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Definitions

An alphabet is a finite set of letters

A word w ∈ A∗ is a finite sequence of letters

For all letter a and integer j , aj = a . . . a︸ ︷︷ ︸
j times

Example: a5 = aaaaa

Reconstructing words over A with the set of queries Q
W ∈ A∗ is only known by an oracle

Our task:

• Reconstruct W by asking queries from Q about W to the oracle

• Minimize the number of queries in terms of n = |W| and k = |A|
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A first example

3



The queries

u is a subword of w ⇐⇒ u is a subsequence of w

u is a factor of w ⇐⇒ u is a contiguous subsequence of w

Example: aba
is a subword of

is not a factor of
babbaa

Four families of queries about W{
“How many time does u occurs as a subword in W ?” : u ∈ A∗}{
“Is u a subword of W ?” : u ∈ A∗}{
“Is u a factor of W ?” : u ∈ A∗}{
“How many time does u occurs as a factor in W ?” : u ∈ A∗}
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Factor queries



A first example

The unknown word W ∈ {0, 1}∗ has length 9.

We try to build a factor of W :

01000101000|

• Is 00 a factor of W ? Yes

• Is 0000 a factor of W ? No

• Is 000 a factor of W ? Yes

• Is 0001 a factor of W ? Yes

• Is 00011 a factor of W ? No

• Is 000101 a factor of W ? Yes

• Is 0001011 a factor of W ? No

• Is 00010101 a factor of W ? No

• Is 000101001 a factor of W ? No

• Is 0001010001 a factor of W ? No

• Is 0001010 a factor of W ? Yes

• Is 00010100 a factor of W ? No

• Is 110001010 a factor of W ? No
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The corresponding strategy

If W taken uniformly at random (Iwama,Teruyama, and Tsuyama, 2018):

The algorithm (Skiena and Sundaram, 1995)

1. Find k the largest i such that 0i is factor of W:

Binary search on i

2. Try to extend it on the right:

Try adding 1, if it fails add 0

If it fails k + 1 consecutive times, find the position of failure

3. Extend on the left until reaching the desired size:

Try adding 1, if it fails add 0

1. in ⌈log2 n⌉+ O(1) queries

2.+3. in (n − k) + k + O(1) queries

}
≤ n + ⌈log2 n⌉+ O(1)
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3. Extend on the left until reaching the desired size:

Try adding 1, if it fails add 0

1. in ⌈log2 n⌉+ O(1) queries

2.+3. in (n − k) + k + O(1) queries

}
≤ n + ⌈log2 n⌉+ O(1)
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The corresponding strategy

If W taken uniformly at random (Iwama,Teruyama, and Tsuyama, 2018):

The algorithm (Skiena and Sundaram, 1995)

1. Find k the largest i such that 0i is factor of W:

Greedy search on i starting at i = log2 n

2. Try to extend it on the right:

Try adding 1, if it fails add 0

If it fails k + 1 consecutive times, find the position of failure

3. Extend on the left until reaching the desired size:

Try adding 1, if it fails add 0

1. in expected O(1) queries

2.+3. in (n − k) + k + O(1) queries

}
≤ n + O(1)

6



Lower bound on the number of ∃-factor queries

Lemma

For any n ≥ 1, there is no algorithm that reconstructs any W ∈ {0, 1}n

in less than n ∃-factor queries.

Every query has 2 possible outputs

If the number of queries is bounded by n − 1, then the number of

possible outputs of the algorithm is bounded by 2n−1

This is not possible since |{0, 1}n| = 2n
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The results

Number of ∃-factor queries needed to guess an unknown binary word

W ∈ {0, 1}n when n is known:

≥ n simple argument

≤ n + ⌈log n⌉+ O(1) Skiena and Sundaram, 1995

In average ≤ n + O(1) Iwama,Teruyama, and Tsuyama, 2018

≤ n + ⌈log n⌉
2 + O(1) Richomme and Rosenfeld, 2022
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∃-subword queries



∃-subword: reconstructing a word from its subwords

u is a subword of w ⇐⇒ u is a subsequence of w ⇐⇒ u ⊑ w

Example: 010 ⊑ 001101

Giwen an unknown word W over A, you can ask queries of the form

u ⊑ W?

How many queries do you need to reconstruct W ?

Lemma

For any n ≥ 1, there is no algorithm that reconstruct any W ∈ {0, 1}n

in less than n queries.
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∃-subword on binary alphabet - upper bound

Find t the number of 0 in W (binary search in O(log2 n))

Then W = 1s001s10 . . . 01st for some integers s0, . . . , st .

Useful tool

For all i and j ,
0i1j0t−i ⊑ W ⇐⇒ j ≤ si

For each i , we find si greedily:

0i1j0t−i ⊑ W for j = 1, 2 . . . until it says no (si + 1 queries for each si )

Total number of queries:

O(log2 n) +
∑
i

(si + 1) = O(log2 n) + n + 1

Theorem

There is an algorithm that reconstructs any unknown non-empty binary

word W in at most n + O(log2 n) queries.
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O(log2 n) +
∑
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(si + 1) = O(log2 n) + n + 1

Theorem (Skiena and Sundaram, 93)

There is an algorithm that reconstructs any unknown non-empty binary

word W in at most n + 2⌈log2 n⌉ queries.
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The gap over the binary alphabet

Theorem (Skiena and Sundaram, 93)

There is an algorithm that reconstructs any unknown non-empty binary

word W in at most n + 2⌈log2 n⌉ queries.

We need at least n queries

Can we do better than n + O(log2 n) ?

