Reconstructing words Using queries on subwords or factors

Gwenaël Richomme and Matthieu Rosenfeld
December 5, 2023

Definitions

An alphabet is a finite set of letters
A word $w \in \mathcal{A}^{*}$ is a finite sequence of letters

Definitions

An alphabet is a finite set of letters

A word $w \in \mathcal{A}^{*}$ is a finite sequence of letters
For all letter a and integer $j, a^{j}=\underbrace{a \ldots a}$

$$
j \text { times }
$$

Definitions

An alphabet is a finite set of letters

A word $w \in \mathcal{A}^{*}$ is a finite sequence of letters
For all letter a and integer $j, a^{j}=\underbrace{a \ldots a}_{j \text { times }}$

$$
j \text { times }
$$

Example: $a^{5}=$ aaaaa

Definitions

An alphabet is a finite set of letters
A word $w \in \mathcal{A}^{*}$ is a finite sequence of letters
For all letter a and integer $j, a^{j}=\underbrace{a \ldots a}_{j \text { times }}$
Example: $a^{5}=$ ааааа
Reconstructing words over \mathcal{A} with the set of queries \mathcal{Q}
$\mathbf{W} \in \mathcal{A}^{*}$ is only known by an oracle
Our task:

- Reconstruct \mathbf{W} by asking queries from \mathcal{Q} about \mathbf{W} to the oracle
- Minimize the number of queries in terms of $n=|\mathbf{W}|$ and $k=|\mathcal{A}|$

A first example

Wordle

The queries

u is a subword of $w \Longleftrightarrow u$ is a subsequence of w
u is a factor of $w \Longleftrightarrow u$ is a contiguous subsequence of w

The queries

u is a subword of $w \Longleftrightarrow u$ is a subsequence of w
u is a factor of $w \Longleftrightarrow u$ is a contiguous subsequence of w
Example: aba is a subword of $\begin{gathered}\text { is not a factor of }\end{gathered}$

The queries

u is a subword of $w \Longleftrightarrow u$ is a subsequence of w
u is a factor of $w \Longleftrightarrow u$ is a contiguous subsequence of w
Example: aba is a subword of $\begin{gathered}\text { is not a factor of }\end{gathered}$ babbaa

Four families of queries about W

\{ "How many time does u occurs as a subword in W ?" : $u \in \mathcal{A}^{*}$ \}

The queries

u is a subword of $w \Longleftrightarrow u$ is a subsequence of w
u is a factor of $w \Longleftrightarrow u$ is a contiguous subsequence of w
Example: aba $\begin{gathered}\text { is a subword of } \\ \text { is not a factor of }\end{gathered}$ babbaa

Four families of queries about W

\{ "How many time does u occurs as a subword in \mathbf{W} ?" : $\left.u \in \mathcal{A}^{*}\right\}$
$\left\{\right.$ "Is u a subword of \mathbf{W} ?" $\left.: u \in \mathcal{A}^{*}\right\}$

The queries

u is a subword of $w \Longleftrightarrow u$ is a subsequence of w
u is a factor of $w \Longleftrightarrow u$ is a contiguous subsequence of w
Example: aba is a subword of $\begin{gathered}\text { is not a factor of }\end{gathered}$ babbaa

Four families of queries about W

\{ "How many time does u occurs as a subword in \mathbf{W} ?" : $u \in \mathcal{A}^{*}$ \}
$\left\{\right.$ "Is u a subword of \mathbf{W} ?" $\left.\quad: u \in \mathcal{A}^{*}\right\}$
$\left\{\right.$ "Is u a factor of \mathbf{W} ?" $\left.: u \in \mathcal{A}^{*}\right\}$

The queries

u is a subword of $w \Longleftrightarrow u$ is a subsequence of w
u is a factor of $w \Longleftrightarrow u$ is a contiguous subsequence of w
Example: aba is a subword of $\begin{gathered}\text { is not a factor of }\end{gathered}$ babbaa

Four families of queries about W

\{ "How many time does u occurs as a subword in \mathbf{W} ?" : $u \in \mathcal{A}^{*}$ \}
\{ "Is u a subword of \mathbf{W} ?" $\left.: u \in \mathcal{A}^{*}\right\}$
$\left\{\right.$ "Is u a factor of \mathbf{W} ?" $\left.\quad: u \in \mathcal{A}^{*}\right\}$
\{ "How many time does u occurs as a factor in \mathbf{W} ?" $\left.: u \in \mathcal{A}^{*}\right\}$

Factor queries

A first example

The unknown word $W \in\{0,1\}^{*}$ has length 9 .

A first example

The unknown word $W \in\{0,1\}^{*}$ has length 9 .
We try to build a factor of W :

- Is 00 a factor of W ?

A first example

The unknown word $W \in\{0,1\}^{*}$ has length 9 .
We try to build a factor of W : 00

- Is 00 a factor of W ? Yes

A first example

The unknown word $W \in\{0,1\}^{*}$ has length 9 .
We try to build a factor of W : 00

- Is 00 a factor of W ? Yes
- Is 0000 a factor of W ?

A first example

The unknown word $W \in\{0,1\}^{*}$ has length 9 .
We try to build a factor of W : 00

- Is 00 a factor of W ? Yes
- Is 0000 a factor of W ? No

A first example

The unknown word $W \in\{0,1\}^{*}$ has length 9 .
We try to build a factor of W : 00

- Is 00 a factor of W ? Yes
- Is 0000 a factor of W ? No
- Is 000 a factor of W ?

A first example

The unknown word $W \in\{0,1\}^{*}$ has length 9 .
We try to build a factor of W : 000

- Is 00 a factor of W ? Yes
- Is 0000 a factor of W ? No
- Is 000 a factor of W ? Yes

A first example

The unknown word $W \in\{0,1\}^{*}$ has length 9 .
We try to build a factor of W : 000

- Is 00 a factor of W ? Yes
- Is 0000 a factor of W ? No
- Is 000 a factor of W ? Yes
- Is 0001 a factor of W ?

A first example

The unknown word $W \in\{0,1\}^{*}$ has length 9 .
We try to build a factor of W : 0001

- Is 00 a factor of W ? Yes
- Is 0000 a factor of W ? No
- Is 000 a factor of W ? Yes
- Is 0001 a factor of W ? Yes

A first example

The unknown word $W \in\{0,1\}^{*}$ has length 9 .
We try to build a factor of W : 0001

- Is 00 a factor of W ? Yes
- Is 0000 a factor of W ? No
- Is 000 a factor of W ? Yes
- Is 0001 a factor of W ? Yes
- Is 00011 a factor of W ?

A first example

The unknown word $W \in\{0,1\}^{*}$ has length 9 .
We try to build a factor of W : 00010

- Is 00 a factor of W ? Yes
- Is 0000 a factor of W ? No
- Is 000 a factor of W ? Yes
- Is 0001 a factor of W ? Yes
- Is 00011 a factor of W ? No

A first example

The unknown word $W \in\{0,1\}^{*}$ has length 9 .
We try to build a factor of W : 00010

- Is 00 a factor of W ? Yes
- Is 0000 a factor of W ? No
- Is 000 a factor of W ? Yes
- Is 0001 a factor of W ? Yes
- Is 00011 a factor of W ? No
- Is 000101 a factor of W ?

