Reconstructing words Using queries on subwords or factors

Gwenaël Richomme and Matthieu Rosenfeld

December 5, 2023

An **alphabet** is a finite set of **letters** A **word** $w \in A^*$ is a finite sequence of letters

Definitions

An **alphabet** is a finite set of **letters** A **word** $w \in A^*$ is a finite sequence of letters

For all letter *a* and integer *j*, $a^j = \underbrace{a \dots a}_{j \text{ times}}$

Definitions

An **alphabet** is a finite set of **letters** A **word** $w \in A^*$ is a finite sequence of letters

For all letter *a* and integer *j*, $a^j = \underbrace{a \dots a}_{j \text{ times}}$

Example: $a^5 = aaaaa$

Definitions

An **alphabet** is a finite set of **letters** A **word** $w \in A^*$ is a finite sequence of letters

For all letter *a* and integer *j*, $a^j = \underbrace{a \dots a}_{j \text{ times}}$

Example: $a^5 = aaaaa$

Reconstructing words over ${\mathcal A}$ with the set of queries ${\mathcal Q}$

 $\textbf{W} \in \mathcal{A}^{*}$ is only known by an oracle

Our task:

- Reconstruct W by asking queries from $\mathcal Q$ about W to the oracle
- Minimize the number of queries in terms of $n = |\mathbf{W}|$ and $k = |\mathcal{A}|$

u is a **factor** of $w \iff u$ is a **contiguous** subsequence of *w*

u is a **factor** of $w \iff u$ is a **contiguous** subsequence of *w*

babbaa

Example: aba

is a subword of is not a factor of

u is a **factor** of $w \iff u$ is a **contiguous** subsequence of *w*

Example: aba

is a subword of is not a factor of

of *babbaa*

Four families of queries about W

{ "How many time does u occurs as a subword in **W** ?" : $u \in A^*$ }

u is a **factor** of $w \iff u$ is a **contiguous** subsequence of *w*

Example: aba

is a subword of is not a factor of

babbaa

Four families of queries about W

 $\{ \text{ "How many time does } u \text{ occurs as a subword in } \mathbf{W} ?" : u \in \mathcal{A}^* \}$ $\{ \text{ "Is } u \text{ a subword of } \mathbf{W} ?" : u \in \mathcal{A}^* \}$

u is a **factor** of $w \iff u$ is a **contiguous** subsequence of *w*

Example: aba is a subword of babbaa is not a factor of

Four families of queries about W

"How many time does u occurs as a subword in \mathbf{W} ?" : $u \in \mathcal{A}^*$ } "Is u a subword of \mathbf{W} ?" : $u \in \mathcal{A}^*$ "Is u a factor of \mathbf{W} ?" : $u \in \mathcal{A}^*$

u is a **factor** of $w \iff u$ is a **contiguous** subsequence of *w*

Example: aba is a subword of babbaa is not a factor of

Four families of queries about W

"How many time does u occurs as a subword in \mathbf{W} ?" : $u \in \mathcal{A}^*$ } "Is u a subword of \mathbf{W} ?" : $u \in \mathcal{A}^*$ "Is u a factor of \mathbf{W} ?" : $u \in \mathcal{A}^*$ "How many time does u occurs as a factor in \mathbf{W} ?" : $u \in \mathcal{A}^*$

Factor queries

The unknown word $W \in \{0,1\}^*$ has length 9.

The unknown word $W \in \{0,1\}^*$ has length 9.

We try to build a factor of \boldsymbol{W} :

• Is 00 a factor of W ?

The unknown word $W \in \{0,1\}^*$ has length 9.

We try to build a factor of W: 00

• Is 00 a factor of W ? Yes

The unknown word $W \in \{0,1\}^*$ has length 9.

- Is 00 a factor of W ? Yes
- Is 0000 a factor of W ?

The unknown word $W \in \{0,1\}^*$ has length 9.

- Is 00 a factor of W ? Yes
- Is 0000 a factor of *W* ? No

The unknown word $W \in \{0,1\}^*$ has length 9.

- Is 00 a factor of W ? Yes
- Is 0000 a factor of W ? No
- Is 000 a factor of W ?

The unknown word $W \in \{0,1\}^*$ has length 9.

- Is 00 a factor of W ? Yes
- Is 0000 a factor of W ? No
- Is 000 a factor of W ? Yes

The unknown word $W \in \{0,1\}^*$ has length 9.

- Is 00 a factor of W ? Yes
- Is 0000 a factor of W ? No
- Is 000 a factor of W ? Yes
- Is 0001 a factor of W ?

The unknown word $W \in \{0,1\}^*$ has length 9.

- Is 00 a factor of W ? Yes
- Is 0000 a factor of W ? No
- Is 000 a factor of W ? Yes
- Is 0001 a factor of W ? Yes

The unknown word $W \in \{0,1\}^*$ has length 9.

- Is 00 a factor of W ? Yes
- Is 0000 a factor of W ? No
- Is 000 a factor of W ? Yes
- Is 0001 a factor of W ? Yes
- Is 00011 a factor of *W* ?

The unknown word $W \in \{0,1\}^*$ has length 9.

- Is 00 a factor of W ? Yes
- Is 0000 a factor of *W* ? No
- Is 000 a factor of W ? Yes
- Is 0001 a factor of W ? Yes
- Is 00011 a factor of *W* ? No

The unknown word $W \in \{0,1\}^*$ has length 9.

- Is 00 a factor of W ? Yes
- Is 0000 a factor of *W* ? No
- Is 000 a factor of W ? Yes
- Is 0001 a factor of W ? Yes
- Is 00011 a factor of *W* ? No
- Is 000101 a factor of *W* ?

The unknown word $W \in \{0,1\}^*$ has length 9.

- Is 00 a factor of W ? Yes
- Is 0000 a factor of W ? No
- Is 000 a factor of W ? Yes
- Is 0001 a factor of W ? Yes
- Is 00011 a factor of *W* ? No
- Is 000101 a factor of W ? Yes

The unknown word $W \in \{0,1\}^*$ has length 9.

- Is 00 a factor of W ? Yes
- Is 0000 a factor of W ? No
- Is 000 a factor of W ? Yes
- Is 0001 a factor of W ? Yes
- Is 00011 a factor of *W* ? No
- Is 000101 a factor of W ? Yes
- Is 0001011 a factor of *W* ?

