Reconstructing words
Using queries on subwords or factors

Gwenaél Richomme and Matthieu Rosenfeld
December 5, 2023

An alphabet is a finite set of letters
A word w € A* is a finite sequence of letters

An alphabet is a finite set of letters
A word w € A* is a finite sequence of letters

For all letter a and integer j, @ = a...a
——

J times

An alphabet is a finite set of letters
A word w € A* is a finite sequence of letters

For all letter a and integer j, @ = a...a
——
J times

Example: a® = aaaaa

An alphabet is a finite set of letters
A word w € A* is a finite sequence of letters

For all letter a and integer j, @ = a...a
——
J times

Example: a® = aaaaa

Reconstructing words over A with the set of queries O

W € A* is only known by an oracle

Our task:
e Reconstruct W by asking queries from Q about W to the oracle

e Minimize the number of queries in terms of n = |W| and k = |A|

A first example

Wordle

]
Ol OO

.QEoEn-o- -
Do-oo- - -0
CVBnM@I

ENTER Z X

u is a subword of w <= u is a subsequence of w

u is a factor of w <= u is a contiguous subsequence of w

u is a subword of w <= u is a subsequence of w

u is a factor of w <= u is a contiguous subsequence of w

Example: aba _IS 3 subword of babbaa
is not a factor of

u is a subword of w <= u is a subsequence of w

u is a factor of w <= u is a contiguous subsequence of w

Example: aba _IS 3 subword of babbaa
is not a factor of

Four families of queries about W

{ “How many time does u occurs as a subword in W 7" : u € .A*}

u is a subword of w <= u is a subsequence of w

u is a factor of w <= u is a contiguous subsequence of w

Example: aba _IS 3 subword of babbaa
is not a factor of

Four families of queries about W

{ “How many time does u occurs as a subword in W 7" : u € .A*}
{ “Is u a subword of W ?” tue A}

u is a subword of w <= u is a subsequence of w

u is a factor of w <= u is a contiguous subsequence of w

Example: aba _IS 3 subword of babbaa
is not a factor of

Four families of queries about W

{ “How many time does u occurs as a subword in W 7" : u € .A*}
{ “Is u a subword of W ?” tue A}
{ “Is u a factor of W ?" tu€ A}

u is a subword of w <= u is a subsequence of w

u is a factor of w <= u is a contiguous subsequence of w

i bword of
Example: aba _IS a subword o babbaa
is not a factor of

Four families of queries about W

{ “How many time does u occurs as a subword in W 7" : u € .A*}
{ “Is u a subword of W ?” tue A}
{ “Is u a factor of W ?" tu€ A}
{ “How many time does u occurs as a factor in W 7" :u € .A*}

Factor queries

A first example

The unknown word W € {0,1}* has length 9.

A first example

The unknown word W € {0,1}* has length 9.
We try to build a factor of W :
e Is 00 a factor of W ?

A first example

The unknown word W € {0,1}* has length 9.
We try to build a factor of W : 00
e Is 00 a factor of W 7 Yes

A first example

The unknown word W € {0,1}* has length 9.
We try to build a factor of W : 00

e |s 00 a factor of W 7 Yes
e Is 0000 a factor of W ?

A first example

The unknown word W € {0,1}* has length 9.
We try to build a factor of W : 00

e |s 00 a factor of W 7 Yes
e |s 0000 a factor of W ? No

A first example

The unknown word W € {0,1}* has length 9.
We try to build a factor of W : 00

e |s 00 a factor of W 7 Yes
e |s 0000 a factor of W ? No
e Is 000 a factor of W 7

A first example

The unknown word W € {0,1}* has length 9.
We try to build a factor of W : 000

e |s 00 a factor of W 7 Yes
e |s 0000 a factor of W ? No
e Is 000 a factor of W 7 Yes

A first example

The unknown word W € {0,1}* has length 9.
We try to build a factor of W : 000

e Is 00 a factor of W 7 Yes
e |s 0000 a factor of W 7 No
e Is 000 a factor of W 7 Yes
e Is 0001 a factor of W 7

A first example

The unknown word W € {0,1}* has length 9.
We try to build a factor of W : 0001

e Is 00 a factor of W 7 Yes

e |s 0000 a factor of W 7 No
e Is 000 a factor of W 7 Yes

e Is 0001 a factor of W 7 Yes

A first example

The unknown word W € {0,1}* has length 9.
We try to build a factor of W : 0001

e Is 00 a factor of W 7 Yes

e |s 0000 a factor of W 7 No
e Is 000 a factor of W 7 Yes

e Is 0001 a factor of W 7 Yes
Is 00011 a factor of W 7

A first example

The unknown word W € {0,1}* has length 9.
We try to build a factor of W : 00010

e Is 00 a factor of W 7 Yes

e |s 0000 a factor of W 7 No
e Is 000 a factor of W 7 Yes
e Is 0001 a factor of W 7 Yes
Is 00011 a factor of W 7 No

A first example

The unknown word W € {0,1}* has length 9.
We try to build a factor of W : 00010

e Is 00 a factor of W 7 Yes

e |s 0000 a factor of W 7 No
e Is 000 a factor of W 7 Yes
e Is 0001 a factor of W 7 Yes
e |s 00011 a factor of W 7 No
e Is 000101 a factor of W ?