Or even n + O(1) ?
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Over an alphabet of size k ≥ 3

The number of queries needed to reconstruct an unkown word w over A

≥ log2(k
n) = n log2 k simple argument

≤ 1.59

1.59︸︷︷︸
Not optimal ?

n log2(k) + 2k log2(n) + 5k Skiena and Sundaram, 1995

≤ n⌈log2(k)⌉+

k⌊log2(n)⌋︸ ︷︷ ︸
Not optimal ?

+ 2k Richomme and Rosenfeld, 2022
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#-subword queries



(
W
·

)
? -queries

(
u
v

)
denotes the number of occurrences of v as a subword of u

Example (
0010

01

)
=?

(
W
·
)
? -queries

W ∈ A∗ only known by the oracle.

For any u ∈ A∗, you can ask the query

(
W

u

)
?

Minimize the number of

(
W

·

)
? -queries needed to reconstruct W
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An example

An unknown word W ∈ {0, 1}∗

Q1:
(
W
0

)
?

= 3 =⇒ There are 3 0 in W

Q2:
(
W
1

)
? = 4 =⇒ There are 2 1 in W

Q3:
(
W
01

)
? = 4

Q4:
(

W
00110

)
? = 0

W = 01001

W

(
W

01

)

00011

6

00101

5

00110

4

01001

4

01010

3

01100

2

10001

3

10010

2

10100

1

11000

0

14
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Linear number of
(
W
·

)
? -queries

u ⊑ W ⇐⇒
(
W

u

)
≥ 1

=⇒ we can solve this in n + O(log n)

Theorem (Fleischmann, Lejeune, Manea, Nowotka and Rigo, 2020)

There is an algorithm that reconstructs any unknown word W ∈ {0, 1}n

in at most
⌊
n
2

⌋
+ 1 queries.

Write W as W = 0s010s11 . . . 10st

Obtain the si one by one si =
(

W
1i10t−i

)
.

Theorem (Richomme and Rosenfeld)
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in at most O(
√
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Toy problem

Suppose that we know W = 0s010s110s21r

with r ≫ si and we know r but not the si .

Can we reconstruct W in one query ?

(
W

01r

)
= s2 +

(
r + 1

r

)
s1 +

(
r + 2

r

)
s0

In particular,

s0 =
2
(
W
01r

)
(r + 2)(r + 1)

− 2s2 + 2(r + 1)s1
(r + 2)(r + 1)

=

⌊
2
(
W
01r

)
(r + 2)(r + 1)

⌋

s1 =

(
W
abr

)
− (r+2)(r+1)

2 s0

r + 1
− s2

r + 1
=

⌊(
W
abr

)
− (r+2)(r+1)

2 s0

r + 1

⌋
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The proof idea

Lemma

Let W = 0s010s11 . . . 10st and let m ∈ N. Suppose that

• t is known,

• ∀i , either si < m or si is known.

Then, at most 4m queries are needed to reconstruct W.

Let I = {i : si ≥ m}, we need to be able to efficiently find I .

Lemma

For an unknown word W = 0s010s11 . . . 10st , the set I can be computed

in at most 2n⌈log2 n⌉
m queries.

17
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The “algorithm”

• Compute the numbers of 0 and 1 2 queries

• Finds the large blocks of 0 2n⌈log2 n⌉
m queries

• Compute the remaining si 4m queries

Take m =
√

n log2 n =⇒

Theorem (Richomme and Rosenfeld)

There is an algorithm that reconstructs any unknown word W ∈ {0, 1}n

in at most O(
√
n log2 n) queries.

18
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A better strategy for uniform random word ?

Random word typically do not contain large blocks of 0.

Lemma

Let n be an integer and W be a binary word taken uniformly at random

in {0, 1}n, then

P(0⌈2 log n⌉ is a factor of W) ≤ 1

n
.
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A better strategy for uniform random word !

• Compute the numbers of 0 and 1 2 queries

• Pretend that there is no si larger than ⌈2 log n⌉ 0 queries

• Compute the remaining si 4⌈2 log n⌉ queries

• Did we found the correct W? 1 query

• Yes =⇒ nothing to do 0 query

• No =⇒ Apply the previous algorithm O(
√
n log n) queries

The expected number of queries is at most

2 + 4⌈2 log n⌉+ 1 +
O(

√
n log n)

n
= 8 log n + O(1)

Theorem (Richomme and Rosenfeld)

There is a deterministic algorithm that given a random uniform word W

from {0, 1}n reconstructs W in an expected number of queries

O(log n) .
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The result

Worst case complexity Average case complexity

Previous result ≤ n/2 ≤ n/2

Our result O(
√
n log n) O(log n)

Lower bounds ?? ??

Questions:

• A non-trivial lower bound on the number of queries needed?

• Improve the worst case complexity. Can we go down to O(log(n))?

21



The result

Worst case complexity Average case complexity

Previous result ≤ n/2 ≤ n/2

Our result O(
√
n log n) O(log n)

Lower bounds ?? ??

Questions:

• A non-trivial lower bound on the number of queries needed?

• Improve the worst case complexity. Can we go down to O(log(n))?

21



The result

Worst case complexity Average case complexity

Previous result ≤ n/2 ≤ n/2

Our result O(
√
n log n) O(log n)

Lower bounds ?? ??

Questions:

• A non-trivial lower bound on the number of queries needed?

• Improve the worst case complexity. Can we go down to O(log(n))?

21



Conclusion

Many interesting open questions that did not receive a lot of attention ?

Theorem (Fici, Prezza and Venturini, 2021)

Let C be a compressor, and let S ∈ {0, 1}n be an unknown binary

string of known length n. Then, there is an algorithm that reconstructs

S using O(|C (S)|) substring queries.

A good lesson: binary search is sometime worst than greedy search.
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Thanks !
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