A first example

The unknown word $W \in\{0,1\}^{*}$ has length 9 .
We try to build a factor of W : 000101

- Is 00 a factor of W ? Yes
- Is 0000 a factor of W ? No
- Is 000 a factor of W ? Yes
- Is 0001 a factor of W ? Yes
- Is 00011 a factor of W ? No
- Is 000101 a factor of W ? Yes

A first example

The unknown word $W \in\{0,1\}^{*}$ has length 9 .
We try to build a factor of W : 000101

- Is 00 a factor of W ? Yes
- Is 0000 a factor of W ? No
- Is 000 a factor of W ? Yes
- Is 0001 a factor of W ? Yes
- Is 00011 a factor of W ? No
- Is 000101 a factor of W ? Yes
- Is 0001011 a factor of W ?

A first example

The unknown word $W \in\{0,1\}^{*}$ has length 9 .
We try to build a factor of W : 0001010

- Is 00 a factor of W ? Yes
- Is 0000 a factor of W ? No
- Is 000 a factor of W ? Yes
- Is 0001 a factor of W ? Yes
- Is 00011 a factor of W ? No
- Is 000101 a factor of W ? Yes
- Is 0001011 a factor of W ? No

A first example

The unknown word $W \in\{0,1\}^{*}$ has length 9 .
We try to build a factor of W : 0001010

- Is 00 a factor of W ? Yes
- Is 0000 a factor of W ? No
- Is 000 a factor of W ? Yes
- Is 0001 a factor of W ? Yes
- Is 00011 a factor of W ? No
- Is 000101 a factor of W ? Yes
- Is 0001011 a factor of W ? No
- Is 00010101 a factor of W ?

A first example

The unknown word $W \in\{0,1\}^{*}$ has length 9 .
We try to build a factor of W : 00010100

- Is 00 a factor of W ? Yes
- Is 0000 a factor of W ? No
- Is 000 a factor of W ? Yes
- Is 0001 a factor of W ? Yes
- Is 00011 a factor of W ? No
- Is 000101 a factor of W ? Yes
- Is 0001011 a factor of W ? No
- Is 00010101 a factor of W ? No

A first example

The unknown word $W \in\{0,1\}^{*}$ has length 9 .
We try to build a factor of W : 00010100

- Is 00 a factor of W ? Yes
- Is 0000 a factor of W ? No
- Is 000 a factor of W ? Yes
- Is 0001 a factor of W ? Yes
- Is 00011 a factor of W ? No
- Is 000101 a factor of W ? Yes
- Is 0001011 a factor of W ? No
- Is 00010101 a factor of W ? No
- Is 000101001 a factor of W ?

A first example

The unknown word $W \in\{0,1\}^{*}$ has length 9 .
We try to build a factor of W : 000101000

- Is 00 a factor of W ? Yes
- Is 0000 a factor of W ? No
- Is 000 a factor of W ? Yes
- Is 0001 a factor of W ? Yes
- Is 00011 a factor of W ? No
- Is 000101 a factor of W ? Yes
- Is 0001011 a factor of W ? No
- Is 00010101 a factor of W ? No
- Is 000101001 a factor of W ? No

A first example

The unknown word $W \in\{0,1\}^{*}$ has length 9 .
We try to build a factor of W : 000101000

- Is 00 a factor of W ? Yes
- Is 0000 a factor of W ? No
- Is 000 a factor of W ? Yes
- Is 0001 a factor of W ? Yes
- Is 00011 a factor of W ? No
- Is 000101 a factor of W ? Yes
- Is 0001011 a factor of W ? No
- Is 00010101 a factor of W ? No
- Is 000101001 a factor of W ? No
- Is 0001010001 a factor of W ?

A first example

The unknown word $W \in\{0,1\}^{*}$ has length 9 .
We try to build a factor of W : 000101000

- Is 00 a factor of W ? Yes
- Is 0000 a factor of W ? No
- Is 000 a factor of W ? Yes
- Is 0001 a factor of W ? Yes
- Is 00011 a factor of W ? No
- Is 000101 a factor of W ? Yes
- Is 0001011 a factor of W ? No
- Is 00010101 a factor of W ? No
- Is 000101001 a factor of W ? No
- Is 0001010001 a factor of W ? No

A first example

The unknown word $W \in\{0,1\}^{*}$ has length 9 .
We try to build a factor of W : 000101000

- Is 00 a factor of W ? Yes
- Is 0000 a factor of W ? No
- Is 000 a factor of W ? Yes
- Is 0001 a factor of W ? Yes
- Is 00011 a factor of W ? No
- Is 000101 a factor of W ? Yes
- Is 0001011 a factor of W ? No
- Is 00010101 a factor of W ? No
- Is 000101001 a factor of W ? No
- Is 0001010001 a factor of W ? No
- Is 0001010 a factor of W ?

A first example

The unknown word $W \in\{0,1\}^{*}$ has length 9 .
We try to build a factor of W : 000101000

- Is 00 a factor of W ? Yes
- Is 0000 a factor of W ? No
- Is 000 a factor of W ? Yes
- Is 0001 a factor of W ? Yes
- Is 00011 a factor of W ? No
- Is 000101 a factor of W ? Yes
- Is 0001011 a factor of W ? No
- Is 00010101 a factor of W ? No
- Is 000101001 a factor of W ? No
- Is 0001010001 a factor of W ? No
- Is 0001010 a factor of W ? Yes

A first example

The unknown word $W \in\{0,1\}^{*}$ has length 9 .
We try to build a factor of W : 000101000

- Is 00 a factor of W ? Yes
- Is 0000 a factor of W ? No
- Is 000 a factor of W ? Yes
- Is 0001 a factor of W ? Yes
- Is 00011 a factor of W ? No
- Is 000101 a factor of W ? Yes
- Is 0001011 a factor of W ? No
- Is 00010101 a factor of W ? No
- Is 000101001 a factor of W ? No
- Is 0001010001 a factor of W ? No
- Is 0001010 a factor of W ? Yes
- Is 00010100 a factor of W ?

A first example

The unknown word $W \in\{0,1\}^{*}$ has length 9 .
We try to build a factor of W : 10001010 |

- Is 00 a factor of W ? Yes
- Is 0000 a factor of W ? No
- Is 000 a factor of W ? Yes
- Is 0001 a factor of W ? Yes
- Is 00011 a factor of W ? No
- Is 000101 a factor of W ? Yes
- Is 0001011 a factor of W ? No
- Is 00010101 a factor of W ? No
- Is 000101001 a factor of W ? No
- Is 0001010001 a factor of W ? No
- Is 0001010 a factor of W ? Yes
- Is 00010100 a factor of W ? No

A first example

The unknown word $W \in\{0,1\}^{*}$ has length 9 .
We try to build a factor of W : 10001010 |

- Is 00 a factor of W ? Yes
- Is 0000 a factor of W ? No
- Is 000 a factor of W ? Yes
- Is 0001 a factor of W ? Yes
- Is 00011 a factor of W ? No
- Is 000101 a factor of W ? Yes
- Is 0001011 a factor of W ? No
- Is 00010101 a factor of W ? No
- Is 000101001 a factor of W ? No
- Is 0001010001 a factor of W ? No
- Is 0001010 a factor of W ? Yes
- Is 00010100 a factor of W ? No
- Is 110001010 a factor of W ?