A first example

The unknown word W € {0,1}* has length 9.
We try to build a factor of W : 000101

e Is 00 a factor of W 7 Yes

e |s 0000 a factor of W 7 No

e Is 000 a factor of W 7 Yes

e Is 0001 a factor of W 7 Yes

e |s 00011 a factor of W 7 No
e Is 000101 a factor of W 7 Yes

A first example

The unknown word W € {0,1}* has length 9.
We try to build a factor of W : 000101

e Is 00 a factor of W 7 Yes

e |s 0000 a factor of W 7 No

e Is 000 a factor of W 7 Yes

e Is 0001 a factor of W 7 Yes

e |s 00011 a factor of W 7 No
e Is 000101 a factor of W 7 Yes
e Is 0001011 a factor of W 7

A first example

The unknown word W € {0,1}* has length 9.
We try to build a factor of W : 0001010

e Is 00 a factor of W 7 Yes

e |s 0000 a factor of W 7 No

e Is 000 a factor of W 7 Yes

e Is 0001 a factor of W 7 Yes

e |s 00011 a factor of W 7 No

e Is 000101 a factor of W 7 Yes
e Is 0001011 a factor of W 7 No

A first example

The unknown word W € {0,1}* has length 9.
We try to build a factor of W : 0001010

e Is 00 a factor of W 7 Yes

e |s 0000 a factor of W 7 No

e Is 000 a factor of W 7 Yes

e Is 0001 a factor of W 7 Yes

e |s 00011 a factor of W 7 No

e Is 000101 a factor of W 7 Yes
e Is 0001011 a factor of W 7 No
e |s 00010101 a factor of W ?

A first example

The unknown word W € {0,1}* has length 9.
We try to build a factor of W : 00010100

e Is 00 a factor of W 7 Yes

e |s 0000 a factor of W 7 No

e Is 000 a factor of W 7 Yes

e Is 0001 a factor of W 7 Yes

e |s 00011 a factor of W 7 No

e Is 000101 a factor of W 7 Yes
e Is 0001011 a factor of W 7 No
e |s 00010101 a factor of W ? No

A first example

The unknown word W € {0,1}* has length 9.
We try to build a factor of W : 00010100

e Is 00 a factor of W 7 Yes

e |s 0000 a factor of W 7 No

e Is 000 a factor of W 7 Yes

e Is 0001 a factor of W 7 Yes

e |s 00011 a factor of W 7 No

e Is 000101 a factor of W 7 Yes
e Is 0001011 a factor of W 7 No
e |s 00010101 a factor of W ? No
e Is 000101001 a factor of W ?

A first example

The unknown word W € {0,1}* has length 9.
We try to build a factor of W : 000101000

e Is 00 a factor of W 7 Yes

e |s 0000 a factor of W 7 No

e Is 000 a factor of W 7 Yes

e Is 0001 a factor of W 7 Yes

e |s 00011 a factor of W 7 No

e Is 000101 a factor of W 7 Yes

e Is 0001011 a factor of W 7 No

e |s 00010101 a factor of W ? No
e Is 000101001 a factor of W 7 No

A first example

The unknown word W € {0,1}* has length 9.
We try to build a factor of W : 000101000

e Is 00 a factor of W 7 Yes

e |s 0000 a factor of W 7 No

e Is 000 a factor of W 7 Yes

e Is 0001 a factor of W 7 Yes

e |s 00011 a factor of W 7 No

e Is 000101 a factor of W 7 Yes

e Is 0001011 a factor of W 7 No

e |s 00010101 a factor of W ? No
e Is 000101001 a factor of W 7 No
e Is 0001010001 a factor of W 7

A first example

The unknown word W € {0,1}* has length 9.
We try to build a factor of W : 000101000|

e Is 00 a factor of W 7 Yes

e |s 0000 a factor of W 7 No

e Is 000 a factor of W 7 Yes

e Is 0001 a factor of W 7 Yes

e |s 00011 a factor of W 7 No

e Is 000101 a factor of W 7 Yes

e Is 0001011 a factor of W 7 No

e |s 00010101 a factor of W ? No

e Is 000101001 a factor of W 7 No
e Is 0001010001 a factor of W 7 No

A first example

The unknown word W € {0,1}* has length 9.
We try to build a factor of W : 000101000|

e Is 00 a factor of W 7 Yes

e |s 0000 a factor of W 7 No

e Is 000 a factor of W 7 Yes

e Is 0001 a factor of W 7 Yes

e |s 00011 a factor of W 7 No

e Is 000101 a factor of W 7 Yes

e Is 0001011 a factor of W 7 No

e |s 00010101 a factor of W ? No
e Is 000101001 a factor of W 7 No
e Is 0001010001 a factor of W 7 No
e |s 0001010 a factor of W 7

