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An alphabet is a finite set of letters
A word w € A* is a finite sequence of letters

For all letter a and integer j, @ = a...a
——
J times

Example: a® = aaaaa

Reconstructing words over A with the set of queries O

W € A* is only known by an oracle

Our task:
e Reconstruct W by asking queries from Q about W to the oracle

e Minimize the number of queries in terms of n = |W| and k = |A|
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u is a subword of w <= u is a subsequence of w

u is a factor of w <= u is a contiguous subsequence of w

i bword of
Example: aba _IS a subword o babbaa
is not a factor of

Four families of queries about W

{ “How many time does u occurs as a subword in W 7" : u € .A*}
{ “Is u a subword of W ?” tue A}
{ “Is u a factor of W ?" tu€ A}
{ “How many time does u occurs as a factor in W 7" :u € .A*}



Factor queries



A first example

The unknown word W € {0,1}* has length 9.



A first example

The unknown word W € {0,1}* has length 9.
We try to build a factor of W :
e Is 00 a factor of W ?



A first example

The unknown word W € {0,1}* has length 9.
We try to build a factor of W : 00
e Is 00 a factor of W 7 Yes



A first example

The unknown word W € {0,1}* has length 9.
We try to build a factor of W : 00

e |s 00 a factor of W 7 Yes
e Is 0000 a factor of W ?



A first example

The unknown word W € {0,1}* has length 9.
We try to build a factor of W : 00

e |s 00 a factor of W 7 Yes
e |s 0000 a factor of W ? No



A first example

The unknown word W € {0,1}* has length 9.
We try to build a factor of W : 00

e |s 00 a factor of W 7 Yes
e |s 0000 a factor of W ? No
e Is 000 a factor of W 7



A first example

The unknown word W € {0,1}* has length 9.
We try to build a factor of W : 000

e |s 00 a factor of W 7 Yes
e |s 0000 a factor of W ? No
e Is 000 a factor of W 7 Yes



A first example

The unknown word W € {0,1}* has length 9.
We try to build a factor of W : 000

e Is 00 a factor of W 7 Yes
e |s 0000 a factor of W 7 No
e Is 000 a factor of W 7 Yes
e Is 0001 a factor of W 7



A first example

The unknown word W € {0,1}* has length 9.
We try to build a factor of W : 0001

e Is 00 a factor of W 7 Yes

e |s 0000 a factor of W 7 No
e Is 000 a factor of W 7 Yes

e Is 0001 a factor of W 7 Yes



A first example

The unknown word W € {0,1}* has length 9.
We try to build a factor of W : 0001

e Is 00 a factor of W 7 Yes

e |s 0000 a factor of W 7 No
e Is 000 a factor of W 7 Yes

e Is 0001 a factor of W 7 Yes
Is 00011 a factor of W 7



A first example

The unknown word W € {0,1}* has length 9.
We try to build a factor of W : 00010

e Is 00 a factor of W 7 Yes

e |s 0000 a factor of W 7 No
e Is 000 a factor of W 7 Yes
e Is 0001 a factor of W 7 Yes
Is 00011 a factor of W 7 No



A first example

The unknown word W € {0,1}* has length 9.
We try to build a factor of W : 00010

e Is 00 a factor of W 7 Yes

e |s 0000 a factor of W 7 No
e Is 000 a factor of W 7 Yes
e Is 0001 a factor of W 7 Yes
e |s 00011 a factor of W 7 No
e Is 000101 a factor of W ?