A first example

The unknown word $W \in\{0,1\}^{*}$ has length 9 .
We try to build a factor of W : 010001010

- Is 00 a factor of W ? Yes
- Is 0000 a factor of W ? No
- Is 000 a factor of W ? Yes
- Is 0001 a factor of W ? Yes
- Is 00011 a factor of W ? No
- Is 000101 a factor of W ? Yes
- Is 0001011 a factor of W ? No
- Is 00010101 a factor of W ? No
- Is 000101001 a factor of W ? No
- Is 0001010001 a factor of W ? No
- Is 0001010 a factor of W ? Yes
- Is 00010100 a factor of W ? No
- Is 110001010 a factor of W ? No

A first example

The unknown word $W \in\{0,1\}^{*}$ has length 9 .
We try to build a factor of W : 010001010

- Is 00 a factor of W ? Yes
- Is 0000 a factor of W ? No
- Is 000 a factor of W ? Yes
- Is 0001 a factor of W ? Yes
- Is 00011 a factor of W ? No
- Is 000101 a factor of W ? Yes
- Is 0001011 a factor of W ? No
- Is 00010101 a factor of W ? No
- Is 000101001 a factor of W ? No
- Is 0001010001 a factor of W ? No
- Is 0001010 a factor of W ? Yes
- Is 00010100 a factor of W ? No
- Is 110001010 a factor of W ? No

The corresponding strategy

The algorithm (Skiena and Sundaram, 1995)

1. Find k the largest i such that 0^{i} is factor of \mathbf{W} : Binary search on i

The corresponding strategy

The algorithm (Skiena and Sundaram, 1995)

1. Find k the largest i such that 0^{i} is factor of \mathbf{W} : Binary search on i
2. Try to extend it on the right:

Try adding 1 , if it fails add 0
If it fails $k+1$ consecutive times, find the position of failure

The corresponding strategy

The algorithm (Skiena and Sundaram, 1995)

1. Find k the largest i such that 0^{i} is factor of \mathbf{W} :

Binary search on i
2. Try to extend it on the right:

Try adding 1 , if it fails add 0
If it fails $k+1$ consecutive times, find the position of failure
3. Extend on the left until reaching the desired size:

Try adding 1 , if it fails add 0

The corresponding strategy

The algorithm (Skiena and Sundaram, 1995)

1. Find k the largest i such that 0^{i} is factor of \mathbf{W} : Binary search on i
2. Try to extend it on the right:

Try adding 1 , if it fails add 0
If it fails $k+1$ consecutive times, find the position of failure
3. Extend on the left until reaching the desired size:

Try adding 1 , if it fails add 0

1. in $\left\lceil\log _{2} n\right\rceil+O(1)$ queries

The corresponding strategy

The algorithm (Skiena and Sundaram, 1995)

1. Find k the largest i such that 0^{i} is factor of \mathbf{W} : Binary search on i
2. Try to extend it on the right:

Try adding 1 , if it fails add 0
If it fails $k+1$ consecutive times, find the position of failure
3. Extend on the left until reaching the desired size:

Try adding 1 , if it fails add 0

1. in $\left\lceil\log _{2} n\right\rceil+O(1)$ queries
2. +3 . in $(n-k)+k+O(1)$ queries

The corresponding strategy

The algorithm (Skiena and Sundaram, 1995)

1. Find k the largest i such that 0^{i} is factor of \mathbf{W} : Binary search on i
2. Try to extend it on the right:

Try adding 1 , if it fails add 0
If it fails $k+1$ consecutive times, find the position of failure
3. Extend on the left until reaching the desired size:

Try adding 1 , if it fails add 0

1. in $\left\lceil\log _{2} n\right\rceil+O(1)$ queries
2. +3 . in $(n-k)+k+O(1)$ queries

$$
\} \leq n+\left\lceil\log _{2} n\right\rceil+O(1)
$$

The corresponding strategy

If \mathbf{W} taken uniformly at random (Iwama,Teruyama, and Tsuyama, 2018):

The algorithm (Skiena and Sundaram, 1995)

1. Find k the largest i such that 0^{i} is factor of \mathbf{W} :

Greedy search on i starting at $i=\log _{2} n$
2. Try to extend it on the right:

Try adding 1 , if it fails add 0
If it fails $k+1$ consecutive times, find the position of failure
3. Extend on the left until reaching the desired size:

Try adding 1 , if it fails add 0

1. in expected $O(1)$ queries
2. +3 . in $(n-k)+k+O(1)$ queries

$$
\} \leq n+O(1)
$$

Lower bound on the number of \exists-factor queries

Lemma

For any $n \geq 1$, there is no algorithm that reconstructs any $\mathbf{W} \in\{0,1\}^{n}$ in less than $n \exists$-factor queries.

Lower bound on the number of \exists-factor queries

Lemma

For any $n \geq 1$, there is no algorithm that reconstructs any $\mathbf{W} \in\{0,1\}^{n}$ in less than $n \exists$-factor queries.

Every query has 2 possible outputs

Lower bound on the number of \exists-factor queries

Lemma

For any $n \geq 1$, there is no algorithm that reconstructs any $\mathbf{W} \in\{0,1\}^{n}$ in less than $n \exists$-factor queries.

Every query has 2 possible outputs
If the number of queries is bounded by $n-1$, then the number of possible outputs of the algorithm is bounded by 2^{n-1}

Lower bound on the number of \exists-factor queries

Lemma

For any $n \geq 1$, there is no algorithm that reconstructs any $\mathbf{W} \in\{0,1\}^{n}$ in less than $n \exists$-factor queries.

Every query has 2 possible outputs
If the number of queries is bounded by $n-1$, then the number of possible outputs of the algorithm is bounded by 2^{n-1}

This is not possible since $\left|\{0,1\}^{n}\right|=2^{n}$

The results

Number of \exists-factor queries needed to guess an unknown binary word $\mathbf{W} \in\{0,1\}^{n}$ when n is known:

$\geq n$	simple argument

The results

Number of \exists-factor queries needed to guess an unknown binary word $\mathbf{W} \in\{0,1\}^{n}$ when n is known:

$\geq n$	simple argument
$\leq n+\lceil\log n\rceil+O(1)$	Skiena and Sundaram, 1995

The results

Number of \exists-factor queries needed to guess an unknown binary word $\mathbf{W} \in\{0,1\}^{n}$ when n is known:

$\geq n$	simple argument
$\leq n+\lceil\log n\rceil+O(1)$	Skiena and Sundaram, 1995
In average $\leq n+O(1)$	Iwama, Teruyama, and Tsuyama, 2018

The results

Number of \exists-factor queries needed to guess an unknown binary word $\mathbf{W} \in\{0,1\}^{n}$ when n is known:

$\geq n$	simple argument
$\leq n+\lceil\log n\rceil+O(1)$	Skiena and Sundaram, 1995
In average $\leq n+O(1)$	Iwama, Teruyama, and Tsuyama, 2018
$\leq n+\frac{\lceil\log n\rceil}{2}+O(1)$	Richomme and Rosenfeld, 2022

\exists-subword queries

\exists-subword: reconstructing a word from its subwords

u is a subword of $w \Longleftrightarrow u$ is a subsequence of $w \Longleftrightarrow u \sqsubseteq w$

\exists-subword: reconstructing a word from its subwords

u is a subword of $w \Longleftrightarrow u$ is a subsequence of $w \Longleftrightarrow u \sqsubseteq w$ Example: $010 \sqsubseteq 001101$

\exists-subword: reconstructing a word from its subwords

u is a subword of $w \Longleftrightarrow u$ is a subsequence of $w \Longleftrightarrow u \sqsubseteq w$ Example: $010 \sqsubseteq 001101$

Giwen an unknown word \mathbf{W} over \mathcal{A}, you can ask queries of the form

$$
u \sqsubseteq \mathbf{W} ?
$$

How many queries do you need to reconstruct \mathbf{W} ?