A first example

The unknown word W € {0,1}* has length 9.
We try to build a factor of W : 000101000|

e Is 00 a factor of W 7 Yes

e |s 0000 a factor of W 7 No

e Is 000 a factor of W 7 Yes

e Is 0001 a factor of W 7 Yes

e |s 00011 a factor of W 7 No

e Is 000101 a factor of W 7 Yes

e Is 0001011 a factor of W 7 No

e |s 00010101 a factor of W ? No
e Is 000101001 a factor of W 7 No
e Is 0001010001 a factor of W 7 No
e |s 0001010 a factor of W 7 Yes

A first example

The unknown word W € {0,1}* has length 9.
We try to build a factor of W : 000101000|

e Is 00 a factor of W 7 Yes

e |s 0000 a factor of W 7 No

e Is 000 a factor of W 7 Yes

e Is 0001 a factor of W 7 Yes

e |s 00011 a factor of W 7 No

e Is 000101 a factor of W 7 Yes

e Is 0001011 a factor of W 7 No

e |s 00010101 a factor of W ? No
e Is 000101001 a factor of W 7 No
e Is 0001010001 a factor of W 7 No
e |s 0001010 a factor of W 7 Yes
e Is 00010100 a factor of W ?

A first example

The unknown word W € {0,1}* has length 9.
We try to build a factor of W : 10001010 |

e Is 00 a factor of W 7 Yes

e |s 0000 a factor of W 7 No

e Is 000 a factor of W 7 Yes

e Is 0001 a factor of W 7 Yes

e |s 00011 a factor of W 7 No

e Is 000101 a factor of W 7 Yes

e Is 0001011 a factor of W 7 No

e |s 00010101 a factor of W ? No
e Is 000101001 a factor of W 7 No
e Is 0001010001 a factor of W 7 No
e |s 0001010 a factor of W 7 Yes
e Is 00010100 a factor of W ? No

A first example

The unknown word W € {0,1}* has length 9.
We try to build a factor of W : 10001010 |

e Is 00 a factor of W 7 Yes

e |s 0000 a factor of W 7 No

e Is 000 a factor of W 7 Yes

e Is 0001 a factor of W 7 Yes

e |s 00011 a factor of W 7 No

e Is 000101 a factor of W 7 Yes

e Is 0001011 a factor of W 7 No

e |s 00010101 a factor of W ? No
e Is 000101001 a factor of W 7 No
e Is 0001010001 a factor of W 7 No
e |s 0001010 a factor of W 7 Yes
e Is 00010100 a factor of W ? No
e Is 110001010 a factor of W ?

A first example

The unknown word W € {0,1}* has length 9.
We try to build a factor of W : 010001010 |

e Is 00 a factor of W 7 Yes

e |s 0000 a factor of W 7 No

e Is 000 a factor of W 7 Yes

e Is 0001 a factor of W 7 Yes

e |s 00011 a factor of W 7 No

e Is 000101 a factor of W 7 Yes

e Is 0001011 a factor of W 7 No

e |s 00010101 a factor of W ? No
e Is 000101001 a factor of W 7 No
e Is 0001010001 a factor of W 7 No
e |s 0001010 a factor of W 7 Yes
e Is 00010100 a factor of W ? No
e Is 110001010 a factor of W ? No

A first example

The unknown word W € {0,1}* has length 9.
We try to build a factor of W : 010001010 |

e Is 00 a factor of W 7 Yes

e |s 0000 a factor of W 7 No

e Is 000 a factor of W 7 Yes

e Is 0001 a factor of W 7 Yes

e |s 00011 a factor of W 7 No

e Is 000101 a factor of W 7 Yes

e Is 0001011 a factor of W 7 No

e |s 00010101 a factor of W ? No
e Is 000101001 a factor of W 7 No
e Is 0001010001 a factor of W 7 No
e |s 0001010 a factor of W 7 Yes
e Is 00010100 a factor of W ? No
e Is 110001010 a factor of W ? No

The corresponding strategy

The algorithm (Skiena and Sundaram, 1995)

1. Find k the largest i such that 0 is factor of W:
Binary search on i

The corresponding strategy

The algorithm (Skiena and Sundaram, 1995)
1. Find k the largest i such that 0 is factor of W:
Binary search on i

2. Try to extend it on the right:
Try adding 1, if it fails add 0
If it fails kK + 1 consecutive times, find the position of failure

The corresponding strategy

The algorithm (Skiena and Sundaram, 1995)
1. Find k the largest i such that 0 is factor of W:
Binary search on i

