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What is an automatic set?

Definition
Let k ≥ 2 be a natural number. A subset S of N is k-automatic if
there is a finite-state automaton with input alphabet
Σk = {0, 1, . . . , k − 1} with the property that the words over the
alphabet Σk which are accepted by the automaton are precisely
the words that are base-k expansions of elements of S.

Example : A finite-state automaton accepting the binary
expansions of elements in the set of powers of 2

q0start q1 q2

0

1 0, 1

0, 1

Notes: 1) reading right-to-left 2) expansions have no leading zeros
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What is a sparse automatic set?

Definition
If S ⊆ N, πS(x) := #{n ∈ S : n ≤ x}.

A Dichotomy:

For a k-automatic subset S ⊆ N, we have
(1) either there exists an integer c ≥ 1 such that

πS(x) = O ((log x)c) as x→∞,
(2) or there is some α > 0 such that πS(x) > xα for x large.

We call a set S ⊆ N sparse k-automatic if (1) holds.
Otherwise, we call it non-sparse.
Question: Where does this dichotomy come from?

Slide 4



Introduction Cobham’s theorem Main theorem Extension Conjecture

Sparse languages have been extensively studied.
e.g. Trofimov (1982) showed this dichotomy for context-free languages in “Growth functions of some classes of

languages”:

Theorem: The growth function of an arbitrary CF language is
either polynomially bounded from above or exponentially
bounded from below.
Given a finite alphabet Σ and a language L ⊆ Σ∗ over Σ, we
have an associated counting function

fL(n) := #{w ∈ L : length(w) ≤ n}.

A regular language L is sparse if fL(n) = O(nd) for some
natural number d.
We defined a sparse set by translating this to sets.

Example of a sparse automatic set

The set of powers of p is a sparse automatic set, p prime.
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In case anyone is wondering “what would be an example of a
non-sparse set (or language)?”...:
Consider the Thue-Morse sequence given by

t(n) =

{
1 if s2(n) ≡ 1 mod 2

0 if s2(n) ≡ 0 mod 2
(1)

where s2(n) is the sum of the digits in the binary expansion of n.
Let T be the set whose characteristic function

χT (n) :=

{
1 if n ∈ T
0 if n /∈ T

(2)

is t(n).
T is a non-sparse 2-automatic set of natural numbers.
πT (n) ∼ n

2 .
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We are interested in sparse (automatic) sets.
Why are they important? Where do sparse sets arise?
Some examples:
• The zero set of a linearly recurrent sequence over a field of

characteristic p > 0 is a finite union of arithmetic progressions
augmented by a sparse p-automatic set (Derksen, Skolem-Mahler-Lech
theorem in positive characteristic, 2006)

• Kedlaya’s work on extending Christol’s theorem to give a full
characterization of the algebraic closure of Fp(t) works by generalizing
the notion of automatic sequences to maps f : Sp → Fq, where Sp is
the set of nonnegative elements of Z[p−1], and as part of his work, he
shows that for the maps that arise, the post-radix point behaviour of the
support of f can be described in terms of sparse automatic sequences.
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Back to our topic:
• Automatic set X
• Sparse automatic set X
• Next: intersection of sparse automatic sets

Main result is giving
an estimate on the size of intersection of sparse automatic sets.

i.e. the claim is that this intersection is finite.
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Keeping in mind that we will be looking at the intersection of
sparse automatic sets, consider the following conjecture (now
proved):

Catalan’s conjecture (1844)

The only solution in the natural numbers of

xa − yb = 1

for a, b > 1, x, y > 0 is x = 3, a = 2, y = 2, b = 3.

Proved in 2002 by Preda Mihăilescu
Method: theory of cyclotomic fields + theory of linear forms in
logarithms + short computer computation
Later, he also proved it purely algebraically which does not
require a computer calculation.
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Keeping in mind that we will be looking at the intersection of
sparse automatic sets, consider the following conjecture (now
proved):

Catalan’s conjecture (1844)

The only solution in the natural numbers of

xa − yb = 1

for a, b > 1, x, y > 0 is x = 3, a = 2, y = 2, b = 3.

(Proved in 2002 by Preda Mihăilescu)
The (sparse 2-automatic) set consisting of 2n + 1, n ≥ 0
and
the (sparse 3-automatic set) set consisting of powers of 3
has finite intersection.
Note that 2 and 3 are multiplicatively independent—none of them can be
written as a rational power of the other.
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Catalan’s conjecture is solved but the following isn’t:

Conjecture (Erdős, 1979)

For n ≥ 9, 2n is not the sum of distinct powers of 3.

e.g. 28 = 35 + 32 + 3 + 1.
Erdős: “as far as I can see, there is no method at our disposal
to attack this conjecture.”
Conjecture: the set of powers of 2 and the set consisting of
numbers whose ternary expansions omit 2 has finite
intersection.
Note that the set of powers of 2 is a 2-automatic set
and
the set consisting of numbers whose ternary expansions omit 2
is a 3-automatic set.
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Theorem (Cobham, 1969)

Let k, ` ≥ 2 be two natural numbers that are multiplicatively
independent (i.e. there are no non-trivial integer solutions to
ka = `b). If S ⊆ N is a set that is both k- and `-automatic then S
is in fact eventually periodic; i.e. there is some fixed positive
integer c such that for sufficiently large n ∈ N, n ∈ S implies
n+ c ∈ S.