The unknown word $W \in \{0,1\}^*$ has length 9.

- Is 00 a factor of W ? Yes
- Is 0000 a factor of W ? No
- Is 000 a factor of W ? Yes
- Is 0001 a factor of W ? Yes
- Is 00011 a factor of *W* ? No
- Is 000101 a factor of W ? Yes
- Is 0001011 a factor of *W* ? No

The unknown word $W \in \{0,1\}^*$ has length 9.

- Is 00 a factor of W ? Yes
- Is 0000 a factor of W ? No
- Is 000 a factor of W ? Yes
- Is 0001 a factor of W ? Yes
- Is 00011 a factor of *W* ? No
- Is 000101 a factor of W ? Yes
- Is 0001011 a factor of W ? No
- Is 00010101 a factor of *W* ?

The unknown word $W \in \{0,1\}^*$ has length 9.

We try to build a factor of W : 000101<u>00</u>

- Is 00 a factor of W ? Yes
- Is 0000 a factor of W ? No
- Is 000 a factor of W ? Yes
- Is 0001 a factor of W ? Yes
- Is 00011 a factor of W ? No
- Is 000101 a factor of W ? Yes
- Is 0001011 a factor of W ? No
- Is 00010101 a factor of *W* ? No

The unknown word $W \in \{0,1\}^*$ has length 9.

We try to build a factor of W : 000101<u>00</u>

- Is 00 a factor of W ? Yes
- Is 0000 a factor of W ? No
- Is 000 a factor of W ? Yes
- Is 0001 a factor of W ? Yes
- Is 00011 a factor of W ? No
- Is 000101 a factor of W ? Yes
- Is 0001011 a factor of *W* ? No
- Is 00010101 a factor of *W* ? No
- Is 000101001 a factor of *W* ?

The unknown word $W \in \{0,1\}^*$ has length 9.

- Is 00 a factor of W ? Yes
- Is 0000 a factor of W ? No
- Is 000 a factor of W ? Yes
- Is 0001 a factor of W ? Yes
- Is 00011 a factor of *W* ? No
- Is 000101 a factor of W ? Yes
- Is 0001011 a factor of *W* ? No
- Is 00010101 a factor of *W* ? No
- Is 000101001 a factor of *W* ? No

The unknown word $W \in \{0,1\}^*$ has length 9.

- Is 00 a factor of W ? Yes
- Is 0000 a factor of W ? No
- Is 000 a factor of W ? Yes
- Is 0001 a factor of W ? Yes
- Is 00011 a factor of *W* ? No
- Is 000101 a factor of W ? Yes
- Is 0001011 a factor of *W* ? No
- Is 00010101 a factor of *W* ? No
- Is 000101001 a factor of *W* ? No
- Is 0001010001 a factor of *W* ?

The unknown word $W \in \{0,1\}^*$ has length 9.

- Is 00 a factor of W ? Yes
- Is 0000 a factor of W ? No
- Is 000 a factor of W ? Yes
- Is 0001 a factor of W ? Yes
- Is 00011 a factor of *W* ? No
- Is 000101 a factor of W ? Yes
- Is 0001011 a factor of *W* ? No
- Is 00010101 a factor of *W* ? No
- Is 000101001 a factor of W ? No
- Is 0001010001 a factor of *W* ? No

The unknown word $W \in \{0,1\}^*$ has length 9.

- Is 00 a factor of W ? Yes
- Is 0000 a factor of W ? No
- Is 000 a factor of W ? Yes
- Is 0001 a factor of W ? Yes
- Is 00011 a factor of *W* ? No
- Is 000101 a factor of W ? Yes
- Is 0001011 a factor of *W* ? No
- Is 00010101 a factor of *W* ? No
- Is 000101001 a factor of W ? No
- Is 0001010001 a factor of *W* ? No
- Is 0001010 a factor of *W* ?

The unknown word $W \in \{0,1\}^*$ has length 9.

- Is 00 a factor of W ? Yes
- Is 0000 a factor of W ? No
- Is 000 a factor of W ? Yes
- Is 0001 a factor of W ? Yes
- Is 00011 a factor of *W* ? No
- Is 000101 a factor of W ? Yes
- Is 0001011 a factor of *W* ? No
- Is 00010101 a factor of *W* ? No
- Is 000101001 a factor of W ? No
- Is 0001010001 a factor of *W* ? No
- Is 0001010 a factor of *W* ? Yes
The unknown word $W \in \{0,1\}^*$ has length 9.

- Is 00 a factor of W ? Yes
- Is 0000 a factor of W ? No
- Is 000 a factor of W ? Yes
- Is 0001 a factor of W ? Yes
- Is 00011 a factor of *W* ? No
- Is 000101 a factor of W ? Yes
- Is 0001011 a factor of *W* ? No
- Is 00010101 a factor of *W* ? No
- Is 000101001 a factor of *W* ? No
- Is 0001010001 a factor of *W* ? No
- Is 0001010 a factor of *W* ? Yes
- Is 00010100 a factor of *W* ?

The unknown word $W \in \{0,1\}^*$ has length 9.

- Is 00 a factor of W ? Yes
- Is 0000 a factor of W ? No
- Is 000 a factor of W ? Yes
- Is 0001 a factor of W ? Yes
- Is 00011 a factor of *W* ? No
- Is 000101 a factor of W ? Yes
- Is 0001011 a factor of *W* ? No
- Is 00010101 a factor of *W* ? No
- Is 000101001 a factor of *W* ? No
- Is 0001010001 a factor of *W* ? No
- Is 0001010 a factor of *W* ? Yes
- Is 00010100 a factor of *W* ? No

The unknown word $W \in \{0,1\}^*$ has length 9.

- Is 00 a factor of W ? Yes
- Is 0000 a factor of W ? No
- Is 000 a factor of W ? Yes
- Is 0001 a factor of W ? Yes
- Is 00011 a factor of *W* ? No
- Is 000101 a factor of W ? Yes
- Is 0001011 a factor of *W* ? No
- Is 00010101 a factor of *W* ? No
- Is 000101001 a factor of W ? No
- Is 0001010001 a factor of *W* ? No
- Is 0001010 a factor of *W* ? Yes
- Is 00010100 a factor of *W* ? No
- Is 110001010 a factor of *W* ?