2. Try to extend it on the right:
Try adding 1, if it fails add 0
If it fails kK + 1 consecutive times, find the position of failure

3. Extend on the left until reaching the desired size:
Try adding 1, if it fails add 0

The corresponding strategy

The algorithm (Skiena and Sundaram, 1995)
1. Find k the largest i such that 0 is factor of W:
Binary search on i

2. Try to extend it on the right:
Try adding 1, if it fails add 0
If it fails kK + 1 consecutive times, find the position of failure

3. Extend on the left until reaching the desired size:
Try adding 1, if it fails add 0

1. in [log, n] + O(1) queries

The corresponding strategy

The algorithm (Skiena and Sundaram, 1995)
1. Find k the largest i such that 0 is factor of W:
Binary search on i

2. Try to extend it on the right:
Try adding 1, if it fails add 0
If it fails kK + 1 consecutive times, find the position of failure

3. Extend on the left until reaching the desired size:
Try adding 1, if it fails add 0

1. in [log, n] + O(1) queries
2.43.in (n— k) + k+ O(1) queries

The corresponding strategy

The algorithm (Skiena and Sundaram, 1995)

1. Find k the largest i such that 0 is factor of W:
Binary search on i

2. Try to extend it on the right:
Try adding 1, if it fails add 0
If it fails kK + 1 consecutive times, find the position of failure

3. Extend on the left until reaching the desired size:
Try adding 1, if it fails add 0

1. in [log, n] + O(1) queries

2.43.in (n— k) + k + O(1) queries } < n+ [log, n] + O(1)

The corresponding strategy

If W taken uniformly at random (Iwama, Teruyama, and Tsuyama, 2018):
The algorithm (Skiena and Sundaram, 1995)
1. Find k the largest i such that 0 is factor of W:
Greedy search on i starting at i = log, n

2. Try to extend it on the right:
Try adding 1, if it fails add 0
If it fails kK + 1 consecutive times, find the position of failure

3. Extend on the left until reaching the desired size:
Try adding 1, if it fails add 0

1. in expected O(1) queries

<
2.43. in (n— k) + k + O(1) queries } <n+0(1)

Lower bound on the number of J-factor queries

Lemma

For any n > 1, there is no algorithm that reconstructs any W € {0,1}"
in less than n 3-factor queries.

Lower bound on the number of J-factor queries

Lemma

For any n > 1, there is no algorithm that reconstructs any W € {0,1}"
in less than n 3-factor queries.

Every query has 2 possible outputs

Lower bound on the number of J-factor queries

Lemma

For any n > 1, there is no algorithm that reconstructs any W € {0,1}"
in less than n 3-factor queries.
Every query has 2 possible outputs

If the number of queries is bounded by n — 1, then the number of
possible outputs of the algorithm is bounded by 2"~1

Lower bound on the number of J-factor queries

Lemma

For any n > 1, there is no algorithm that reconstructs any W € {0,1}"
in less than n 3-factor queries.
Every query has 2 possible outputs

If the number of queries is bounded by n — 1, then the number of
possible outputs of the algorithm is bounded by 2"~1

This is not possible since [{0,1}"| = 2" O

The results

Number of 3-factor queries needed to guess an unknown binary word
W € {0,1}" when n is known:

’ >n simple argument

The results

Number of 3-factor queries needed to guess an unknown binary word
W € {0,1}" when n is known:

>n simple argument
< n+ [logn] + O(1) Skiena and Sundaram, 1995

The results

Number of 3-factor queries needed to guess an unknown binary word
W € {0,1}" when n is known:

>n simple argument
< n+ [logn] + O(1) Skiena and Sundaram, 1995
In average < n+ O(1) | lwama, Teruyama, and Tsuyama, 2018

The results

Number of 3-factor queries needed to guess an unknown binary word
W € {0,1}" when n is known:

>n simple argument
< n+ [logn] + O(1) Skiena and Sundaram, 1995
In average < n+ O(1) | lwama, Teruyama, and Tsuyama, 2018
<n-+ M + 0(1) Richomme and Rosenfeld, 2022

J-subword queries

J-subword: reconstructing a word from its subwords

u is a subword of w <= u is a subsequence of w <— uLC w

J-subword: reconstructing a word from its subwords

u is a subword of w <= u is a subsequence of w <— uLC w
Example: 010 C 001101

J-subword: reconstructing a word from its subwords

u is a subword of w <= u is a subsequence of w <— uLC w
Example: 010 C 001101

Giwen an unknown word W over A, you can ask queries of the form
ul W?

How many queries do you need to reconstruct W 7

J-subword: reconstructing a word from its subwords

u is a subword of w <= u is a subsequence of w <— uLC w
Example: 010 C 001101

Giwen an unknown word W over A, you can ask queries of the form

How many queries do you need to reconstruct W 7

Lemma

For any n > 1, there is no algorithm that reconstruct any W € {0,1}"
in less than n queries.

