
Synchronizing automatic sequences along

Piatetski-Shapiro sequences
Arithmetic subword complexity of automatic sequences - part I

Clemens Müllner
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Automatic Sequences

Definition (Automaton - DFA)

A = (Q,Σ = {0, . . . , k − 1}, δ, q0, τ)

Example (Thue-Morse sequence)

x/0start y/1

0 0

1

1

n = 22 = (10110)2, t22 = 1

(t(n))n≥0 = 01101001100101101001011001101001 . . .
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Different Points of View I

(a(n))n≥0 = 01101001100101101001011001101001 . . .

Automaton (Computer Science)

x/0start y/1

0 0

1

1

Substitution (Dynamics)

Coding of the fixpoint of a
substitution:

x → xy x 7→ 0

y → yx y 7→ 1
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Different Points of View II

(t(n))n≥0 = 01101001100101101001011001101001 . . .

Formal Power Series (Algebra)

Algebraicity over Fq(X ).
t(X ) :=

∑
n≥0

a(n)X n

X + (1 + X )2t(X ) + (1 + X )3t(X )2 = 0

Finite Kernel

The k-kernel of a sequence a(n) is defined as

{(a(nkλ + r))n≥0 : λ ≥ 0, 0 ≤ r < kλ}.
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Properties of Automatic Sequences

Relatively easy to define (structured).

Complex enough that interesting phenomena appear.

Every subsequence (a(xn + y))n≥0 along an arithmetic
progression of an automatic sequence a is again automatic.
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Synchronizing Automata

Definition (Synchronizing Automaton / Word)

∃w0 : δ(q,w0) = x ∀q.

Example

xstart y

z
0

0

0

1
1

1

w0 = 010.
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Synchronizing Automata

Key Property

Any word w containing w0 is also synchronizing.

Most words are synchronizing.

a can be approximated by periodic sequences:
Let λ be large. Most words of length λ are synchronizing.
a(n) = a(n mod kλ) if n mod kλ is synchronizing.

”Usual” Strategy

Understand the problem for periodic sequences.

Transfer the result to synchronizing automatic sequences.
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Subword Complexity

Let A be a finite alphabet and u = (u(n))n∈N ∈ AN.

Definition (Subword Complexity)

The subword complexity of a sequence u ∈ AN is defined by

pu(L) := #{w ∈ AL : ∃k , (u(k), . . . , u(k + L− 1)) = w}.

pu(L) ≤ |A|L

Subword complexity of automatic sequences

Let a be an automatic sequence. Then there exists C > 0 such that
for all L ∈ N

pa(L) ≤ C · L.
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Arithmetic subword complexity

Definition (arithmetic subword complexity)

Let u be a sequence over a finite alphabet A.

pAPu (L) := #{w ∈AL : ∃n ≥ 0,m ≥ 1 :

u(n + im) = w(i) for i = 0, . . . , L− 1}.

Theorem (Avgustinovich, Fon-Der-Flaass and Frid; 2003)

A certain class of invertible automatic sequences has maximal
arithmetic subword complexity. (E.g. Thue-Morse sequence)

Certain synchronizing automatic sequences have at most linear
arithmetic subword complexity.
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Main Result

Definition (polynomial subword complexity)

Let u be a sequence over a finite alphabet A.

p≤d
u (L) := #{w ∈AL : ∃P ∈ Z[x ],P(N) ⊆ N, degP ≤ d :

u(P(i)) = w(i) for i = 0, . . . , L− 1}.

Theorem 1 (Deshouillers, Drmota, M., Shubin, Spiegelhofer; 2024+)

Let a(n) be a synchronizing automatic sequence. Then for any
d ≥ 1

p≤d
a (L) ≤ exp(o(L)).

Basically the same proof: there exist c > 0, η > 0 such that

p≤d
a (L) ≤ exp(cL1−η).
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Consequences of Theorem 1

Theorem 2 (Deshouillers, Drmota, M., Shubin, Spiegelhofer; 2024+)

Let a(n) be a synchronizing automatic sequence. Then for any
c > 0 the subword complexity of a(⌊nc⌋) grows sub-exponentially
(exp(o(L))).