The unknown word $W \in \{0,1\}^*$ has length 9.

- Is 00 a factor of W ? Yes
- Is 0000 a factor of W ? No
- Is 000 a factor of W ? Yes
- Is 0001 a factor of W ? Yes
- Is 00011 a factor of *W* ? No
- Is 000101 a factor of W ? Yes
- Is 0001011 a factor of *W* ? No
- Is 00010101 a factor of *W* ? No
- Is 000101001 a factor of W ? No
- Is 0001010001 a factor of *W* ? No
- Is 0001010 a factor of *W* ? Yes
- Is 00010100 a factor of *W* ? No
- Is 110001010 a factor of *W* ? No

The unknown word $W \in \{0,1\}^*$ has length 9.

- Is 00 a factor of W ? Yes
- Is 0000 a factor of W ? No
- Is 000 a factor of W ? Yes
- Is 0001 a factor of W ? Yes
- Is 00011 a factor of *W* ? No
- Is 000101 a factor of W ? Yes
- Is 0001011 a factor of *W* ? No
- Is 00010101 a factor of *W* ? No
- Is 000101001 a factor of W ? No
- Is 0001010001 a factor of *W* ? No
- Is 0001010 a factor of *W* ? Yes
- Is 00010100 a factor of *W* ? No
- Is 110001010 a factor of *W* ? No

1. Find k the largest i such that 0^i is factor of **W**: Binary search on i

- Find k the largest i such that 0ⁱ is factor of W: Binary search on i
- 2. Try to extend it on the right:

Try adding 1, if it fails add 0 If it fails k + 1 consecutive times, find the position of failure

- Find k the largest i such that 0ⁱ is factor of W: Binary search on i
- 2. Try to extend it on the right: Try adding 1, if it fails add 0 If it fails k + 1 consecutive times, find the position of failure
- Extend on the left until reaching the desired size: Try adding 1, if it fails add 0

- Find k the largest i such that 0ⁱ is factor of W: Binary search on i
- 2. Try to extend it on the right: Try adding 1, if it fails add 0 If it fails k + 1 consecutive times, find the position of failure
- 3. Extend on the left until reaching the desired size: Try adding 1, if it fails add 0
- 1. in $\lceil \log_2 n \rceil + O(1)$ queries

- Find k the largest i such that 0ⁱ is factor of W: Binary search on i
- 2. Try to extend it on the right: Try adding 1, if it fails add 0 If it fails k + 1 consecutive times, find the position of failure
- Extend on the left until reaching the desired size: Try adding 1, if it fails add 0

1. in $\lceil \log_2 n \rceil + O(1)$ queries 2.+3. in (n - k) + k + O(1) queries

- Find k the largest i such that 0ⁱ is factor of W: Binary search on i
- 2. Try to extend it on the right: Try adding 1, if it fails add 0 If it fails k + 1 consecutive times, find the position of failure
- Extend on the left until reaching the desired size: Try adding 1, if it fails add 0
- 1. in $\lceil \log_2 n \rceil + O(1)$ queries 2.+3. in (n - k) + k + O(1) queries

$$\bigg\} \leq n + \lceil \log_2 n \rceil + O(1)$$

If W taken uniformly at random (Iwama, Teruyama, and Tsuyama, 2018):

The algorithm (Skiena and Sundaram, 1995)

- 1. Find k the largest i such that 0^i is factor of W: Greedy search on i starting at $i = \log_2 n$
- 2. Try to extend it on the right: Try adding 1, if it fails add 0 If it fails k + 1 consecutive times, find the position of failure
- Extend on the left until reaching the desired size: Try adding 1, if it fails add 0
- 1. in expected O(1) queries 2.+3. in (n - k) + k + O(1) queries

$$\Big\} \le n + O(1)$$

For any $n \ge 1$, there is no algorithm that reconstructs any $\mathbf{W} \in \{0,1\}^n$ in less than $n \exists$ -factor queries.

For any $n \ge 1$, there is no algorithm that reconstructs any $\mathbf{W} \in \{0,1\}^n$ in less than $n \exists$ -factor queries.

Every query has 2 possible outputs

For any $n \ge 1$, there is no algorithm that reconstructs any $\mathbf{W} \in \{0,1\}^n$ in less than $n \exists$ -factor queries.

Every query has 2 possible outputs

If the number of queries is bounded by n - 1, then the number of possible outputs of the algorithm is bounded by 2^{n-1}

For any $n \ge 1$, there is no algorithm that reconstructs any $\mathbf{W} \in \{0,1\}^n$ in less than $n \exists$ -factor queries.

Every query has 2 possible outputs

If the number of queries is bounded by n - 1, then the number of possible outputs of the algorithm is bounded by 2^{n-1}

This is not possible since $|\{0,1\}^n| = 2^n$

$\geq n$	simple argument
$\leq n + \lceil \log n \rceil + O(1)$	Skiena and Sundaram, 1995

$\geq n$	simple argument
$\leq n + \lceil \log n \rceil + O(1)$	Skiena and Sundaram, 1995
In average $\leq n + O(1)$	Iwama, Teruyama, and Tsuyama, 2018

$\geq n$	simple argument
$\leq n + \lceil \log n \rceil + O(1)$	Skiena and Sundaram, 1995
In average $\leq n + O(1)$	Iwama, Teruyama, and Tsuyama, 2018
$\leq n + rac{\lceil \log n \rceil}{2} + O(1)$	Richomme and Rosenfeld, 2022

∃-subword queries

u is a **subword** of $w \iff u$ is a subsequence of $w \iff u \sqsubseteq w$

u is a **subword** of $w \iff u$ is a subsequence of $w \iff u \sqsubseteq w$ *Example:* 010 \sqsubseteq 001101 *u* is a **subword** of $w \iff u$ is a subsequence of $w \iff u \sqsubseteq w$ *Example:* 010 \sqsubseteq 001101

Giwen an unknown word \boldsymbol{W} over $\mathcal{A},$ you can ask queries of the form

 $u \sqsubseteq \mathbf{W}$?