A first example

The unknown word W € {0,1}* has length 9.
We try to build a factor of W : 000101

e Is 00 a factor of W 7 Yes

e |s 0000 a factor of W 7 No

e Is 000 a factor of W 7 Yes

e Is 0001 a factor of W 7 Yes

e |s 00011 a factor of W 7 No
e Is 000101 a factor of W 7 Yes



A first example

The unknown word W € {0,1}* has length 9.
We try to build a factor of W : 000101

e Is 00 a factor of W 7 Yes

e |s 0000 a factor of W 7 No

e Is 000 a factor of W 7 Yes

e Is 0001 a factor of W 7 Yes

e |s 00011 a factor of W 7 No
e Is 000101 a factor of W 7 Yes
e Is 0001011 a factor of W 7



A first example

The unknown word W € {0,1}* has length 9.
We try to build a factor of W : 0001010

e Is 00 a factor of W 7 Yes

e |s 0000 a factor of W 7 No

e Is 000 a factor of W 7 Yes

e Is 0001 a factor of W 7 Yes

e |s 00011 a factor of W 7 No

e Is 000101 a factor of W 7 Yes
e Is 0001011 a factor of W 7 No



A first example

The unknown word W € {0,1}* has length 9.
We try to build a factor of W : 0001010

e Is 00 a factor of W 7 Yes

e |s 0000 a factor of W 7 No

e Is 000 a factor of W 7 Yes

e Is 0001 a factor of W 7 Yes

e |s 00011 a factor of W 7 No

e Is 000101 a factor of W 7 Yes
e Is 0001011 a factor of W 7 No
e |s 00010101 a factor of W ?



A first example

The unknown word W € {0,1}* has length 9.
We try to build a factor of W : 00010100

e Is 00 a factor of W 7 Yes

e |s 0000 a factor of W 7 No

e Is 000 a factor of W 7 Yes

e Is 0001 a factor of W 7 Yes

e |s 00011 a factor of W 7 No

e Is 000101 a factor of W 7 Yes
e Is 0001011 a factor of W 7 No
e |s 00010101 a factor of W ? No



A first example

The unknown word W € {0,1}* has length 9.
We try to build a factor of W : 00010100

e Is 00 a factor of W 7 Yes

e |s 0000 a factor of W 7 No

e Is 000 a factor of W 7 Yes

e Is 0001 a factor of W 7 Yes

e |s 00011 a factor of W 7 No

e Is 000101 a factor of W 7 Yes
e Is 0001011 a factor of W 7 No
e |s 00010101 a factor of W ? No
e Is 000101001 a factor of W ?



A first example

The unknown word W € {0,1}* has length 9.
We try to build a factor of W : 000101000

e Is 00 a factor of W 7 Yes

e |s 0000 a factor of W 7 No

e Is 000 a factor of W 7 Yes

e Is 0001 a factor of W 7 Yes

e |s 00011 a factor of W 7 No

e Is 000101 a factor of W 7 Yes

e Is 0001011 a factor of W 7 No

e |s 00010101 a factor of W ? No
e Is 000101001 a factor of W 7 No



A first example

The unknown word W € {0,1}* has length 9.
We try to build a factor of W : 000101000

e Is 00 a factor of W 7 Yes

e |s 0000 a factor of W 7 No

e Is 000 a factor of W 7 Yes

e Is 0001 a factor of W 7 Yes

e |s 00011 a factor of W 7 No

e Is 000101 a factor of W 7 Yes

e Is 0001011 a factor of W 7 No

e |s 00010101 a factor of W ? No
e Is 000101001 a factor of W 7 No
e Is 0001010001 a factor of W 7



A first example

The unknown word W € {0,1}* has length 9.
We try to build a factor of W :  000101000|

e Is 00 a factor of W 7 Yes

e |s 0000 a factor of W 7 No

e Is 000 a factor of W 7 Yes

e Is 0001 a factor of W 7 Yes

e |s 00011 a factor of W 7 No

e Is 000101 a factor of W 7 Yes

e Is 0001011 a factor of W 7 No

e |s 00010101 a factor of W ? No

e Is 000101001 a factor of W 7 No
e Is 0001010001 a factor of W 7 No



A first example

The unknown word W € {0,1}* has length 9.
We try to build a factor of W :  000101000|

e Is 00 a factor of W 7 Yes

e |s 0000 a factor of W 7 No

e Is 000 a factor of W 7 Yes

e Is 0001 a factor of W 7 Yes

e |s 00011 a factor of W 7 No

e Is 000101 a factor of W 7 Yes

e Is 0001011 a factor of W 7 No

e |s 00010101 a factor of W ? No
e Is 000101001 a factor of W 7 No
e Is 0001010001 a factor of W 7 No
e |s 0001010 a factor of W 7