\exists-subword: reconstructing a word from its subwords

u is a subword of $w \Longleftrightarrow u$ is a subsequence of $w \Longleftrightarrow u \sqsubseteq w$
Example: $010 \sqsubseteq 001101$
Giwen an unknown word \mathbf{W} over \mathcal{A}, you can ask queries of the form

$$
u \sqsubseteq \mathbf{W} ?
$$

How many queries do you need to reconstruct \mathbf{W} ?

Lemma

For any $n \geq 1$, there is no algorithm that reconstruct any $\mathbf{W} \in\{0,1\}^{n}$ in less than n queries.

E-subword on binary alphabet - upper bound

Find t the number of 0 in \mathbf{W} (binary search in $O\left(\log _{2} n\right)$)

E-subword on binary alphabet - upper bound

Find t the number of 0 in \mathbf{W} (binary search in $O\left(\log _{2} n\right)$) Then $\mathbf{W}=1^{s_{0}} 01^{s_{1}} 0 \ldots 01^{s_{t}}$ for some integers s_{0}, \ldots, s_{t}.

E-subword on binary alphabet - upper bound

Find t the number of 0 in \mathbf{W} (binary search in $O\left(\log _{2} n\right)$) Then $\mathbf{W}=1^{s_{0}} 01^{s_{1}} 0 \ldots 01^{s_{t}}$ for some integers s_{0}, \ldots, s_{t}.
Useful tool
For all i and j,

$$
0^{i} 1^{j} 0^{t-i} \sqsubseteq \mathbf{W} \Longleftrightarrow j \leq s_{i}
$$

E-subword on binary alphabet - upper bound

Find t the number of 0 in \mathbf{W} (binary search in $O\left(\log _{2} n\right)$) Then $\mathbf{W}=1^{s_{0}} 01^{s_{1}} 0 \ldots 01^{s_{t}}$ for some integers s_{0}, \ldots, s_{t}.

Useful tool

$$
\text { For all } i \text { and } j, \quad 0^{i} 1^{j} 0^{t-i} \sqsubseteq \mathbf{W} \Longleftrightarrow j \leq s_{i}
$$

For each i, we find $s_{i} \ldots$

E-subword on binary alphabet - upper bound

Find t the number of 0 in \mathbf{W} (binary search in $O\left(\log _{2} n\right)$)
Then $\mathbf{W}=1^{s_{0}} 01^{s_{1}} 0 \ldots 01^{s_{t}}$ for some integers s_{0}, \ldots, s_{t}.

Useful tool

$$
\text { For all } i \text { and } j, \quad 0^{i} 1^{j} 0^{t-i} \sqsubseteq \mathbf{W} \Longleftrightarrow j \leq s_{i}
$$

For each i, we find s_{i} greedily:

ヨ-subword on binary alphabet - upper bound

Find t the number of 0 in \mathbf{W} (binary search in $O\left(\log _{2} n\right)$)
Then $\mathbf{W}=1^{s_{0}} 01^{s_{1}} 0 \ldots 01^{s_{t}}$ for some integers s_{0}, \ldots, s_{t}.

Useful tool

$$
\text { For all } i \text { and } j, \quad 0^{i} 1^{j} 0^{t-i} \sqsubseteq \mathbf{W} \Longleftrightarrow j \leq s_{i}
$$

For each i, we find s_{i} greedily:

$$
0^{i} 1^{j} 0^{t-i} \sqsubseteq \mathbf{W} \text { for } j=1,2 \ldots \text { until it says no (} s_{i}+1 \text { queries for each } s_{i} \text {) }
$$

ヨ-subword on binary alphabet - upper bound

Find t the number of 0 in \mathbf{W} (binary search in $O\left(\log _{2} n\right)$)
Then $\mathbf{W}=1^{s_{0}} 01^{s_{1}} 0 \ldots 01^{s_{t}}$ for some integers s_{0}, \ldots, s_{t}.

Useful tool

For all i and j,

$$
0^{i} 1^{j} 0^{t-i} \sqsubseteq \mathbf{W} \Longleftrightarrow j \leq s_{i}
$$

For each i, we find s_{i} greedily:
$0^{i} 1^{j} 0^{t-i} \sqsubseteq \mathbf{W}$ for $j=1,2 \ldots$ until it says no ($s_{i}+1$ queries for each s_{i})
Total number of queries:

$$
O\left(\log _{2} n\right)+\sum_{i}\left(s_{i}+1\right)=O\left(\log _{2} n\right)+n+1
$$

ヨ-subword on binary alphabet - upper bound

Find t the number of 0 in \mathbf{W} (binary search in $O\left(\log _{2} n\right)$)
Then $\mathbf{W}=1^{s_{0}} 01^{s_{1}} 0 \ldots 01^{s_{t}}$ for some integers s_{0}, \ldots, s_{t}.

Useful tool

For all i and j,

$$
0^{i} 1^{j} 0^{t-i} \sqsubseteq \mathbf{W} \Longleftrightarrow j \leq s_{i}
$$

For each i, we find s_{i} greedily:
$0^{i} 1^{j} 0^{t-i} \sqsubseteq \mathbf{W}$ for $j=1,2 \ldots$ until it says no ($s_{i}+1$ queries for each s_{i})
Total number of queries:

$$
O\left(\log _{2} n\right)+\sum_{i}\left(s_{i}+1\right)=O\left(\log _{2} n\right)+n+1
$$

Theorem (Skiena and Sundaram, 93)

There is an algorithm that reconstructs any unknown non-empty binary word \mathbf{W} in at most $n+2\left\lceil\log _{2} n\right\rceil$ queries.

The gap over the binary alphabet

Theorem (Skiena and Sundaram, 93)

There is an algorithm that reconstructs any unknown non-empty binary word \mathbf{W} in at most $n+2\left\lceil\log _{2} n\right\rceil$ queries.

We need at least n queries

The gap over the binary alphabet

Theorem (Skiena and Sundaram, 93)

There is an algorithm that reconstructs any unknown non-empty binary word \mathbf{W} in at most $n+2\left\lceil\log _{2} n\right\rceil$ queries.

We need at least n queries
Can we do better than $n+O\left(\log _{2} n\right)$?
Or even $n+O(1)$?