J-subword on binary alphabet - upper bound

Find t the number of 0 in W (binary search in O(log, n))

10

J-subword on binary alphabet - upper bound

Find t the number of 0 in W (binary search in O(log, n))
Then W = 1°01%0...01% for some integers sg, ..., St.

10

d-subword on binary alphabet - upper bound

Find t the number of 0 in W (binary search in O(log, n))
Then W = 1%01%10...01° for some integers sp, ..., St.
Useful tool

For all / and J, 010" CW «— j <5

10

d-subword on binary alphabet - upper bound

Find t the number of 0 in W (binary search in O(log, n))
Then W = 1%01%10...01° for some integers sp, ..., St.

Useful tool

For all / and J, 010" CW «— j <5

For each i, we find s; ...

10

d-subword on binary alphabet - upper bound

Find t the number of 0 in W (binary search in O(log, n))
Then W = 1%01%10...01° for some integers sp, ..., St.

Useful tool

For all / and J, 010" CW «— j <5

For each i, we find s; greedily:

10

d-subword on binary alphabet - upper bound

Find t the number of 0 in W (binary search in O(log, n))
Then W = 1%01%10...01° for some integers sp, ..., St.

Useful tool

For all / and J, 010" CW «— j <5

For each i, we find s; greedily:

0'170°~" C W [for j = 1,2... until it says no (s; + 1 queries for each s;)

10

d-subword on binary alphabet - upper bound

Find t the number of 0 in W (binary search in O(log, n))
Then W = 1°01%0...01% for some integers sg, ..., St.

Useful tool

For all / and J, 010" CW «— j <5

For each i, we find s; greedily:

0'170°~" C W [for j = 1,2... until it says no (s; + 1 queries for each s;)

Total number of queries:

O(log, n) + Z(s; +1)=O(logyn) + n+1

I

10

d-subword on binary alphabet - upper bound

Find t the number of 0 in W (binary search in O(log, n))
Then W = 1%01%10...01° for some integers sp, ..., St.

Useful tool

For all / and J, 010" CW «— j <5

For each i, we find s; greedily:

0'170°~" C W [for j = 1,2... until it says no (s; + 1 queries for each s;)

Total number of queries:

O(log, n) + Z(s; +1)=O(logyn) + n+1

!

Theorem (Skiena and Sundaram, 93)
There is an algorithm that reconstructs any unknown non-empty binary
word W in at most n + 2[log, n| queries.

10

The gap over the binary alphabet

Theorem (Skiena and Sundaram, 93)

There is an algorithm that reconstructs any unknown non-empty binary
word W in at most n + 2[log, n| queries.

We need at least n queries

11

The gap over the binary alphabet

Theorem (Skiena and Sundaram, 93)

There is an algorithm that reconstructs any unknown non-empty binary
word W in at most n + 2[log, n| queries.

We need at least n queries
Can we do better than n+ O(log, n) 7
Oreven n+ O(1) ?

11

Over an alphabet of size kK > 3

The number of queries needed to reconstruct an unkown word w over A

> log, (k™) = nlog, k simple argument

12

Over an alphabet of size kK > 3

The number of queries needed to reconstruct an unkown word w over A

> log, (k™) = nlog, k simple argument
< 1.59nlog,(k) + 2k log,(n) + 5k Skiena and Sundaram, 1995

12

Over an alphabet of size kK > 3

The number of queries needed to reconstruct an unkown word w over A

> log, (k") = nlog, k simple argument
< 1.59 nlog,(k) + 2k log,(n) + 5k Skiena and Sundaram, 1995

Not optimal ?

12

Over an alphabet of size kK > 3

The number of queries needed to reconstruct an unkown word w over A

> log, (k™) = nlog, k simple argument
< 1.59nlog,(k) + 2k log,(n) + 5k Skiena and Sundaram, 1995

< nllog,(k)] + kl|logy(n)] +2k | Richomme and Rosenfeld, 2022

12

Over an alphabet of size kK > 3

The number of queries needed to reconstruct an unkown word w over A

> log, (k™) = nlog, k simple argument
< 1.59nlog,(k) + 2k log,(n) + 5k Skiena and Sundaram, 1995

< nflog,(k)] + k|log,(n)| +2k | Richomme and Rosenfeld, 2022
—_———

Not optimal ?

12

#-subword queries

(5) denotes the number of occurrences of v as a subword of u

0010 7
01

Example

13

(5) denotes the number of occurrences of v as a subword of u

(810>_1

Example

13

(5) denotes the number of occurrences of v as a subword of u

()

Example

13

)7 Fqueries

(5) denotes the number of occurrences of v as a subword of u

0010
(o) =

Example

(")? Lqueries

W € A* only known by the oracle.

w
For any u € A*, you can ask the query (>?