A first example

The unknown word W € {0,1}* has length 9.
We try to build a factor of W :  000101000|

e Is 00 a factor of W 7 Yes

e |s 0000 a factor of W 7 No

e Is 000 a factor of W 7 Yes

e Is 0001 a factor of W 7 Yes

e |s 00011 a factor of W 7 No

e Is 000101 a factor of W 7 Yes

e Is 0001011 a factor of W 7 No

e |s 00010101 a factor of W ? No
e Is 000101001 a factor of W 7 No
e Is 0001010001 a factor of W 7 No
e |s 0001010 a factor of W 7 Yes



A first example

The unknown word W € {0,1}* has length 9.
We try to build a factor of W :  000101000|

e Is 00 a factor of W 7 Yes

e |s 0000 a factor of W 7 No

e Is 000 a factor of W 7 Yes

e Is 0001 a factor of W 7 Yes

e |s 00011 a factor of W 7 No

e Is 000101 a factor of W 7 Yes

e Is 0001011 a factor of W 7 No

e |s 00010101 a factor of W ? No
e Is 000101001 a factor of W 7 No
e Is 0001010001 a factor of W 7 No
e |s 0001010 a factor of W 7 Yes
e Is 00010100 a factor of W ?



A first example

The unknown word W € {0,1}* has length 9.
We try to build a factor of W : 10001010 |

e Is 00 a factor of W 7 Yes

e |s 0000 a factor of W 7 No

e Is 000 a factor of W 7 Yes

e Is 0001 a factor of W 7 Yes

e |s 00011 a factor of W 7 No

e Is 000101 a factor of W 7 Yes

e Is 0001011 a factor of W 7 No

e |s 00010101 a factor of W ? No
e Is 000101001 a factor of W 7 No
e Is 0001010001 a factor of W 7 No
e |s 0001010 a factor of W 7 Yes
e Is 00010100 a factor of W ? No



A first example

The unknown word W € {0,1}* has length 9.
We try to build a factor of W : 10001010 |

e Is 00 a factor of W 7 Yes

e |s 0000 a factor of W 7 No

e Is 000 a factor of W 7 Yes

e Is 0001 a factor of W 7 Yes

e |s 00011 a factor of W 7 No

e Is 000101 a factor of W 7 Yes

e Is 0001011 a factor of W 7 No

e |s 00010101 a factor of W ? No
e Is 000101001 a factor of W 7 No
e Is 0001010001 a factor of W 7 No
e |s 0001010 a factor of W 7 Yes
e Is 00010100 a factor of W ? No
e Is 110001010 a factor of W ?



A first example

The unknown word W € {0,1}* has length 9.
We try to build a factor of W : 010001010 |

e Is 00 a factor of W 7 Yes

e |s 0000 a factor of W 7 No

e Is 000 a factor of W 7 Yes

e Is 0001 a factor of W 7 Yes

e |s 00011 a factor of W 7 No

e Is 000101 a factor of W 7 Yes

e Is 0001011 a factor of W 7 No

e |s 00010101 a factor of W ? No
e Is 000101001 a factor of W 7 No
e Is 0001010001 a factor of W 7 No
e |s 0001010 a factor of W 7 Yes
e Is 00010100 a factor of W ? No
e Is 110001010 a factor of W ? No