Over an alphabet of size $k \geq 3$

The number of queries needed to reconstruct an unkown word w over \mathcal{A}

$\geq \log _{2}\left(k^{n}\right)=n \log _{2} k$	simple argument

Over an alphabet of size $k \geq 3$

The number of queries needed to reconstruct an unkown word w over \mathcal{A}

$\geq \log _{2}\left(k^{n}\right)=n \log _{2} k$	simple argument
$\leq 1.59 n \log _{2}(k)+2 k \log _{2}(n)+5 k$	Skiena and Sundaram, 1995

Over an alphabet of size $k \geq 3$

The number of queries needed to reconstruct an unkown word w over \mathcal{A}

$\geq \log _{2}\left(k^{n}\right)=n \log _{2} k$	simple argument
$\leq \underbrace{1.59} n \log _{2}(k)+2 k \log _{2}(n)+5 k$	Skiena and Sundaram, 1995
Not optimal ?	

Over an alphabet of size $k \geq 3$

The number of queries needed to reconstruct an unkown word w over \mathcal{A}

$\geq \log _{2}\left(k^{n}\right)=n \log _{2} k$	simple argument
$\leq 1.59 n \log _{2}(k)+2 k \log _{2}(n)+5 k$	Skiena and Sundaram, 1995
$\leq n\left\lceil\log _{2}(k)\right\rceil+k\left\lfloor\log _{2}(n)\right\rfloor+2 k$	Richomme and Rosenfeld, 2022

Over an alphabet of size $k \geq 3$

The number of queries needed to reconstruct an unkown word w over \mathcal{A}

$\geq \log _{2}\left(k^{n}\right)=n \log _{2} k$	simple argument
$\leq 1.59 n \log _{2}(k)+2 k \log _{2}(n)+5 k$	Skiena and Sundaram, 1995
$\leq n\left\lceil\log _{2}(k)\right\rceil+\underbrace{k\left\lfloor\log _{2}(n)\right\rfloor}_{\text {Not optimal ? }}+2 k$	Richomme and Rosenfeld, 2022

\#-subword queries

$\binom{u}{v}$ denotes the number of occurrences of v as a subword of u

Example

$$
\binom{0010}{01}=?
$$

$\binom{u}{v}$ denotes the number of occurrences of v as a subword of u

Example

$$
\binom{0010}{01}=1
$$

$\binom{u}{v}$ denotes the number of occurrences of v as a subword of u

Example

$$
\binom{0010}{01}=2
$$

$\binom{u}{v}$ denotes the number of occurrences of v as a subword of u

Example

$$
\binom{0010}{01}=2
$$

$\binom{w}{$ w } ? -queries

$\mathbf{W} \in \mathcal{A}^{*}$ only known by the oracle.
For any $u \in \mathcal{A}^{*}$, you can ask the query $\binom{\mathbf{W}}{u}$?
Minimize the number of $\binom{\mathbf{W}}{\cdot}$? -queries needed to reconstruct \mathbf{W}

An example

An unknown word $\mathbf{W} \in\{0,1\}^{*}$
Q1: $\binom{\mathbf{W}}{0} ?$

An example

An unknown word $\mathbf{W} \in\{0,1\}^{*}$
Q1: $\binom{\mathbf{W}}{0} ?=3 \Longrightarrow$ There are 30 in \mathbf{W}

An example

An unknown word $\mathbf{W} \in\{0,1\}^{*}$
Q1: $\binom{\mathbf{W}}{0}$? $=3 \Longrightarrow$ There are 30 in W
Q2: $\binom{\mathrm{W}}{1}$?

An example

An unknown word $\mathbf{W} \in\{0,1\}^{*}$
Q1: $\left.\begin{array}{c}\mathbf{W} \\ 0\end{array}\right)$? $=3 \Longrightarrow$ There are 30 in \mathbf{W}
Q2: $\binom{\mathbf{W}}{1}$? $=4 \Longrightarrow$ There are 21 in W

An example

An unknown word $\mathbf{W} \in\{0,1\}^{*}$
Q1: $\binom{\mathbf{w}}{0} ?=3 \Longrightarrow$ There are 30 in W W
Q2: $\begin{gathered}\binom{\mathbf{W}}{1} ?\end{gathered}=4 \Longrightarrow$ There are 21 in W $\quad \begin{aligned} & 00011 \\ & 00101\end{aligned}$
00110
01001
01010
01100
10001
10010
10100
11000

An example

An unknown word $\mathbf{W} \in\{0,1\}^{*}$
Q1: $\binom{\mathbf{w}}{0} ?=3 \Longrightarrow$ There are 30 in $\mathbf{W} \quad \mathbf{W}$
Q2: $\binom{\mathbf{W}}{1}$? $=4 \Longrightarrow$ There are 21 in W 00011
Q3: $\binom{\mathrm{W}}{01}$? $=4$
00101
00110
01001
01010
01100
10001
10010
10100
11000

An example

An unknown word $\mathbf{W} \in\{0,1\}^{*}$
Q1: $\binom{\mathbf{W}}{0} ?$? $=3 \Longrightarrow$ There are 30 in $\mathbf{W} \quad\binom{\mathbf{W}}{01}$
Q2: $\binom{\mathbf{W}}{1}$? $=4 \Longrightarrow$ There are 21 in W 00011
Q3: $\binom{\mathrm{W}}{01}$? $=4$
001015
001104
010014
010103
$01100 \quad 2$
100013
100102
$10100 \quad 1$
110000

An example

An unknown word $\mathbf{W} \in\{0,1\}^{*}$
Q1: $\binom{\mathbf{W}}{0} ?=3 \Longrightarrow$ There are 30 in $\mathbf{W} \quad \mathbf{W} \quad\binom{\mathbf{W}}{01}$
Q2: $\binom{\mathbf{W}}{1} ?=4 \Longrightarrow$ There are 21 in W $00011 \quad 6$
Q3: $\binom{\mathrm{W}}{01}$? $=4$
001015
001104
010014
010103
011002
100013
100102
$10100 \quad 1$
110000

An example

An unknown word $\mathbf{W} \in\{0,1\}^{*}$
Q1: $\binom{\mathbf{W}}{0} ?=3 \Longrightarrow$ There are 30 in \mathbf{W} W
Q2: $\binom{\mathbf{W}}{1}$? $=4 \Longrightarrow$ There are 21 in \mathbf{W}
Q3: $\binom{\mathrm{w}}{01}$? $=4$
Q4: $\left.\begin{array}{c}\mathbf{W} \\ 00110\end{array}\right) ? ~ 01001$

An example

An unknown word $\mathbf{W} \in\{0,1\}^{*}$
Q1: $\binom{\mathbf{w}}{0} ?=3 \Longrightarrow$ There are 30 in $\mathbf{W} \quad \mathbf{W}$
Q2: $\binom{\mathbf{W}}{1}$? $=4 \Longrightarrow$ There are 21 in \mathbf{W}
Q3: $\binom{\mathrm{w}}{01}$? $=4$
Q4: $\binom{w}{00110}$? $=0$

An example

An unknown word $\mathbf{W} \in\{0,1\}^{*}$
Q1: $\binom{\mathbf{w}}{0} ?=3 \Longrightarrow$ There are 30 in W W
Q2: $\binom{\mathbf{W}}{1}$? $=4 \Longrightarrow$ There are 21 in W
Q3: $\binom{\mathrm{w}}{01}$? $=4$
Q4: $\binom{\mathrm{w}}{00110}$? $=0$

$$
\mathbf{W}=01001
$$

Linear number of $\binom{$ W }{.} ? -queries

$$
u \sqsubseteq \mathbf{W} \Longleftrightarrow\binom{\mathbf{W}}{u} \geq 1
$$

Linear number of $\binom{w}{()}$. -queries

$$
u \sqsubseteq \mathbf{W} \Longleftrightarrow\binom{\mathbf{W}}{u} \geq 1
$$

\Longrightarrow we can solve this in $n+O(\log n)$

Linear number of $\binom{\mathrm{w}}{$\hline} ?-queries

$$
u \sqsubseteq \mathbf{W} \Longleftrightarrow\binom{\mathbf{W}}{u} \geq 1
$$

\Longrightarrow we can solve this in $n+O(\log n)$
Theorem (Fleischmann, Lejeune, Manea, Nowotka and Rigo, 2020)
There is an algorithm that reconstructs any unknown word $\mathbf{W} \in\{0,1\}^{n}$ in at most $\left\lfloor\frac{n}{2}\right\rfloor+1$ queries.