How many queries do you need to reconstruct W ?

u is a **subword** of $w \iff u$ is a subsequence of $w \iff u \sqsubseteq w$ *Example:* 010 \sqsubseteq 001101

Giwen an unknown word \boldsymbol{W} over $\mathcal{A},$ you can ask queries of the form

 $u \sqsubseteq \mathbf{W}$?

How many queries do you need to reconstruct W ?

Lemma

For any $n \ge 1$, there is no algorithm that reconstruct any $\mathbf{W} \in \{0,1\}^n$ in less than n queries.

Find t the number of 0 in **W** (binary search in $O(\log_2 n)$)

Find t the number of 0 in **W** (binary search in $O(\log_2 n)$) Then $\mathbf{W} = 1^{s_0} 0 1^{s_1} 0 \dots 0 1^{s_t}$ for some integers s_0, \dots, s_t .

Find t the number of 0 in **W** (binary search in $O(\log_2 n)$) Then $\mathbf{W} = 1^{s_0} 0 1^{s_1} 0 \dots 0 1^{s_t}$ for some integers s_0, \dots, s_t .

Useful tool For all *i* and *j*, $0^{i}1^{j}0^{t-i} \sqsubseteq \mathbf{W} \iff j \le s_{i}$

Find t the number of 0 in **W** (binary search in $O(\log_2 n)$) Then $\mathbf{W} = 1^{s_0} 0 1^{s_1} 0 \dots 0 1^{s_t}$ for some integers s_0, \dots, s_t .

Useful tool For all *i* and *j*, $0^i 1^j 0^{t-i} \sqsubseteq \mathbf{W} \iff j \le s_i$

For each i, we find s_i ...

Find t the number of 0 in **W** (binary search in $O(\log_2 n)$) Then $\mathbf{W} = 1^{s_0} 0 1^{s_1} 0 \dots 0 1^{s_t}$ for some integers s_0, \dots, s_t .

Useful tool For all *i* and *j*, $0^i 1^j 0^{t-i} \sqsubseteq \mathbf{W} \iff j \le s_i$

For each *i*, we find *s_i* **greedily**:

Find t the number of 0 in **W** (binary search in $O(\log_2 n)$) Then $\mathbf{W} = 1^{s_0} 0 1^{s_1} 0 \dots 0 1^{s_t}$ for some integers s_0, \dots, s_t .

For all *i* and *j*, $0^{i}1^{j}0^{t-i} \sqsubseteq \mathbf{W} \iff j \le s_{i}$

For each *i*, we find *s_i* **greedily**:

Useful tool

 $|0^{i}1^{j}0^{t-i} \sqsubseteq \mathbf{W}|$ for j = 1, 2... until it says no $(s_{i} + 1 \text{ queries for each } s_{i})$

Find t the number of 0 in **W** (binary search in $O(\log_2 n)$) Then $\mathbf{W} = 1^{s_0} 0 1^{s_1} 0 \dots 0 1^{s_t}$ for some integers s_0, \dots, s_t .

Useful tool

For all *i* and *j*, $0^i 1^j 0^{t-i} \sqsubseteq \mathbf{W} \iff j \le s_i$

For each *i*, we find *s_i* **greedily**:

 $0^{i}1^{j}0^{t-i} \sqsubseteq \mathbf{W}$ for j = 1, 2... until it says no $(s_{i} + 1 \text{ queries for each } s_{i})$

Total number of queries:

$$O(\log_2 n) + \sum_i (s_i + 1) = O(\log_2 n) + n + 1$$

Find t the number of 0 in **W** (binary search in $O(\log_2 n)$) Then $\mathbf{W} = 1^{s_0} 0 1^{s_1} 0 \dots 0 1^{s_t}$ for some integers s_0, \dots, s_t .

Useful tool

For all *i* and *j*, $0^i 1^j 0^{t-i} \sqsubseteq \mathbf{W} \iff j \le s_i$

For each *i*, we find *s_i* **greedily**:

 $0^{i}1^{j}0^{t-i} \sqsubseteq \mathbf{W}$ for j = 1, 2... until it says no $(s_{i} + 1 \text{ queries for each } s_{i})$

Total number of queries:

$$O(\log_2 n) + \sum_i (s_i + 1) = O(\log_2 n) + n + 1$$

Theorem (Skiena and Sundaram, 93)

There is an algorithm that reconstructs any unknown non-empty binary word **W** in at most $n + 2\lceil \log_2 n \rceil$ queries.

Theorem (Skiena and Sundaram, 93)

There is an algorithm that reconstructs any unknown non-empty binary word **W** in at most $n + 2\lceil \log_2 n \rceil$ queries.

We need at least n queries

Theorem (Skiena and Sundaram, 93)

There is an algorithm that reconstructs any unknown non-empty binary word **W** in at most $n + 2\lceil \log_2 n \rceil$ queries.

We need at least n queries

```
Can we do better than n + O(\log_2 n) ?
```

Or even n + O(1)?

The number of queries needed to reconstruct an unkown word w over $\mathcal A$

 $\geq \log_2(k^n) = n \log_2 k$ simple argument
The number of queries needed to reconstruct an unkown word w over $\mathcal A$

$\geq \log_2(k^n) = n \log_2 k$	simple argument
$\leq 1.59 n \log_2(k) + 2k \log_2(n) + 5k$	Skiena and Sundaram, 1995

The number of queries needed to reconstruct an unkown word w over ${\mathcal A}$

$\geq \log_2(k^n) = n \log_2 k$	simple argument
$\leq \underbrace{1.59}{n \log_2(k)} + 2k \log_2(n) + 5k$	Skiena and Sundaram, 1995
Not optimal ?	

The number of queries needed to reconstruct an unkown word w over $\mathcal A$

$\geq \log_2(k^n) = n \log_2 k$	simple argument
$\leq 1.59 n \log_2(k) + 2k \log_2(n) + 5k$	Skiena and Sundaram, 1995
$\leq n \lceil \log_2(k) \rceil + k \lfloor \log_2(n) \rfloor + 2k$	Richomme and Rosenfeld, 2022

The number of queries needed to reconstruct an unkown word w over $\mathcal A$

$\geq \log_2(k^n) = n \log_2 k$	simple argument
$\leq 1.59 n \log_2(k) + 2k \log_2(n) + 5k$	Skiena and Sundaram, 1995
$\leq n \lceil \log_2(k) \rceil + \underbrace{k \lfloor \log_2(n) \rfloor}_{\text{Not optimal ?}} + 2k$	Richomme and Rosenfeld, 2022

#-subword queries

Example

$$\binom{0010}{01} = ?$$

Example

$$\binom{0010}{01} = 1$$

Example

$$\binom{0010}{01} = 2$$

Example

$$\binom{0010}{01} = 2$$

 $\binom{\mathsf{W}}{\cdot}$ -queries

 $\mathbf{W} \in \mathcal{A}^*$ only known by the oracle.

