \hat{u} has no lattice structure.

Theorem (Bucci, De Luca, Dvořáková, Hladký, P., 2016)

Let u be a Sturmian word. Then u has the WELLDOC property.

Definition

The rotation by angle α is the mapping $R_{\alpha}:[0,1) \mapsto[0,1)$ defined by $R_{\alpha}(x)=\{x+\alpha\}$, where $\{x\}$ is the fractional part of x.
$I_{0}=[0,1-\alpha), I_{1}=[1-\alpha, 1),[0,1)=I_{0} \cup I_{1}$.

Definition of Sturmian words via rotations

$$
s_{\alpha, \rho}(n)= \begin{cases}0 & \text { if } R_{\alpha}^{n}(\rho)=\{\rho+n \alpha\} \in I_{0} \\ 1 & \text { if } R_{\alpha}^{n}(\rho)=\{\rho+n \alpha\} \in I_{1}\end{cases}
$$

(One can also take $I_{0}^{\prime}=(0,1-\alpha], I_{1}^{\prime}=(1-\alpha, 1]$).

Sturmian words: Proof

- We will prove $\left\{\left(i_{j},\left|\operatorname{Pref}_{i_{j}} u\right|_{1}\right)\right\} \bmod m=\left(\mathbb{Z}_{m}\right)^{2}$ (this is equivalent to $\left.\left\{P V\left(\operatorname{Pref}_{i j} u\right)\right\} \bmod m=\left(\mathbb{Z}_{m}\right)^{2}\right)$.

Sturmian words: Proof

- We will prove $\left\{\left(i_{j},\left|\operatorname{Pref}_{i_{j}} u\right|_{1}\right)\right\} \bmod m=\left(\mathbb{Z}_{m}\right)^{2}$ (this is equivalent to $\left.\left\{P V\left(\operatorname{Pref}_{i_{j}} u\right)\right\} \bmod m=\left(\mathbb{Z}_{m}\right)^{2}\right)$.
- Take a circle of length m by copying m times $[0,1$):

Sturmian words: Proof

- We will prove $\left\{\left(i_{j},\left|\operatorname{Pref}_{i_{j}} u\right|_{1}\right)\right\} \bmod m=\left(\mathbb{Z}_{m}\right)^{2}$ (this is equivalent to $\left.\left\{P V\left(\operatorname{Pref}_{i_{j}} u\right)\right\} \bmod m=\left(\mathbb{Z}_{m}\right)^{2}\right)$.
- Take a circle of length m by copying m times $[0,1$):

- Any factor w of u corresponds to an interval I_{w} in $[0,1)$, so that rotating starting from I_{w} gives w.
- We define m intervals corresponding to w in $[0, m)$.

Sturmian words: Proof

- Take arbitrary $(j, i) \in \mathbb{Z}_{m}^{2}$. We need to find I such that
- $u_{l} \ldots u_{l+|w|-1}=w$,
- \mid Pref $\left._{l} u\right|_{1} \bmod m=i$,
- l $\bmod m=j$.
- Take arbitrary $(j, i) \in \mathbb{Z}_{m}^{2}$. We need to find $/$ such that
- $u_{l} \ldots u_{l+|w|-1}=w$,
- $\left|\operatorname{Pref}_{\ell} u\right|_{1} \bmod m=i$,
- $l \bmod m=j$.
- Consider rotation $R_{m \alpha, m}(j \alpha+\rho)$ by $m \alpha$ in m-circle.
- This rotation will put us to positions $m k+j, k \in \mathbb{N}$, in the Sturmian word
- The points in the orbit of this rotation on the m-circle are dense, and hence the rotation comes infinitely often to each interval.
- Pick k when $j \alpha+m k \alpha+\rho \in I_{w}^{i} \subset[i, i+1)$.
- We have $I=k m+j$.

Arnoux-Rauzy words

Theorem (Bucci, De Luca, Dvořáková, Hladký, P., 2016)
 Let u be an Arnoux-Rauzy word over the d-letter alphabet \mathcal{A}.
 Then u has the WellDOc property.

The proof is based on the definition via palindromic closures.

Binary morphic words

For a morphism φ, its matrix is defined by $A_{\varphi}=\left(|\varphi(j)|_{i}\right)_{i, j \in \mathcal{A}}$.

Theorem (P., Schavelev, 2023)

Let u be an infinite binary word generated by a primitive morphism φ. Then u satisfies WellDOc if and only if $\operatorname{det} A_{\varphi}= \pm 1$.

Example

Thue-Morse word: $\tau: 0 \mapsto 01,1: \mapsto 10, A_{\tau}=\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right), \operatorname{det} A_{\tau}=0$, so the Thue-Morse word does not have WellDOc.

Example

Fibonacci word: $f: 0 \mapsto 01,1: \mapsto 0, A_{f}=\left(\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right)$, $\operatorname{det} A_{\tau}=-1$, so the Fibonacci has WellDOc.

Nonbinary morphic words

Definition

u a recurrent infinite word, v its factor, let $i_{0}<i_{1}<\ldots$ be all integers i_{j} such that $v=u_{i_{j}} \cdots u_{i_{j}+|v|-1}$ $u_{i_{j}} \cdots u_{i_{j+1}-1}$ is a return word of v in u.

Theorem (P., Schavelev, 2023)

Let u be an infinite word generated by a primitive morphism φ. Then u satisfies WellDOc if and only if $\operatorname{det} A_{\varphi}= \pm 1$ and Parikh vectors of returns to u_{0} generate $\mathbb{Z}^{|\mathcal{A}|}$ as additive group.

Morphic words: condition on returns

Example

Consider a morphism φ :

$$
\begin{aligned}
0 & \rightarrow 02, \\
\varphi: & \rightarrow 101, \\
2 & \rightarrow 102,
\end{aligned} \quad A_{\varphi}=\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 2 & 1 \\
1 & 0 & 1
\end{array}\right) .
$$

$\varphi^{\infty}(0)=0210210102102101021010210210102102 \cdots$

- $\operatorname{det} A_{\phi}=1$,
- the returns to 0 are only factors 01,021 , so the prefixes before 0 are in $\langle(1,1,0),(1,1,1)\rangle$.
- hence no WellDOc by definition

Morphic words

For necessity: recognizability for primitive morphisms:

Recognizability

Morphism φ generating an infinite word u is called recognizable if there exists $L>0$ such that for each factor v of u of length at least $2 L$ there exist integers $i, j \in \mathbb{N}, 0 \leq i<L,|v|-L \leq j<|v|$ and a factor w such that $u[i, j)=\varphi(w)$ and for each m such that $u[m, m+|v|)=v$ there exist i^{\prime}, j^{\prime} such that $m+i=\left|\varphi\left(\operatorname{Pref}_{u}\left(i^{\prime}\right)\right)\right|$ and $m+j=\left|\varphi\left(\operatorname{Pref}_{u}\left(j^{\prime}\right)\right)\right|$ and $u\left[i^{\prime}, j^{\prime}\right)=w$.

Theorem (Mossé, 1992)

Every primitive aperiodic morphism is recognizable.

Conclusion

- Statistical tests show that mixing PRNGs according to a word with WellDOc gives better PRNGs.
Apart from lattice structure, what other statistical properties are improved by WellDOc-mixing? Can we use some other words properties?
- Can we prove the characterization without using recognizability (also for non-primitive)?