Linear number of $\binom{\mathrm{w}}{$\hline} ?-queries

$$
u \sqsubseteq \mathbf{W} \Longleftrightarrow\binom{\mathbf{W}}{u} \geq 1
$$

\Longrightarrow we can solve this in $n+O(\log n)$
Theorem (Fleischmann, Lejeune, Manea, Nowotka and Rigo, 2020)
There is an algorithm that reconstructs any unknown word $\mathbf{W} \in\{0,1\}^{n}$ in at most $\left\lfloor\frac{n}{2}\right\rfloor+1$ queries.

Write W as

$$
\mathbf{W}=0^{s_{0}} 10^{s_{1}} 1 \ldots 10^{s_{t}}
$$

Obtain the s_{i} one by one

$$
s_{i}=\left(\underset{1^{\prime} 10^{t-i}}{\mathrm{~W}}\right) .
$$

Linear number of $\binom{w}{()}$. ?-queries

$$
u \sqsubseteq \mathbf{W} \Longleftrightarrow\binom{\mathbf{W}}{u} \geq 1
$$

\Longrightarrow we can solve this in $n+O(\log n)$
Theorem (Fleischmann, Lejeune, Manea, Nowotka and Rigo, 2020)
There is an algorithm that reconstructs any unknown word $\mathbf{W} \in\{0,1\}^{n}$ in at most $\left\lfloor\frac{n}{2}\right\rfloor+1$ queries.

Write W as

$$
\mathbf{W}=0^{s_{0}} 10^{s_{1}} 1 \ldots 10^{s_{t}}
$$

Obtain the s_{i} one by one

$$
s_{i}=\left(\underset{1^{\prime} 10^{t-i}}{\mathrm{~W}}\right) .
$$

Theorem (Richomme and Rosenfeld)

There is an algorithm that reconstructs any unknown word $\mathbf{W} \in\{0,1\}^{n}$ in at most $O\left(\sqrt{n \log _{2} n}\right)$ queries.

Linear number of $\binom{w}{()}$. -queries

$$
u \sqsubseteq \mathbf{W} \Longleftrightarrow\binom{\mathbf{W}}{u} \geq 1
$$

\Longrightarrow we can solve this in $n+O(\log n)$
Theorem (Fleischmann, Lejeune, Manea, Nowotka and Rigo, 2020)
There is an algorithm that reconstructs any unknown word $\mathbf{W} \in\{0,1\}^{n}$ in at most $\left\lfloor\frac{n}{2}\right\rfloor+1$ queries.

Write W as

$$
\mathbf{W}=0^{s_{0}} 10^{s_{1}} 1 \ldots 10^{s_{t}}
$$

Obtain the s_{i} one by one

$$
s_{i}=\left(\underset{1^{\prime} 10^{t-i}}{\mathrm{~W}}\right) .
$$

Theorem (Richomme and Rosenfeld)

There is an algorithm that reconstructs any unknown word $\mathbf{W} \in\{0,1\}^{n}$ in at most $O\left(\sqrt{n \log _{2} n}\right)$ queries.

Obtain multiple s_{i} at once

Linear number of $\binom{w}{$\hline} ?-queries

$$
u \sqsubseteq \mathbf{W} \Longleftrightarrow\binom{\mathbf{W}}{u} \geq 1
$$

\Longrightarrow we can solve this in $n+O(\log n)$
Theorem (Fleischmann, Lejeune, Manea, Nowotka and Rigo, 2020)
There is an algorithm that reconstructs any unknown word $\mathbf{W} \in\{0,1\}^{n}$ in at most $\left\lfloor\frac{n}{2}\right\rfloor+1$ queries.

Write W as

$$
\mathbf{W}=0^{s_{0}} 10^{s_{1}} 1 \ldots 10^{s_{t}}
$$

Obtain the s_{i} one by one

$$
s_{i}=\left(\underset{1^{\prime} 10^{t-i}}{\mathrm{~W}}\right) .
$$

Theorem (Richomme and Rosenfeld)

There is an algorithm that reconstructs any unknown word $\mathbf{W} \in\{0,1\}^{n}$ in at most $O\left(\sqrt{n \log _{2} n}\right)$ queries.

Obtain multiple s_{i} at once $\left(\sqrt{\frac{n}{\log _{2} n}}\right)$

Toy problem

Suppose that we know $\quad \mathbf{W}=0^{s_{0}} 10^{s_{1}} 10^{s_{2}} 1^{r}$
with $r \gg s_{i}$ and we know r but not the s_{i}.
Can we reconstruct \mathbf{W} in one query ?

Toy problem

Suppose that we know $\quad \mathbf{W}=0^{s_{0}} 10^{s_{1}} 10^{s_{2}} 1^{r}$
with $r \gg s_{i}$ and we know r but not the s_{i}.
Can we reconstruct \mathbf{W} in one query ?

$$
\binom{\mathbf{W}}{01^{r}}
$$

Toy problem

Suppose that we know $\quad \mathbf{W}=0^{s_{0}} 10^{s_{1}} 10^{s_{2}} 1^{r}$
with $r \gg s_{i}$ and we know r but not the s_{i}.
Can we reconstruct \mathbf{W} in one query ?

$$
\binom{\mathbf{W}}{01^{r}}=s_{2}+\binom{r+1}{r} s_{1}+\binom{r+2}{r} s_{0}
$$

Toy problem

Suppose that we know $\quad \mathbf{W}=0^{s_{0}} 10^{s_{1}} 10^{s_{2}} 1^{r}$
with $r \gg s_{i}$ and we know r but not the s_{i}.
Can we reconstruct \mathbf{W} in one query ?

$$
\binom{\mathbf{W}}{01^{r}}=s_{2}+(r+1) s_{1}+\frac{(r+2)(r+1)}{2} s_{0}
$$

Toy problem

Suppose that we know $\quad \mathbf{W}=0^{s_{0}} 10^{s_{1}} 10^{s_{2}} 1^{r}$
with $r \gg s_{i}$ and we know r but not the s_{i}.
Can we reconstruct \mathbf{W} in one query ?

$$
\binom{\mathbf{W}}{01^{r}}=s_{2}+(r+1) s_{1}+\frac{(r+2)(r+1)}{2} s_{0}
$$

In particular,

$$
s_{0}=\frac{2\binom{\mathbf{W}}{0 r^{r}}}{(r+2)(r+1)}-\frac{2 s_{2}+2(r+1) s_{1}}{(r+2)(r+1)}
$$