For any $u\in \mathcal{A}^*$, you can ask the query

$$\begin{pmatrix} \mathbf{W} \\ u \end{pmatrix}$$
?

Minimize the number of $(\mathbf{W} \\ \cdot)$? -queries needed to reconstruct \mathbf{W}

An unknown word $\boldsymbol{W} \in \{0,1\}^*$

An unknown word $\boldsymbol{W} \in \{0,1\}^*$

Q1:
$$\binom{\mathsf{W}}{0}$$
? = 3 \implies There are 3 0 in W

An unknown word $\boldsymbol{\mathsf{W}} \in \{0,1\}^*$

Q1:
$$\binom{\mathsf{W}}{0}$$
? = 3 \implies There are 3 0 in W
Q2: $\binom{\mathsf{W}}{1}$?

An unknown word $\boldsymbol{\mathsf{W}} \in \{0,1\}^*$

Q1:
$$\binom{\mathsf{W}}{0}$$
? = 3 \implies There are 3 0 in W
Q2: $\binom{\mathsf{W}}{1}$? = 4 \implies There are 2 1 in W

An unknown word $\boldsymbol{W} \in \{0,1\}^*$

Q1:
$$\binom{\mathsf{W}}{0}$$
? = 3 \implies There are 3 0 in W W
Q2: $\binom{\mathsf{W}}{1}$? = 4 \implies There are 2 1 in W 00011
00101
00110

An unknown word $\boldsymbol{W} \in \{0,1\}^*$

Q1:
$$\binom{\mathsf{W}}{0}$$
?=3 \implies There are 3 0 in WWQ2: $\binom{\mathsf{W}}{1}$?=4 \implies There are 2 1 in W00011Q3: $\binom{\mathsf{W}}{01}$?=400101

An unknown word $\boldsymbol{W} \in \{0,1\}^*$

Q1:
$$\binom{\mathsf{W}}{0}$$
? = 3 \implies There are 3 0 in W W $\binom{\mathsf{W}}{01}$ Q2: $\binom{\mathsf{W}}{1}$? = 4 \implies There are 2 1 in W 00011 6Q3: $\binom{\mathsf{W}}{01}$? = 400101 500110 4

01001 4

- 01010 3
- 01100 2
- 10001 3
- 10010 2
- 10100 1
- 11000 0

An unknown word $\boldsymbol{\mathsf{W}} \in \{0,1\}^*$

Q1:
$$(\begin{pmatrix} \mathsf{W} \\ 0 \end{pmatrix}) ? = 3 \implies$$
 There are 3 0 in W W $\begin{pmatrix} \mathsf{W} \\ 01 \end{pmatrix}$ Q2: $(\begin{pmatrix} \mathsf{W} \\ 1 \end{pmatrix}) ? = 4 \implies$ There are 2 1 in W 00011 6Q3: $(\begin{pmatrix} \mathsf{W} \\ 01 \end{pmatrix}) ? = 4$ 00101 500110 4

01001 4

- 01010 **3**
- 01100 2
- 10001 **3**
 - 10010 **2**
- 10100 **1**
- 11000 **0**

An unknown word $\boldsymbol{W} \in \{0,1\}^*$

Q1:
$$\begin{bmatrix} (\mathbf{W}) \\ 0 \end{bmatrix}$$
=3 \implies There are 3 0 in WWQ2: $\begin{bmatrix} (\mathbf{W}) \\ 1 \end{bmatrix}$ =4 \implies There are 2 1 in W00011Q3: $\begin{bmatrix} (\mathbf{W}) \\ 011 \end{bmatrix}$ =400100Q4: $\begin{bmatrix} (\mathbf{W}) \\ 00110 \end{bmatrix}$ 01001010010100101001010011000110001

An unknown word $\boldsymbol{W} \in \{0,1\}^*$

Q1:
$$\begin{bmatrix} W \\ 0 \end{bmatrix}$$
 = 3 \implies There are 3 0 in W W
Q2: $\begin{bmatrix} W \\ 1 \end{bmatrix}$ = 4 \implies There are 2 1 in W 00011
Q3: $\begin{bmatrix} W \\ 01 \end{bmatrix}$ = 4 00110
Q4: $\begin{bmatrix} W \\ 00110 \end{bmatrix}$ = 0 01001
01001
01001
01001

An unknown word $\boldsymbol{W} \in \{0,1\}^*$

Q1:
$$\binom{\mathsf{W}}{0}$$
?=3 \Longrightarrow There are 3 0 in WWQ2: $\binom{\mathsf{W}}{1}$?=4 \Rightarrow There are 2 1 in W00011Q3: $\binom{\mathsf{W}}{01}$?=400100Q4: $\binom{\mathsf{W}}{00110}$?=00100101000010010100001000W=0100110001100101000110100110001100011000

Linear number of $\left[\binom{\mathsf{W}}{\cdot}\right]^2$ -queries

$$u \sqsubseteq \mathbf{W} \iff \begin{pmatrix} \mathbf{W} \\ u \end{pmatrix} \ge 1$$

Linear number of $\left[\binom{\mathsf{W}}{\cdot}\right]$ -queries

$$u \sqsubseteq \mathbf{W} \iff \begin{pmatrix} \mathbf{W} \\ u \end{pmatrix} \ge 1$$

 \implies we can solve this in $n + O(\log n)$

$$u \sqsubseteq \mathbf{W} \iff \begin{pmatrix} \mathbf{W} \\ u \end{pmatrix} \ge 1$$

 \implies we can solve this in $n + O(\log n)$

Theorem (Fleischmann, Lejeune, Manea, Nowotka and Rigo, 2020) There is an algorithm that reconstructs any unknown word $\mathbf{W} \in \{0, 1\}^n$ in at most $\left|\frac{n}{2}\right| + 1$ queries. Linear number of $|\binom{W}{\cdot}$ -queries

$$u \sqsubseteq \mathbf{W} \iff \begin{pmatrix} \mathbf{W} \\ u \end{pmatrix} \ge 1$$

 \implies we can solve this in $n + O(\log n)$

Theorem (Fleischmann, Lejeune, Manea, Nowotka and Rigo, 2020) There is an algorithm that reconstructs any unknown word $\mathbf{W} \in \{0, 1\}^n$ in at most $\lfloor \frac{n}{2} \rfloor + 1$ queries.