A first example

The unknown word W € {0,1}* has length 9.
We try to build a factor of W : 010001010 |

e Is 00 a factor of W 7 Yes

e |s 0000 a factor of W 7 No

e Is 000 a factor of W 7 Yes

e Is 0001 a factor of W 7 Yes

e |s 00011 a factor of W 7 No

e Is 000101 a factor of W 7 Yes

e Is 0001011 a factor of W 7 No

e |s 00010101 a factor of W ? No
e Is 000101001 a factor of W 7 No
e Is 0001010001 a factor of W 7 No
e |s 0001010 a factor of W 7 Yes
e Is 00010100 a factor of W ? No
e Is 110001010 a factor of W ? No



The corresponding strategy

The algorithm (Skiena and Sundaram, 1995)

1. Find k the largest i such that 0 is factor of W:
Binary search on i



The corresponding strategy

The algorithm (Skiena and Sundaram, 1995)
1. Find k the largest i such that 0 is factor of W:
Binary search on i

2. Try to extend it on the right:
Try adding 1, if it fails add 0
If it fails kK + 1 consecutive times, find the position of failure



The corresponding strategy

The algorithm (Skiena and Sundaram, 1995)
1. Find k the largest i such that 0 is factor of W:
Binary search on i

2. Try to extend it on the right:
Try adding 1, if it fails add 0
If it fails kK + 1 consecutive times, find the position of failure

3. Extend on the left until reaching the desired size:
Try adding 1, if it fails add 0



The corresponding strategy

The algorithm (Skiena and Sundaram, 1995)
1. Find k the largest i such that 0 is factor of W:
Binary search on i

2. Try to extend it on the right:
Try adding 1, if it fails add 0
If it fails kK + 1 consecutive times, find the position of failure

3. Extend on the left until reaching the desired size:
Try adding 1, if it fails add 0

1. in [log, n] + O(1) queries



The corresponding strategy

The algorithm (Skiena and Sundaram, 1995)
1. Find k the largest i such that 0 is factor of W:
Binary search on i

2. Try to extend it on the right:
Try adding 1, if it fails add 0
If it fails kK + 1 consecutive times, find the position of failure

3. Extend on the left until reaching the desired size:
Try adding 1, if it fails add 0

1. in [log, n] + O(1) queries
2.43.in (n— k) + k+ O(1) queries



The corresponding strategy

The algorithm (Skiena and Sundaram, 1995)

1. Find k the largest i such that 0 is factor of W:
Binary search on i

2. Try to extend it on the right:
Try adding 1, if it fails add 0
If it fails kK + 1 consecutive times, find the position of failure

3. Extend on the left until reaching the desired size:
Try adding 1, if it fails add 0

1. in [log, n] + O(1) queries
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The corresponding strategy

If W taken uniformly at random (Iwama, Teruyama, and Tsuyama, 2018):
The algorithm (Skiena and Sundaram, 1995)
1. Find k the largest i such that 0 is factor of W:
Greedy search on i starting at i = log, n

2. Try to extend it on the right:
Try adding 1, if it fails add 0
If it fails kK + 1 consecutive times, find the position of failure

3. Extend on the left until reaching the desired size:
Try adding 1, if it fails add 0

1. in expected O(1) queries

<
2.43. in (n— k) + k + O(1) queries } <n+0(1)
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Lower bound on the number of J-factor queries

Lemma

For any n > 1, there is no algorithm that reconstructs any W € {0,1}"
in less than n 3-factor queries.
Every query has 2 possible outputs

If the number of queries is bounded by n — 1, then the number of
possible outputs of the algorithm is bounded by 2"~1

This is not possible since [{0,1}"| = 2" O
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>n simple argument
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J-subword: reconstructing a word from its subwords

u is a subword of w <= u is a subsequence of w <— uLC w
Example: 010 C 001101

Giwen an unknown word W over A, you can ask queries of the form

How many queries do you need to reconstruct W 7

Lemma

For any n > 1, there is no algorithm that reconstruct any W € {0,1}"
in less than n queries.
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d-subword on binary alphabet - upper bound

Find t the number of 0 in W (binary search in O(log, n))
Then W = 1%01%10...01° for some integers sp, ..., St.