Minimize the number of

u

)

~queries needed to reconstruct W

13

An example

An unknown word W € {0,1}*

an: [(§)

14

An example

An unknown word W € {0,1}*

QL: | (()?| = 3 = Thereare30in W

14

An example

An unknown word W € {0,1}*

QL: | (()?| = 3 = Thereare30in W

Q2: | (%)?

14

An example

An unknown word W € {0,1}*

QL: | (()?| = 3 = Thereare30in W

Q2| (Y)?| = 4 = Thereare21in W

14

An example

An unknown word W € {0,1}*

QL: | (()?| = 3 = Thereare30in W w

Q2 [(W)?| = 4 — Thereare21in W 00011
00101
00110
01001
01010
01100
10001
10010
10100
11000

14

An example

An unknown word W € {0,1}*

QL: | (()?| = 3 = Thereare30in W w

Q2: (

Q3: (g\{

=2

)?| = 4 = Thereare21in W 00011
00101

00110
01001
01010
01100
10001
10010
10100
11000

)7 = 4

14

An example

An unknown word W € {0,1}*

QL: | (()?| = 3 = Thereare30in W w (

N—

Q2: (

Q3: (g\{

=2

)?| = 4 = Thereare21in W 00011
00101

00110
01001
01010
01100
10001
10010
10100
11000

)7 = 4

OI—‘I\JUOI\)(A)-P#U‘I@OE
—_

14

An example

An unknown word W € {0,1}*

w
QL: (\g/)? = 3 = Thereare30in W W (01>
Q2: (vlv)—, = 4 = Thereare21in W
31 (M2 = 4
! (01) 00110
01001

O R N W N W A~ N~ OO

14

An example

An unknown word W € {0,1}*

QL: | (()?| = 3 = Thereare30in W w

(

Q2 |(W)?| = 4 = Thereare21in W
(
(

Q3| (M) = 4
o1) 00110
Q4 oo\gvlo)? 01001

14

An example

An unknown word W € {0,1}*

QL: | (()?| = 3 = Thereare30in W w

Q3:

mrl = 4

(

Q2| (Y)?| = 4 = Thereare21in W
(

Q4: (

w
00110)? = 0 01001

14

An example

An unknown word W € {0,1}*

QL: | (()?| = 3 = Thereare30in W w
Q2| (Y)?| = 4 = Thereare21in W

Q3 [(@)?] = 4

Q4: | (poa)?| = 0 01001

W = 01001

14

Linear number of

15

Linear number of queries

uCW <— <W>21

= we can solve this in n + O(log n)

15

Linear number of queries

w
uCW <— (> >1
u
= we can solve this in n + O(log n)

Theorem (Fleischmann, Lejeune, Manea, Nowotka and Rigo, 2020)

There is an algorithm that reconstructs any unknown word W € {0,1}"
in at most | 4| 4+ 1 queries.

15

Linear number of queries

w
uCW <— (> >1
u
= we can solve this in n + O(log n)

Theorem (Fleischmann, Lejeune, Manea, Nowotka and Rigo, 2020)

There is an algorithm that reconstructs any unknown word W € {0,1}"
in at most | 4| 4+ 1 queries.

Write W as W = 0%°10%1...10%

Obtain the s; one by one Si = (1,-1\31_,-)-

15

Linear number of queries

w
UuCW <~ () >1
u
= we can solve this in n + O(log n)

Theorem (Fleischmann, Lejeune, Manea, Nowotka and Rigo, 2020)

There is an algorithm that reconstructs any unknown word W € {0,1}"
in at most | 4| 4+ 1 queries.

Write W as W = 0°10%1...10%
Obtain the s; one by one Si = (pfﬁiq)-
Theorem (Richomme and Rosenfeld)

There is an algorithm that reconstructs any unknown word W € {0, 1}"

in at most O(y/nlog, n) queries.

15

Linear number of queries

w
UuCW <~ () >1
u
= we can solve this in n + O(log n)

Theorem (Fleischmann, Lejeune, Manea, Nowotka and Rigo, 2020)

There is an algorithm that reconstructs any unknown word W € {0,1}"
in at most | 4| 4+ 1 queries.

Write W as W = 0°10%1...10%
Obtain the s; one by one Si = (pfﬁiq)-
Theorem (Richomme and Rosenfeld)

There is an algorithm that reconstructs any unknown word W € {0, 1}"

in at most O(y/nlog, n) queries.

Obtain multiple s; at once

15

Linear number of queries

w
UuCW <~ () >1
u
= we can solve this in n + O(log n)

Theorem (Fleischmann, Lejeune, Manea, Nowotka and Rigo, 2020)

There is an algorithm that reconstructs any unknown word W € {0,1}"
in at most | 4| 4+ 1 queries.