Write **W** as
$$W = 0^{s_0} 10^{s_1} 1 \dots 10^{s_t}$$

Obtain the s_i one by one

$$s_i = \begin{pmatrix} \mathbf{W} \\ 1^i 10^{t-i} \end{pmatrix}.$$

$$u \sqsubseteq \mathbf{W} \iff \begin{pmatrix} \mathbf{W} \\ u \end{pmatrix} \ge 1$$

 \implies we can solve this in $n + O(\log n)$

Theorem (Fleischmann, Lejeune, Manea, Nowotka and Rigo, 2020) There is an algorithm that reconstructs any unknown word $\mathbf{W} \in \{0, 1\}^n$ in at most $\lfloor \frac{n}{2} \rfloor + 1$ queries.

Write **W** as
$$\mathbf{W} = 0^{s_0} 10^{s_1} 1 \dots 10^{s_t}$$

Obtain the s_i one by one

 $s_i = \begin{pmatrix} \mathsf{W} \\ 1^i 10^{t-i} \end{pmatrix}.$

Theorem (Richomme and Rosenfeld)

There is an algorithm that reconstructs any unknown word $\mathbf{W} \in \{0,1\}^n$ in at most $O(\sqrt{n \log_2 n})$ queries.

$$u \sqsubseteq \mathbf{W} \iff \begin{pmatrix} \mathbf{W} \\ u \end{pmatrix} \ge 1$$

 \implies we can solve this in $n + O(\log n)$

Theorem (Fleischmann, Lejeune, Manea, Nowotka and Rigo, 2020) There is an algorithm that reconstructs any unknown word $\mathbf{W} \in \{0, 1\}^n$ in at most $\lfloor \frac{n}{2} \rfloor + 1$ queries.

Write **W** as
$$\mathbf{W} = 0^{s_0} 10^{s_1} 1 \dots 10^{s_t}$$

Obtain the s_i one by one

$$s_i = \begin{pmatrix} \mathbf{W} \\ 1^i 10^{t-i} \end{pmatrix}.$$

Theorem (Richomme and Rosenfeld)

There is an algorithm that reconstructs any unknown word $\mathbf{W} \in \{0,1\}^n$ in at most $O(\sqrt{n \log_2 n})$ queries.

Obtain multiple s_i at once

$$u \sqsubseteq \mathbf{W} \iff \begin{pmatrix} \mathbf{W} \\ u \end{pmatrix} \ge 1$$

 \implies we can solve this in $n + O(\log n)$

Theorem (Fleischmann, Lejeune, Manea, Nowotka and Rigo, 2020) There is an algorithm that reconstructs any unknown word $\mathbf{W} \in \{0, 1\}^n$ in at most $\lfloor \frac{n}{2} \rfloor + 1$ queries.

Write **W** as
$$\mathbf{W} = 0^{s_0} 10^{s_1} 1 \dots 10^{s_t}$$

Obtain the s_i one by one

 $s_i = \begin{pmatrix} \mathbf{W} \\ 1^i 10^{t-i} \end{pmatrix}.$

Theorem (Richomme and Rosenfeld)

There is an algorithm that reconstructs any unknown word $\mathbf{W} \in \{0,1\}^n$ in at most $O(\sqrt{n \log_2 n})$ queries.

Obtain multiple s_i at once

$$\left(\sqrt{\frac{n}{\log_2 n}}\right)$$

Suppose that we know $W = 0^{s_0} 10^{s_1} 10^{s_2} 1^r$

with $r \gg s_i$ and we know r but not the s_i .

Can we reconstruct \boldsymbol{W} in one query ?

Suppose that we know $W = 0^{s_0} 10^{s_1} 10^{s_2} 1^r$

with $r \gg s_i$ and we know r but not the s_i .

Can we reconstruct \boldsymbol{W} in one query ?

 $\begin{pmatrix} \mathbf{W} \\ 01^r \end{pmatrix}$

Suppose that we know $\mathbf{W} = 0^{s_0} 10^{s_1} 10^{s_2} 1^r$

with $r \gg s_i$ and we know r but not the s_i .

Can we reconstruct \boldsymbol{W} in one query ?

$$\binom{\mathbf{W}}{01^r} = s_2 + \binom{r+1}{r} s_1 + \binom{r+2}{r} s_0$$

Suppose that we know $\mathbf{W} = 0^{s_0} 10^{s_1} 10^{s_2} 1^r$

with $r \gg s_i$ and we know r but not the s_i .

Can we reconstruct \boldsymbol{W} in one query ?

$$\binom{\mathsf{W}}{01^r} = s_2 + (r+1)s_1 + \frac{(r+2)(r+1)}{2}s_0$$

Suppose that we know $\mathbf{W} = 0^{s_0} 10^{s_1} 10^{s_2} 1^r$

with $r \gg s_i$ and we know r but not the s_i .

Can we reconstruct \boldsymbol{W} in one query ?

$$\binom{\mathbf{W}}{01^r} = s_2 + (r+1)s_1 + \frac{(r+2)(r+1)}{2}s_0$$

$$s_0 = \frac{2\binom{\mathsf{W}}{01^r}}{(r+2)(r+1)} - \frac{2s_2 + 2(r+1)s_1}{(r+2)(r+1)}$$

Suppose that we know $\mathbf{W} = 0^{s_0} 10^{s_1} 10^{s_2} 1^r$

with $r \gg s_i$ and we know r but not the s_i .