Toy problem

Suppose that we know $\quad \mathbf{W}=0^{s_{0}} 10^{s_{1}} 10^{s_{2}} 1^{r}$
with $r \gg s_{i}$ and we know r but not the s_{i}.
Can we reconstruct \mathbf{W} in one query ?

$$
\binom{\mathbf{W}}{01^{r}}=s_{2}+(r+1) s_{1}+\frac{(r+2)(r+1)}{2} s_{0}
$$

In particular,

$$
s_{0}=\frac{2\binom{\mathbf{W}}{01 r}}{(r+2)(r+1)}-\underbrace{\frac{2 s_{2}+2(r+1) s_{1}}{(r+2)(r+1)}}_{<1}
$$

Toy problem

Suppose that we know $\quad \mathbf{W}=0^{s_{0}} 10^{s_{1}} 10^{s_{2}} 1^{r}$
with $r \gg s_{i}$ and we know r but not the s_{i}.
Can we reconstruct \mathbf{W} in one query ?

$$
\binom{\mathbf{W}}{01^{r}}=s_{2}+(r+1) s_{1}+\frac{(r+2)(r+1)}{2} s_{0}
$$

In particular,

$$
s_{0}=\frac{2\binom{\mathbf{W}}{01^{r}}}{(r+2)(r+1)}-\underbrace{\frac{2 s_{2}+2(r+1) s_{1}}{(r+2)(r+1)}}_{<1}=\left\lfloor\frac{2\binom{\mathbf{w}}{01^{r}}}{(r+2)(r+1)}\right\rfloor
$$

Toy problem

Suppose that we know $\quad \mathbf{W}=0^{s_{0}} 10^{s_{1}} 10^{s_{2}} 1^{r}$
with $r \gg s_{i}$ and we know r but not the s_{i}.
Can we reconstruct \mathbf{W} in one query ?

$$
\binom{\mathbf{W}}{01^{r}}=s_{2}+(r+1) s_{1}+\frac{(r+2)(r+1)}{2} s_{0}
$$

In particular,

$$
s_{0}=\frac{2\binom{\mathbf{W}}{01^{r}}}{(r+2)(r+1)}-\underbrace{\frac{2 s_{2}+2(r+1) s_{1}}{(r+2)(r+1)}}_{<1}=\left\lfloor\frac{2\binom{\mathbf{w}}{01^{r}}}{(r+2)(r+1)}\right\rfloor
$$

$$
s_{1}=
$$

Toy problem

Suppose that we know $\quad \mathbf{W}=0^{s_{0}} 10^{s_{1}} 10^{s_{2}} 1^{r}$
with $r \gg s_{i}$ and we know r but not the s_{i}.
Can we reconstruct \mathbf{W} in one query ?

$$
\binom{\mathbf{W}}{01^{r}}=s_{2}+(r+1) s_{1}+\frac{(r+2)(r+1)}{2} s_{0}
$$

In particular,

$$
\begin{aligned}
& s_{0}=\frac{2\binom{\mathbf{W}}{0^{r}}}{(r+2)(r+1)}-\underbrace{\frac{2 s_{2}+2(r+1) s_{1}}{(r+2)(r+1)}}_{<1}=\left\lfloor\frac{2\binom{\mathbf{W}}{01^{r}}}{(r+2)(r+1)}\right\rfloor \\
& s_{1}=\frac{\binom{\mathbf{W}}{a b^{r}}-\frac{(r+2)(r+1)}{2}}{r+1} s_{0} \\
& s_{0}
\end{aligned} \frac{s_{2}}{r+1}=1
$$

Toy problem

Suppose that we know $\quad \mathbf{W}=0^{s_{0}} 10^{s_{1}} 10^{s_{2}} 1^{r}$ with $r \gg s_{i}$ and we know r but not the s_{i}.

Can we reconstruct \mathbf{W} in one query ?

$$
\binom{\mathbf{W}}{01^{r}}=s_{2}+(r+1) s_{1}+\frac{(r+2)(r+1)}{2} s_{0}
$$

In particular,

$$
\begin{aligned}
& s_{0}=\frac{2\binom{\mathbf{W}}{01^{r}}}{(r+2)(r+1)}-\underbrace{\frac{2 s_{2}+2(r+1) s_{1}}{(r+2)(r+1)}}_{<1}=\left\lfloor\frac{2\binom{\mathbf{w}}{01^{r}}}{(r+2)(r+1)}\right\rfloor \\
& s_{1}=\frac{\binom{\mathbf{w}}{a b^{r}}-\frac{(r+2)(r+1)}{2} s_{0}}{r+1}-\frac{s_{2}}{r+1}=\left\lfloor\frac{\binom{\mathbf{w}}{a b^{r}}-\frac{(r+2)(r+1)}{2} s_{0}}{r+1}\right\rfloor
\end{aligned}
$$

Toy problem

Suppose that we know $\quad \mathbf{W}=0^{s_{0}} 10^{s_{1}} 10^{s_{2}} 1^{r}$ with $r \gg s_{i}$ and we know r but not the s_{i}.

Can we reconstruct \mathbf{W} in one query ? YES

$$
\binom{\mathbf{W}}{01^{r}}=s_{2}+(r+1) s_{1}+\frac{(r+2)(r+1)}{2} s_{0}
$$

In particular,

$$
\begin{aligned}
& s_{0}=\frac{2\binom{\mathbf{W}}{01^{r}}}{(r+2)(r+1)}-\underbrace{\frac{2 s_{2}+2(r+1) s_{1}}{(r+2)(r+1)}}_{<1}=\left\lfloor\frac{2\binom{\mathbf{w}}{01^{r}}}{(r+2)(r+1)}\right\rfloor \\
& s_{1}=\frac{\binom{\mathbf{w}}{a b^{r}}-\frac{(r+2)(r+1)}{2} s_{0}}{r+1}-\frac{s_{2}}{r+1}=\left\lfloor\frac{\binom{\mathbf{w}}{a b^{r}}-\frac{(r+2)(r+1)}{2} s_{0}}{r+1}\right\rfloor
\end{aligned}
$$

The proof idea

Lemma

Let $\mathbf{W}=0^{s_{0}} 10^{s_{1}} 1 \ldots 10^{s_{t}}$ and let $m \in \mathbb{N}$. Suppose that

- t is known,
- $\forall i$, either $s_{i}<m$ or s_{i} is known.

Then, at most 4 m queries are needed to reconstruct \mathbf{W}.

The proof idea

Lemma

Let $\mathbf{W}=0^{s_{0}} 10^{s_{1}} 1 \ldots 10^{s_{t}}$ and let $m \in \mathbb{N}$. Suppose that

- t is known,
- $\forall i$, either $s_{i}<m$ or s_{i} is known.

Then, at most 4 m queries are needed to reconstruct \mathbf{W}.
Let $I=\left\{i: s_{i} \geq m\right\}$, we need to be able to efficiently find I.

The proof idea

Lemma

Let $\mathbf{W}=0^{s_{0}} 10^{s_{1}} 1 \ldots 10^{s_{t}}$ and let $m \in \mathbb{N}$. Suppose that

- t is known,
- $\forall i$, either $s_{i}<m$ or s_{i} is known.