Write W as W = 0%°10%1...10%

Obtain the s; one by one Si = (pfﬁiq)-

Theorem (Richomme and Rosenfeld)

There is an algorithm that reconstructs any unknown word W € {0, 1}"

in at most O(y/nlog, n) queries.

Obtain multiple s; at once (b)

log, n

15

Toy problem

Suppose that we know W = 0%10*10>1"
with r > s; and we know r but not the s;.

Can we reconstruct W in one query ?

16

Toy problem

Suppose that we know W = 0%10*10>1"
with r > s; and we know r but not the s;.

Can we reconstruct W in one query ?

(o)

16

Toy problem

Suppose that we know W = 0%10*10>1"
with r > s; and we know r but not the s;.

Can we reconstruct W in one query ?

w r+1 r—+2
=S+ S+ S0
01r r r

16

Toy problem

Suppose that we know W = 0%10*10>1"
with r > s; and we know r but not the s;.

Can we reconstruct W in one query ?

<(:,]_/r> =5 + (I’ + 1)51 + WSO

16

Toy problem

Suppose that we know W = 0%10*10>1"
with r > s; and we know r but not the s;.

Can we reconstruct W in one query ?

w r+2)(r+1
<01r>252+(r+1)51+()2()50
In particular,
. 2(0y) 25 +2(r+1)s

(r+2)(r+1) (r+2)(r+1)

16

Toy problem

Suppose that we know W = 0%10*10>1"
with r > s; and we know r but not the s;.

Can we reconstruct W in one query 7

w r+2)(r+1
<01r>—52+(r+1)51+()2()50
In particular,
o 2(0) 29 +2(r+1)s
T (r+2)(r+1) (r+2)(r+1)
—_——
<1

16

Toy problem

Suppose that we know W = 0%10*10>1"
with r > s; and we know r but not the s;.

Can we reconstruct W in one query 7

<(\),1v,> =5+ (r+1)s; + wﬂ)
In particular,
20 25 42r+1)s 2(o0)
DT+) (r12)(r+) | rr2)(rt1)
<1

16

Toy problem

Suppose that we know W = 0%10*10>1"
with r > s; and we know r but not the s;.

Can we reconstruct W in one query 7

<(\)/1Vr> =5+ (r+1)s + w&)
In particular,
20 25 42r+1)s 2(o0)
DT+) (r12)(r+) | rr2)(rt1)
<1
51 =

16

Toy problem

Suppose that we know W = 0%10*10>1"
with r > s; and we know r but not the s;.

Can we reconstruct W in one query 7

<(\),1v,> =5+ (r+1)s; + wﬂ)
In particular,
20 25 42r+1)s 2(o0)
DT+) (r12)(r+) | rr2)(rt1)
<1

() - ety

r+1 _r—|—1:

51 =

16

Toy problem

Suppose that we know W = 0%10*10>1"
with r > s; and we know r but not the s;.

Can we reconstruct W in one query 7

w r+2)(r+1
<01,> =2 ik %50
In particular,
o 2(3’;’,) 29+ 2(r+1)s _ 2(3’;’,)
T (r+2)(r+1) (r+2)(r+1) (r+2)(r+1)
—_——
<1
w r+2)(r+1 w r+2)(r+1
L (y-eHeny g, () - e
r+1 r+1 r+1

16

Toy problem

Suppose that we know W = 0%10*10>1"
with r > s; and we know r but not the s;.

Can we reconstruct W in one query 7 YES

w r+2)(r+1
<01,> =2 ik %50
In particular,
o 2(3’;’,) 29+ 2(r+1)s _ 2(3’;’,)
T (r+2)(r+1) (r+2)(r+1) (r+2)(r+1)
—_——
<1
w r+2)(r+1 w r+2)(r+1
L (y-eHeny g, () - e
r+1 r+1 r+1

16

The proof idea

Lemma
Let W = 0%10"1...10% and let m € N. Suppose that

e t is known,

e Vi, either s; < m or s; is known.

Then, at most 4m queries are needed to reconstruct W.

17

The proof idea

Lemma
Let W = 0%10"1...10% and let m € N. Suppose that

e t is known,

e Vi, either s; < m or s; is known.

Then, at most 4m queries are needed to reconstruct W.

Let | = {i:s; > m}, we need to be able to efficiently find /.

17

The proof idea

Lemma
Let W = 0%10"1...10% and let m € N. Suppose that

e t is known,

e Vi, either s; < m or s; is known.

Then, at most 4m queries are needed to reconstruct W.

Let | = {i:s; > m}, we need to be able to efficiently find /.

Lemma

For an unknown word W = 02101 ...10%, the set | can be computed

2n[log, n]
m

in at most queries.