Useful tool

For all / and J, 010" CW «— j <5

For each i, we find s; greedily:

0'170°~" C W [for j = 1,2... until it says no (s; + 1 queries for each s;)

Total number of queries:

O(log, n) + Z(s; +1)=O(logyn) + n+1

!

Theorem (Skiena and Sundaram, 93)
There is an algorithm that reconstructs any unknown non-empty binary
word W in at most n + 2[log, n| queries.
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The gap over the binary alphabet

Theorem (Skiena and Sundaram, 93)

There is an algorithm that reconstructs any unknown non-empty binary
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The gap over the binary alphabet

Theorem (Skiena and Sundaram, 93)

There is an algorithm that reconstructs any unknown non-empty binary
word W in at most n + 2[log, n| queries.

We need at least n queries
Can we do better than n+ O(log, n) 7
Oreven n+ O(1) ?

11
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The number of queries needed to reconstruct an unkown word w over A

> log, (k™) = nlog, k simple argument
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)7 Fqueries

(5) denotes the number of occurrences of v as a subword of u

0010
(o) =

Example

(")? Lqueries

W € A* only known by the oracle.

w
For any u € A*, you can ask the query ( >?

Minimize the number of

u

)

~queries needed to reconstruct W
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An example

An unknown word W € {0,1}*

QL: | (()?| = 3 = Thereare30in W w (

N—

Q2: (

Q3: (g\{

=2

)?| = 4 = Thereare21in W 00011
00101

00110
01001
01010
01100
10001
10010
10100
11000

)7 = 4
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An example

An unknown word W € {0,1}*

w
QL: (\g/)? = 3 = Thereare30in W W (01>
Q2: (vlv)—, = 4 = Thereare21in W
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An example

An unknown word W € {0,1}*
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An example

An unknown word W € {0,1}*

QL: | (()?| = 3 = Thereare30in W w

Q3:

mrl = 4

(

Q2| (Y)?| = 4 = Thereare21in W
(

Q4: (

w
00110)? = 0 01001
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An example

An unknown word W € {0,1}*

QL: | (()?| = 3 = Thereare30in W w
Q2| (Y)?| = 4 = Thereare21in W

Q3 [(@)?] = 4

Q4: | (poa)?| = 0 01001

W = 01001
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Linear number of queries

uCW <— <W>21

= we can solve this in n + O(log n)
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in at most | 4| 4+ 1 queries.
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Obtain the s; one by one Si = (1,-1\31_,-)-
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Linear number of queries

w
UuCW <~ ( ) >1
u
= we can solve this in n + O(log n)

Theorem (Fleischmann, Lejeune, Manea, Nowotka and Rigo, 2020)

There is an algorithm that reconstructs any unknown word W € {0,1}"
in at most | 4| 4+ 1 queries.

Write W as W = 0%°10%1...10%

Obtain the s; one by one Si = (pfﬁiq)-

Theorem (Richomme and Rosenfeld)

There is an algorithm that reconstructs any unknown word W € {0, 1}"

in at most O(y/nlog, n) queries.

Obtain multiple s; at once ( b )

log, n
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Toy problem

Suppose that we know W = 0%10*10>1"
with r > s; and we know r but not the s;.

Can we reconstruct W in one query ?
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Toy problem

Suppose that we know W = 0%10*10>1"
with r > s; and we know r but not the s;.

Can we reconstruct W in one query ?

w r+1 r—+2
=S+ S+ S0
01r r r
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Toy problem

Suppose that we know W = 0%10*10>1"
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Can we reconstruct W in one query ?

w r+2)(r+1
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Toy problem

Suppose that we know W = 0%10*10>1"
with r > s; and we know r but not the s;.

Can we reconstruct W in one query 7
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Toy problem

Suppose that we know W = 0%10*10>1"
with r > s; and we know r but not the s;.