Then, at most $4 m$ queries are needed to reconstruct \mathbf{W}.
Let $I=\left\{i: s_{i} \geq m\right\}$, we need to be able to efficiently find I.

Lemma

For an unknown word $\mathbf{W}=0^{s_{0}} 10^{s_{1}} 1 \ldots 10^{s_{t}}$, the set I can be computed in at most $\frac{2 n\left\lceil\log _{2} n\right\rceil}{m}$ queries.

The "algorithm"

- Compute the numbers of 0 and 1

2 queries

The "algorithm"

- Compute the numbers of 0 and 1

2 queries

- Finds the large blocks of 0

The "algorithm"

- Compute the numbers of 0 and 1
- Finds the large blocks of 0
- Compute the remaining s_{i}

2 queries
$\frac{2 n\left\lceil\log _{2} n\right\rceil}{m}$ queries
$4 m$ queries

The "algorithm"

- Compute the numbers of 0 and 1
- Finds the large blocks of 0
- Compute the remaining s_{i}
2 queries
$\frac{2 n\left\lceil\left\lceil\log _{2} n\right\rceil\right.}{m}$ queries
$4 m$ queries

Take $m=\sqrt{n \log _{2} n} \Longrightarrow$

The "algorithm"

- Compute the numbers of 0 and 1

2 queries

- Finds the large blocks of 0
- Compute the remaining s_{i}
$\frac{2 n\left\lceil\log _{2} n\right\rceil}{m}$ queries
$4 m$ queries

Take $m=\sqrt{n \log _{2} n} \Longrightarrow$

Theorem (Richomme and Rosenfeld)

There is an algorithm that reconstructs any unknown word $\mathbf{W} \in\{0,1\}^{n}$ in at most $O\left(\sqrt{n \log _{2} n}\right)$ queries.

A better strategy for uniform random word ?

Random word typically do not contain large blocks of 0 .

A better strategy for uniform random word ?

Random word typically do not contain large blocks of 0 .

Lemma

Let n be an integer and \mathbf{W} be a binary word taken uniformly at random in $\{0,1\}^{n}$, then

$$
\mathbb{P}\left(0^{\lceil 2 \log n\rceil} \text { is a factor of } \mathbf{W}\right) \leq \frac{1}{n} .
$$

A better strategy for uniform random word!

- Compute the numbers of 0 and 1 2 queries

A better strategy for uniform random word !

- Compute the numbers of 0 and 1

2 queries

- Pretend that there is no s_{i} larger than $\lceil 2 \log n\rceil$

0 queries

A better strategy for uniform random word !

- Compute the numbers of 0 and 1

2 queries

- Pretend that there is no s_{i} larger than $\lceil 2 \log n\rceil$
- Compute the remaining s_{i}

0 queries
$4\lceil 2 \log n\rceil$ queries

A better strategy for uniform random word !

- Compute the numbers of 0 and 1

2 queries

- Pretend that there is no s_{i} larger than $\lceil 2 \log n\rceil$
- Compute the remaining s_{i}
- Did we found the correct \mathbf{W} ?

0 queries
$4\lceil 2 \log n\rceil$ queries
1 query

A better strategy for uniform random word !

- Compute the numbers of 0 and 1

2 queries

- Pretend that there is no s_{i} larger than $\lceil 2 \log n\rceil$
- Compute the remaining s_{i}
- Did we found the correct \mathbf{W} ?
- Yes \Longrightarrow nothing to do

0 queries
$4\lceil 2 \log n\rceil$ queries
1 query
0 query

A better strategy for uniform random word !

- Compute the numbers of 0 and 1

2 queries

- Pretend that there is no s_{i} larger than $\lceil 2 \log n\rceil$
- Compute the remaining s_{i}
- Did we found the correct \mathbf{W} ?
- Yes \Longrightarrow nothing to do
- No \Longrightarrow Apply the previous algorithm
$4\lceil 2 \log n\rceil$ queries
1 query
0 query
$O(\sqrt{n \log n})$ queries

A better strategy for uniform random word !

- Compute the numbers of 0 and 1

2 queries

- Pretend that there is no s_{i} larger than $\lceil 2 \log n\rceil$

0 queries

- Compute the remaining s_{i}
- Did we found the correct W?
$4\lceil 2 \log n\rceil$ queries 1 query
- Yes \Longrightarrow nothing to do 0 query
- No \Longrightarrow Apply the previous algorithm
$O(\sqrt{n \log n})$ queries
The expected number of queries is at most

$$
2+4\lceil 2 \log n\rceil+1+\frac{O(\sqrt{n \log n})}{n}=8 \log n+O(1)
$$

A better strategy for uniform random word !

- Compute the numbers of 0 and 1
- Pretend that there is no s_{i} larger than $\lceil 2 \log n\rceil$
- Compute the remaining s_{i}
- Did we found the correct W?
- Yes \Longrightarrow nothing to do
- No \Longrightarrow Apply the previous algorithm

2 queries
0 queries
$4\lceil 2 \log n\rceil$ queries 1 query
0 query
$O(\sqrt{n \log n})$ queries

The expected number of queries is at most

$$
2+4\lceil 2 \log n\rceil+1+\frac{O(\sqrt{n \log n})}{n}=8 \log n+O(1)
$$

Theorem (Richomme and Rosenfeld)

There is a deterministic algorithm that given a random uniform word W from $\{0,1\}^{n}$ reconstructs \mathbf{W} in an expected number of queries

$$
O(\log n)
$$

The result

	Worst case complexity	Average case complexity
Previous result	$\leq n / 2$	$\leq n / 2$
Our result	$O(\sqrt{n \log n})$	$O(\log n)$
Lower bounds	$? ?$	$? ?$

The result

	Worst case complexity	Average case complexity
Previous result	$\leq n / 2$	$\leq n / 2$
Our result	$O(\sqrt{n \log n})$	$O(\log n)$
Lower bounds	$? ?$	$? ?$

Questions:

- A non-trivial lower bound on the number of queries needed?

The result

	Worst case complexity	Average case complexity
Previous result	$\leq n / 2$	$\leq n / 2$
Our result	$O(\sqrt{n \log n})$	$O(\log n)$
Lower bounds	$? ?$	$? ?$

Questions:

- A non-trivial lower bound on the number of queries needed?
- Improve the worst case complexity. Can we go down to $O(\log (n))$?

Conclusion

Many interesting open questions that did not receive a lot of attention ?

Conclusion

Many interesting open questions that did not receive a lot of attention ?

Theorem (Fici, Prezza and Venturini, 2021)

Let C be a compressor, and let $S \in\{0,1\}^{n}$ be an unknown binary string of known length n. Then, there is an algorithm that reconstructs S using $O(|C(S)|)$ substring queries.

Conclusion

Many interesting open questions that did not receive a lot of attention ?

Theorem (Fici, Prezza and Venturini, 2021)

Let C be a compressor, and let $S \in\{0,1\}^{n}$ be an unknown binary string of known length n. Then, there is an algorithm that reconstructs S using $O(|C(S)|)$ substring queries.

A good lesson: binary search is sometime worst than greedy search.

Thanks!