17

The “algorithm”

e Compute the numbers of 0 and 1 2 queries

18

The “algorithm”

e Compute the numbers of 0 and 1 2 queries

e Finds the large blocks of 0

20l .
2n[iog, n] queries
m

18

The “algorithm”

e Compute the numbers of 0 and 1 2 queries
e Finds the large blocks of 0 @ queries
e Compute the remaining s; 4m queries

18

The “algorithm”

e Compute the numbers of 0 and 1 2 queries
e Finds the large blocks of 0 @ queries
e Compute the remaining s; 4m queries

Take m = y/nlog, n =

18

The “algorithm”

e Compute the numbers of 0 and 1 2 queries
e Finds the large blocks of 0 @ queries
e Compute the remaining s; 4m queries

Take m = y/nlog, n —

Theorem (Richomme and Rosenfeld)

There is an algorithm that reconstructs any unknown word W € {0, 1}"

in at most O(+/nlog, n) queries.

18

A better strategy for uniform random word ?

Random word typically do not contain large blocks of 0.

19

A better strategy for uniform random word ?

Random word typically do not contain large blocks of 0.

Lemma

Let n be an integer and W be a binary word taken uniformly at random
in {0,1}", then

P(0/2"°e" js a factor of W) <

S|

19

A better strategy for uniform random word !

e Compute the numbers of 0 and 1 2 queries

20

A better strategy for uniform random word !

e Compute the numbers of 0 and 1 2 queries
e Pretend that there is no s; larger than [2log n] 0 queries

20

A better strategy for uniform random word !

e Compute the numbers of 0 and 1 2 queries
e Pretend that there is no s; larger than [2log n] 0 queries
e Compute the remaining s; 4[2log n] queries

20

A better strategy for uniform random word !

Compute the numbers of 0 and 1

Pretend that there is no s; larger than [2log n|
Compute the remaining s;

Did we found the correct W?

2 queries

0 queries

4[2log n] queries
1 query

20

A better strategy for uniform random word !

e Compute the numbers of 0 and 1 2 queries
e Pretend that there is no s; larger than [2log n] 0 queries
e Compute the remaining s; 4[2log n] queries
e Did we found the correct W? 1 query

e Yes — nothing to do 0 query

20

A better strategy for uniform random word !

e Compute the numbers of 0 and 1 2 queries
e Pretend that there is no s; larger than [2log n] 0 queries
e Compute the remaining s; 4[2log n] queries
e Did we found the correct W? 1 query
e Yes — nothing to do 0 query
e No — Apply the previous algorithm O(+/nlog n) queries

20

A better strategy for uniform random word !

e Compute the numbers of 0 and 1 2 queries
e Pretend that there is no s; larger than [2log n] 0 queries
e Compute the remaining s; 4[2log n] queries
e Did we found the correct W? 1 query
e Yes — nothing to do 0 query
e No — Apply the previous algorithm O(+/nlog n) queries

The expected number of queries is at most

O(/mTog)

2+4[2logn] +1+ =8logn+ O(1)

20

A better strategy for uniform random word !

e Compute the numbers of 0 and 1 2 queries
e Pretend that there is no s; larger than [2log n] 0 queries
e Compute the remaining s; 4[2log n] queries
e Did we found the correct W? 1 query
e Yes — nothing to do 0 query
e No — Apply the previous algorithm O(+/nlog n) queries

The expected number of queries is at most

o(\/rlog)

2+4[2logn] +1+ =8logn+ O(1)

Theorem (Richomme and Rosenfeld)
There is a deterministic algorithm that given a random uniform word W
from {0, 1}" reconstructs W in an expected number of queries

O(log n) .

20

The result

Worst case complexity | Average case complexity
Previous result < n/2 <n/2
Our result O(v/nlog n) O(log n)
Lower bounds 7 ”

21

The result

Worst case complexity | Average case complexity
Previous result < n/2 <n/2
Our result O(+/nlogn) O(log n)
Lower bounds 7 ”
Questions:

e A non-trivial lower bound on the number of queries needed?

21

The result

Worst case complexity | Average case complexity
Previous result < n/2 <n/2
Our result O(+/nlogn) O(log n)
Lower bounds 7 ”
Questions:

e A non-trivial lower bound on the number of queries needed?

e Improve the worst case complexity. Can we go down to O(log(n))?

21

Conclusion

Many interesting open questions that did not receive a lot of attention ?

22

Conclusion

Many interesting open questions that did not receive a lot of attention ?

Theorem (Fici, Prezza and Venturini, 2021)

Let C be a compressor, and let S € {0,1}" be an unknown binary
string of known length n. Then, there is an algorithm that reconstructs
S using O(|C(S)|) substring queries.

22

Conclusion

Many interesting open questions that did not receive a lot of attention ?

Theorem (Fici, Prezza and Venturini, 2021)

Let C be a compressor, and let S € {0,1}" be an unknown binary
string of known length n. Then, there is an algorithm that reconstructs
S using O(|C(S)|) substring queries.

A good lesson: binary search is sometime worst than greedy search.

22

Thanks !

	Factor queries
	-subword queries
	#-subword queries