Can we reconstruct \boldsymbol{W} in one query ?

$$\binom{\mathsf{W}}{01^r} = s_2 + (r+1)s_1 + \frac{(r+2)(r+1)}{2}s_0$$

$$s_0 = \frac{2\binom{\mathsf{W}}{(r+2)(r+1)}}{(r+2)(r+1)} - \underbrace{\frac{2s_2 + 2(r+1)s_1}{(r+2)(r+1)}}_{<1}$$

Suppose that we know $\mathbf{W} = 0^{s_0} 10^{s_1} 10^{s_2} 1^r$

with $r \gg s_i$ and we know r but not the s_i .

Can we reconstruct \boldsymbol{W} in one query ?

$$\binom{\mathbf{W}}{01^r} = s_2 + (r+1)s_1 + \frac{(r+2)(r+1)}{2}s_0$$

$$s_0 = \frac{2\binom{\mathsf{W}}{(1+2)(r+1)}}{(r+2)(r+1)} - \underbrace{\frac{2s_2 + 2(r+1)s_1}{(r+2)(r+1)}}_{<1} = \left\lfloor \frac{2\binom{\mathsf{W}}{(1+2)(r+1)}}{(r+2)(r+1)} \right\rfloor$$

Suppose that we know $\mathbf{W} = 0^{s_0} 10^{s_1} 10^{s_2} 1^r$

with $r \gg s_i$ and we know r but not the s_i .

Can we reconstruct \boldsymbol{W} in one query ?

$$\binom{\mathbf{W}}{01^r} = s_2 + (r+1)s_1 + \frac{(r+2)(r+1)}{2}s_0$$

In particular,

$$s_0 = \frac{2\binom{\mathsf{W}}{(1+2)(r+1)}}{(r+2)(r+1)} - \underbrace{\frac{2s_2 + 2(r+1)s_1}{(r+2)(r+1)}}_{<1} = \left\lfloor \frac{2\binom{\mathsf{W}}{(1+2)(r+1)}}{(r+2)(r+1)} \right\rfloor$$

 $s_1 =$

Suppose that we know $\mathbf{W} = 0^{s_0} 10^{s_1} 10^{s_2} 1^r$

with $r \gg s_i$ and we know r but not the s_i .

Can we reconstruct \boldsymbol{W} in one query ?

$$\binom{\mathbf{W}}{01^r} = s_2 + (r+1)s_1 + \frac{(r+2)(r+1)}{2}s_0$$

$$s_0 = \frac{2\binom{\mathsf{W}}{(1+2)(r+1)}}{(r+2)(r+1)} - \underbrace{\frac{2s_2 + 2(r+1)s_1}{(r+2)(r+1)}}_{<1} = \left\lfloor \frac{2\binom{\mathsf{W}}{(1+2)(r+1)}}{(r+2)(r+1)} \right\rfloor$$

$$s_1 = rac{\binom{\mathsf{W}}{ab^r} - rac{(r+2)(r+1)}{2}s_0}{r+1} - rac{s_2}{r+1} =$$
Toy problem

Suppose that we know $\mathbf{W} = 0^{s_0} 10^{s_1} 10^{s_2} 1^r$

with $r \gg s_i$ and we know r but not the s_i .

Can we reconstruct \boldsymbol{W} in one query ?

$$\binom{\mathbf{W}}{01^r} = s_2 + (r+1)s_1 + \frac{(r+2)(r+1)}{2}s_0$$

In particular,

$$s_0 = \frac{2\binom{\mathsf{W}}{(1+2)(r+1)}}{(r+2)(r+1)} - \underbrace{\frac{2s_2 + 2(r+1)s_1}{(r+2)(r+1)}}_{<1} = \left\lfloor \frac{2\binom{\mathsf{W}}{(1+2)(r+1)}}{(r+2)(r+1)} \right\rfloor$$

$$s_1 = \frac{\binom{\mathsf{W}}{ab^r} - \frac{(r+2)(r+1)}{2}s_0}{r+1} - \frac{s_2}{r+1} = \left\lfloor \frac{\binom{\mathsf{W}}{ab^r} - \frac{(r+2)(r+1)}{2}s_0}{r+1} \right\rfloor$$

Toy problem

Suppose that we know $\mathbf{W} = 0^{s_0} 10^{s_1} 10^{s_2} 1^r$

with $r \gg s_i$ and we know r but not the s_i .

Can we reconstruct W in one query ? YES

$$\binom{\mathbf{W}}{01^r} = s_2 + (r+1)s_1 + \frac{(r+2)(r+1)}{2}s_0$$

In particular,

$$s_0 = \frac{2\binom{\mathsf{W}}{(r+2)(r+1)}}{(r+2)(r+1)} - \underbrace{\frac{2s_2 + 2(r+1)s_1}{(r+2)(r+1)}}_{<1} = \left\lfloor \frac{2\binom{\mathsf{W}}{01^r}}{(r+2)(r+1)} \right\rfloor$$

$$s_1 = \frac{\binom{\mathsf{W}}{ab^r} - \frac{(r+2)(r+1)}{2}s_0}{r+1} - \frac{s_2}{r+1} = \left\lfloor \frac{\binom{\mathsf{W}}{ab^r} - \frac{(r+2)(r+1)}{2}s_0}{r+1} \right\rfloor$$

Lemma

Let $\mathbf{W} = 0^{s_0} 10^{s_1} 1 \dots 10^{s_t}$ and let $m \in \mathbb{N}$. Suppose that

- t is known,
- $\forall i$, either $s_i < m$ or s_i is known.

Then, at most 4m queries are needed to reconstruct W.

Lemma

Let $\mathbf{W} = 0^{s_0} 10^{s_1} 1 \dots 10^{s_t}$ and let $m \in \mathbb{N}$. Suppose that

- t is known,
- $\forall i$, either $s_i < m$ or s_i is known.

Then, at most 4m queries are needed to reconstruct W.

Let $I = \{i : s_i \ge m\}$, we need to be able to efficiently find I.

Lemma

Let $\mathbf{W} = 0^{s_0} 10^{s_1} 1 \dots 10^{s_t}$ and let $m \in \mathbb{N}$. Suppose that

- t is known,
- $\forall i$, either $s_i < m$ or s_i is known.

Then, at most 4m queries are needed to reconstruct W.

Let $I = \{i : s_i \ge m\}$, we need to be able to efficiently find I.