What happens if S is sparse k-automatic?
Sparse infinite non-empty sets cannot be eventually periodic.
So S cannot be both k- and `-automatic.
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A useful characterization of sparse sets:

Theorem (Ginsburg-Spanier, 1966)

A sparse set is a finite union of sets of the form

{[v0w∗1v1w∗2 · · · vs−1w∗svs]k}.

Fact:
Let k ≥ 2 be a natural number and let S ⊆ N be a non-empty
simple sparse k-automatic set. Then there exist s ≥ 0,
c0, . . . , cs ∈ Q such that (k` − 1)ci ∈ Z for some ` ≥ 0,
c0 + c1 + · · ·+ cs ∈ Z≥0 and positive integers δ1, . . . , δs such that
S is of the form{

c0 + c1k
δsns + c2k

δsns+δs−1ns−1 · · ·+ csk
δsns+···+δ1n1 :

n1, . . . , ns ≥ 0}
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Theorem (A.-Bell, 2023)

Let k and ` be multiplicatively independent natural numbers
greater than or equal to 2 (i.e., there are no solutions to the
equation ka = `b with nonzero integers a and b). If X is a
sparse k-automatic subset of N and Y is a sparse `-automatic
set of N, then X ∩ Y is finite.

We prove this by giving an upper bound for the size of the
intersection in terms of data from the automata that accept
these sets.
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Proposition

Let N ≥ 2, let Σ be a finite alphabet of size N , and let
Γ = (Q,Σ, δ, q0, F ) be a deterministic finite automaton
accepting a sparse language L. Then L is a finite union
(possibly empty) of at most

(|Q| − 1)!(N |Q|−1 +N |Q|−2 + · · ·+ 1)

languages of the form

{v0w∗1v1w∗2 · · · vs−1w∗svs}

with w1, . . . , ws, v1, . . . , vs words in Σ∗ in which the wi are
non-empty but the vi may be empty and with
|w1|+ · · ·+ |ws| ≤ |Q| − 1 and |v0|+ · · ·+ |vs| ≤ N(|Q| − 1).
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Let k and ` be multiplicatively independent positive integers and
let X be a sparse k-automatic subset of N of the form

{[v0w∗1v1w∗2 · · · vsw∗svs+1]k}

and let Y be sparse `-automatic set of the form

{[u0y∗1u1y∗2 · · ·uty∗t ut+1]`}.

Then X is of the form{
c0 + c1k

δsns + c2k
δsns+δs−1ns−1 · · ·+ csk

δsns+···+δ1n1 :

n1, . . . , ns ≥ 0} ,

where c0, . . . , cs are rational numbers.
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Similarly, Y is of the form{
d0 + d1`

δ′tmt + d2`
δ′tms+δ′t−1mt−1 · · ·+ dt`

δ′tmt+···+δ′1m1 :

m1, . . . ,mt ≥ 0} ,

where d0, . . . , dt are rational numbers.
Then an element in X ∩ Y corresponds to a solution to the
equation

d0X0 + · · ·+ dtXt − c0Y0 − · · · − csYs = 0,

where X0 = 1, X1 = `δ
′
tmt , . . . , Xt = `δ

′
tmt+···+δ′1m1 and Y0 = 1,

. . . , Ys = kδsns+···+δ1n1 , with the corresponding element in the
intersection given by

A := d0X0 + · · ·+ dtXt = c0Y0 + · · ·+ csYs.
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S-unit theorem

Recall
For z1, . . . , zn in a field K, the equation z1 + · · ·+ zn = 1 is said
to be non-degenerate if no non-trivial subsum of the left-hand
side is equal to zero; that is, whenever I is a nonempty subset
of {1, . . . , n}, we have

∑
i∈I zi 6= 0.

Theorem (Schlickewei, 1990)

Let K be a field of characteristic zero, let a1, . . . , an be nonzero
elements of K, and let H ⊂ (K∗)n be a finitely generated
multiplicative subgroup. Then there are only finitely many
non-degenerate solutions (x1, . . . , xn) ∈ H to the equation

a1x1 + · · ·+ anxn = 1.
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A quantitative version:

Theorem (Amoroso-Viada, 2009)

Let K be a field of characteristic zero, let a1, . . . , an be nonzero
elements of K, and let Γ be a finitely generated multiplicative
subgroup of (K∗)n of rank r <∞. Then there are at most

(8n)4n
4(n+r+1)

non-degenerate solutions to the equation

a1x1 + · · ·+ anxn = 1

with (x1, . . . , xn) ∈ Γ.
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We use Amoroso-Viada’s theorem to get:

Proposition

Let k and ` be multiplicatively independent positive integers and
let W be a sparse k-automatic subset of N of the form

{[v0w∗1v1w∗2 · · · vs−1w∗svs]k}

where s is a nonnegative integer and v0, v1, . . . , vs are possibly
empty and w1, . . . , ws are non-empty words in Σ∗k, and let Z be
sparse `-automatic set of the form