Can we reconstruct W in one query 7

<(\),1v,> =5+ (r+1)s; + wﬂ)
In particular,
20 25 42r+1)s 2(o0)
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Toy problem
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The proof idea

Lemma
Let W = 0%10"1...10% and let m € N. Suppose that

e t is known,

e Vi, either s; < m or s; is known.

Then, at most 4m queries are needed to reconstruct W.
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Let | = {i:s; > m}, we need to be able to efficiently find /.

17



The proof idea

Lemma
Let W = 0%10"1...10% and let m € N. Suppose that

e t is known,

e Vi, either s; < m or s; is known.

Then, at most 4m queries are needed to reconstruct W.

Let | = {i:s; > m}, we need to be able to efficiently find /.

Lemma

For an unknown word W = 02101 ...10%, the set | can be computed

2n[log, n]
m

in at most queries.
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The “algorithm”

e Compute the numbers of 0 and 1 2 queries

18



The “algorithm”

e Compute the numbers of 0 and 1 2 queries

e Finds the large blocks of 0

20l .
2n[iog, n] queries
m
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The “algorithm”

e Compute the numbers of 0 and 1 2 queries
e Finds the large blocks of 0 @ queries
e Compute the remaining s; 4m queries

Take m = y/nlog, n —

Theorem (Richomme and Rosenfeld)

There is an algorithm that reconstructs any unknown word W € {0, 1}"

in at most O(+/nlog, n) queries.
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A better strategy for uniform random word ?

Random word typically do not contain large blocks of 0.
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A better strategy for uniform random word ?

Random word typically do not contain large blocks of 0.

Lemma

Let n be an integer and W be a binary word taken uniformly at random
in {0,1}", then

P(0/2"°e" js a factor of W) <

S|

19
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e Compute the numbers of 0 and 1 2 queries
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A better strategy for uniform random word !

Compute the numbers of 0 and 1

Pretend that there is no s; larger than [2log n|
Compute the remaining s;

Did we found the correct W?

2 queries

0 queries

4[2log n] queries
1 query
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e Yes — nothing to do 0 query
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A better strategy for uniform random word !

e Compute the numbers of 0 and 1 2 queries
e Pretend that there is no s; larger than [2log n] 0 queries
e Compute the remaining s; 4[2log n] queries
e Did we found the correct W? 1 query
e Yes — nothing to do 0 query
e No — Apply the previous algorithm O(+/nlog n) queries

The expected number of queries is at most

o(\/rlog )

2+4[2logn] +1+ =8logn+ O(1)

Theorem (Richomme and Rosenfeld)
There is a deterministic algorithm that given a random uniform word W
from {0, 1}" reconstructs W in an expected number of queries

O(log n) .
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The result

Worst case complexity | Average case complexity
Previous result < n/2 <n/2
Our result O(v/nlog n) O(log n)
Lower bounds 7 ”
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The result

Worst case complexity | Average case complexity
Previous result < n/2 <n/2
Our result O(+/nlogn) O(log n)
Lower bounds 7 ”
Questions:

e A non-trivial lower bound on the number of queries needed?

e Improve the worst case complexity. Can we go down to O(log(n))?
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Conclusion

Many interesting open questions that did not receive a lot of attention ?
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Conclusion

Many interesting open questions that did not receive a lot of attention ?

Theorem (Fici, Prezza and Venturini, 2021)

Let C be a compressor, and let S € {0,1}" be an unknown binary
string of known length n. Then, there is an algorithm that reconstructs
S using O(|C(S)|) substring queries.
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Conclusion

Many interesting open questions that did not receive a lot of attention ?

Theorem (Fici, Prezza and Venturini, 2021)

Let C be a compressor, and let S € {0,1}" be an unknown binary
string of known length n. Then, there is an algorithm that reconstructs
S using O(|C(S)|) substring queries.

A good lesson: binary search is sometime worst than greedy search.
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Thanks !
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