Lemma

For an unknown word $\mathbf{W} = 0^{s_0} 10^{s_1} 1 \dots 10^{s_t}$, the set I can be computed in at most $\frac{2n \lceil \log_2 n \rceil}{m}$ queries.

 $\bullet\,$ Compute the numbers of 0 and 1

2 queries

- $\bullet\,$ Compute the numbers of 0 and 1
- Finds the large blocks of 0

- $\bullet\,$ Compute the numbers of 0 and 1
- Finds the large blocks of 0
- Compute the remaining *s_i*

- $\bullet\,$ Compute the numbers of 0 and 1
- Finds the large blocks of 0
- Compute the remaining *s_i*

Take
$$m = \sqrt{n \log_2 n} \implies$$

- Compute the numbers of 0 and 1
- Finds the large blocks of 0
- Compute the remaining *s_i*

Take
$$m = \sqrt{n \log_2 n} \implies$$

Theorem (Richomme and Rosenfeld)

There is an algorithm that reconstructs any unknown word $\mathbf{W} \in \{0,1\}^n$ in at most $O(\sqrt{n \log_2 n})$ queries.

Random word typically do not contain large blocks of 0.

Random word typically do not contain large blocks of 0.

Lemma

Let n be an integer and ${\bf W}$ be a binary word taken uniformly at random in $\{0,1\}^n,$ then

$$\mathbb{P}(0^{\lceil 2 \log n \rceil} \text{ is a factor of } \mathbf{W}) \leq \frac{1}{n}.$$

• Compute the numbers of 0 and 1

2 queries

- $\bullet\,$ Compute the numbers of 0 and 1
- Pretend that there is no s_i larger than $\lceil 2 \log n \rceil$

2 queries 0 queries

- $\bullet\,$ Compute the numbers of 0 and 1
- Pretend that there is no s_i larger than $\lceil 2 \log n \rceil$
- Compute the remaining s_i

2 queries 0 queries 4[2log n] queries

- $\bullet\,$ Compute the numbers of 0 and 1
- Pretend that there is no s_i larger than $\lceil 2 \log n \rceil$
- Compute the remaining *s_i*
- Did we found the correct W?

2 queries 0 queries 4[2 log n] queries 1 query

- Compute the numbers of 0 and 1
- Pretend that there is no s_i larger than $\lceil 2 \log n \rceil$
- Compute the remaining *s_i*
- Did we found the correct \mathbf{W} ?
 - $\bullet \ {\sf Yes} \implies {\sf nothing to do}$

```
2 queries
0 queries
4[2log n] queries
1 query
0 query
```

- Compute the numbers of 0 and 1
- Pretend that there is no s_i larger than $\lceil 2 \log n \rceil$
- Compute the remaining *s_i*
- Did we found the correct $\boldsymbol{W}?$
 - $\bullet \ {\sf Yes} \implies {\sf nothing to do}$
 - $\bullet \ \ {\sf No} \ \Longrightarrow \ \ {\sf Apply} \ {\sf the} \ {\sf previous} \ {\sf algorithm}$

```
2 queries
0 queries
4\lceil 2 \log n \rceil queries
1 query
0 query
O(\sqrt{n \log n}) queries
```

- Compute the numbers of 0 and 1
- Pretend that there is no s_i larger than $\lceil 2 \log n \rceil$
- Compute the remaining *s_i*
- Did we found the correct \mathbf{W} ?
 - $\bullet \ {\sf Yes} \implies {\sf nothing to do}$
 - $\bullet \ {\sf No} \implies {\sf Apply the previous algorithm}$

The expected number of queries is at most

$$2+4\lceil 2\log n\rceil+1+\frac{O(\sqrt{n\log n})}{n}=8\log n+O(1)$$

2 queries 0 queries $4 \lceil 2 \log n \rceil$ queries 1 query 0 query $O(\sqrt{n \log n})$ queries

• Compute the numbers of 0 and 1 • Pretend that there is no s_i larger than $\lceil 2 \log n \rceil$ • Compute the remaining s_i • Did we found the correct **W**? • Yes \implies nothing to do • No \implies Apply the previous algorithm The expected number of queries is at most • Compute the remaining s_i • Did we found the correct **W**? • No \implies Apply the previous algorithm • No \implies Apply the previous algorithm • Compute the remaining s_i • Did we found the correct **W**? • No \implies Apply the previous algorithm • O($\sqrt{n \log n}$) queries

$$2+4\lceil 2\log n\rceil+1+\frac{O(\sqrt{n\log n})}{n}=8\log n+O(1)$$

Theorem (Richomme and Rosenfeld)

There is a deterministic algorithm that given a random uniform word \mathbf{W} from $\{0,1\}^n$ reconstructs \mathbf{W} in an expected number of queries

 $O(\log n)$.

	Worst case complexity	Average case complexity
Previous result	$\leq n/2$	$\leq n/2$
Our result	$O(\sqrt{n \log n})$	$O(\log n)$
Lower bounds	??	??

	Worst case complexity	Average case complexity
Previous result	$\leq n/2$	$\leq n/2$
Our result	$O(\sqrt{n \log n})$	$O(\log n)$
Lower bounds	??	??

Questions:

• A non-trivial lower bound on the number of queries needed?

	Worst case complexity	Average case complexity
Previous result	$\leq n/2$	$\leq n/2$
Our result	$O(\sqrt{n \log n})$	$O(\log n)$
Lower bounds	??	??

Questions:

- A non-trivial lower bound on the number of queries needed?
- Improve the worst case complexity. Can we go down to $O(\log(n))$?

Many interesting open questions that did not receive a lot of attention ?

Many interesting open questions that did not receive a lot of attention ?

Theorem (Fici, Prezza and Venturini, 2021)

Let C be a compressor, and let $S \in \{0,1\}^n$ be an unknown binary string of known length n. Then, there is an algorithm that reconstructs S using O(|C(S)|) substring queries.

Many interesting open questions that did not receive a lot of attention ?

Theorem (Fici, Prezza and Venturini, 2021)

Let C be a compressor, and let $S \in \{0,1\}^n$ be an unknown binary string of known length n. Then, there is an algorithm that reconstructs S using O(|C(S)|) substring queries.

A good lesson: binary search is sometime worst than greedy search.

Thanks !