{[u0y∗1u1y∗2 · · ·ut−1y∗t ut]`}

where t is a nonnegative integer and u0, u1, . . . , ut are possibly
empty and y1, . . . , yt are non-empty words in Σ∗` . Then

|W ∩ Z| ≤ (8(s+ t+ 1))10(s+t+2)5−(s+t+2) .
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Combining gives

Theorem (A.-Bell, 2023)

Let k and ` be multiplicatively independent positive integers,
and let Γ = (Q,Σk, δ, q0, F ) and Γ′ = (Q′,Σ`, δ

′, q′0, F
′) be DFA

accepting sparse regular languages L ⊆ (Σk)
∗ and L′ ⊆ (Σ`)

∗.
If X ⊆ N is the set of natural numbers whose base-k
expansions are elements of L and Y ⊆ N is the set of natural
numbers whose base-` expansions are elements of L′, then

|X ∩ Y | ≤ k|Q| · `|Q′| ·
(
8(|Q|+ |Q′| − 1)

)10(|Q|+|Q′|)5
.
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Recall
For every natural number n, there is a word
w = (n)k ∈ {0, 1, . . . , k − 1}∗, which is called the base-k
expansion of n. Similarly, given a non-empty word there is a
natural number n = [w]k, which is the natural number whose
base-k expansion is w. e.g. [100001]2 = 33, (10)2 = 1010.

Extend this notion of automaticity to subsets of Nd with d ≥ 1,
working with the input alphabet Σd

k. Then, given a d-tuple
(n1, . . . , nd) of natural numbers, there exist words w1, . . . , wd of
the same length with the additional property that wi is a base-k
expansion of ni for i = 1, . . . , d. e.g. [2110, 0020]3 = (66, 6).
Then a subset S of Nd is k-automatic if there is a finite-state
machine with input alphabet Σd

k that accepts precisely the
words (w1, . . . , wd) corresponding to d-tuples of natural
numbers in S.
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Definition
• If S ⊆ Nd,

πS(x) := #{(n1, . . . , nd) ∈ S : n1 + n2 + · · ·+ nd ≤ x}

A Dichotomy:

For a k-automatic subset S ⊆ Nd, we have
(1) either there exists an integer c ≥ 1 such that

πS(x) = O ((log x)c) as x→∞,
(2) or there is some α > 0 such that πS(x) > xα for x large.

Example

The set {(3m, 3m + 1) : m ∈ N}.
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Theorem (Cobham, 1969)

Let k, ` ≥ 2 be two natural numbers that are multiplicatively
independent (i.e. there are no non-trivial integer solutions to
ka = `b). If S ⊆ N is a set that is both k- and `-automatic then S
is in fact eventually periodic; i.e. there is some fixed positive
integer c such that for sufficiently large n ∈ N, n ∈ S implies
n+ c ∈ S.

Theorem (Semenov, 1977)

A subset of Nd that is both k- and `-automatic, with k and `
multiplicatively independent, is automatic with respect to all
integer bases.
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Theorem (A.-Bell, 2023)

Let k, ` ≥ 2 be two natural numbers that are multiplicatively
independent. If X is a sparse k-automatic subset of Nd and Y
is a sparse `-automatic subset of Nd, then X ∩ Y is finite.

Quantitative version:

Theorem (A.-Bell, 2023)

Let k and ` be multiplicatively independent positive integers, let
d ≥ 2, and let Γ = (Q,Σd

k, δ, q0, F ) and Γ′ = (Q′,Σd
` , δ
′, q′0, F

′) be
deterministic finite-state automata accepting sparse regular
languages L ⊆ (Σd

k)
∗ and L′ ⊆ (Σd

` )
∗. If X ⊆ Nd is the set of

d-tuples of natural numbers whose base-k expansions are
elements of L and Y ⊆ Nd is the set of d-tuples of natural
numbers whose base-` expansions are elements of L′, then

|X ∩ Y | ≤ kd|Q| · `d|Q′| ·
(
8(|Q|+ |Q′| − 1)

)10d(|Q|+|Q′|)5
.
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Method:
• X is a union of “certain number of” simple sparse sets in
Nd

• Y is a union of “certain number of” simple sparse sets in
Nd

• Then we look at the intersection of the projections of these
pairs of simple sparse sets in Nd

• These are simple sparse sets in N.
• We use S-unit theory to find a bound on the size of these

intersections.
• then put everything together to get a bound on |X ∩ Y |.
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For a subset S of N, the density of S is the limit

lim
n→∞

πS(n)

n
, if it exists.

e.g. Sparse subsets of N have zero density.

Conjecture (A.-Bell)

Let k, ` be multiplicatively independent positive integers. If X is
a sparse k-automatic subset of N and Y is a zero-density
`-automatic subset of N, then X ∩ Y is finite.

Recall Erdős’ conjecture: The set of powers of 2 (which is a
sparse 2-automatic set) and the set consisting of numbers
whose ternary expansions omit 2 (which is 3-automatic set with
zero density) has finite intersection.
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Thanks!
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