Remark: The same result holds for any function f with “nice”
derivatives.

Theorem 3 (Konieczny, M., 2024+)

Theorem 1 can be used to give rather sharp upper bounds for p≤d
a

for general automatic sequences a.
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Background to Theorem 1 and 2

Theorem (Drmota, Mauduit, Rivat; 2019)

Let t denote the Thue-Morse sequence. Then

pt(n2)(L) = 2L.

Actually, the Thue-Morse sequence is normal along the squares.

Theorem (M., 2018)

The same also holds for block-additive functions modulo m instead
of the Thue-Morse sequence.

Theorem (M., Spiegelhofer, 2017)

Let t denote the Thue-Morse sequence and let 1 < c < 3
2
. Then

(t(⌊nc⌋))n∈N is normal.
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Clemens Müllner Arithmetic subword complexity 9.1. 2024 12 / 29



Proof of Theorem 1

Naive approach

Let f be a m-periodic function. Then p≤d
f (L) ≤ md+1.

Approximate a(n) by a kλ-periodic function f (n).

a(n) and f (n) agree on most residue classes modulo kλ.

Problem: P can hit the ”bad” residue classes very often.
(Trivial example: P(x) = kλx + r .)
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Reductions

We study (a(P(n)), a(P(n + 1)), . . . , a(P(n + L− 1))).

Let Q(ℓ) = P(n + ℓ). Study
(a(Q(0)), a(Q(1)), . . . , a(Q(L− 1))).

Avoid trivial problems:
Q(ℓ) = kλ0

(
z ′dℓ

d + . . .+ z ′1ℓ+ z ′0
)
+ r .

Using the kernel: ∃bi ∈ Kerk(a) with bi(n) = a(nkλ0 + r).
a(Q(ℓ)) = bi(z

′
dℓ

d + . . .+ z ′1ℓ+ z ′0) = bi(Q
′(ℓ)).

Remains to study bi(Q
′(ℓ)) where some z ′i (i ≥ 1) is not

divisible by k .
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Example

Consider Q ′(ℓ) = 5 · 34 · ℓ modulo 64.

(Q ′(0))6 = 00000

(Q ′(1))6 = 01513

(Q ′(2))6 = 03430

(Q ′(3))6 = 05343

(Q ′(4))6 = 11300

(Q ′(5))6 = 13213

(Q ′(6))6 = 15130

(Q ′(7))6 = 21043

(Q ′(8))6 = 23000

(Q ′(9))6 = 24513

(Q ′(10))6 = 30430

(Q ′(11))6 = 32343

(Q ′(12))6 = 34300

(Q ′(13))6 = 40213

(Q ′(14))6 = 42130

(Q ′(15))6 = 44043
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New Approach

Problem: We still only hit few residue classes modulo kλ. (E.g.
Q ′(ℓ) = 5 · 3λ · ℓ mod 6λ.)

”low” digits: Q ′(ℓ) might still not equidistribute modkλ.

”high” digits work: ∃ε(k) > 0 such that for any w ∈ Aελ we
have #{ℓ < kλ : (Q ′(ℓ) mod kλ)k starts with w} ≈ kλ(1−ε).
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Equidistribution of high digits

Detection of digits: The digits of ℓ in base k between positions
µ and λ coincide with the digits of m < kλ−µ iff{

ℓ

kλ

}
∈
[

m

kλ−µ
,
m + 1

kλ−µ

)
.

Expand the indicator function into a Fourier series.∑
ℓ<kλ

1
[
{

Q′(ℓ)
kλ

}
∈[ m

kλ−µ , m+1

kλ−µ )]
≈

∑
|h|<H

ch
∑
ℓ<kλ

e

(
h · Q ′(ℓ)

kλ

)
.

Use classical estimates for∑
ℓ<kλ

e

(
h · Q ′(ℓ)

kλ

)
,

depending on min1≤j≤d gcd(z
′
j , k

λ).
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Putting everything together

Approximate bi(n) with a kλ-periodic function f (n).

bi(Q
′(ℓ)) ̸= f (Q ′(ℓ)) only when Q ′(ℓ) mod kλ is not

synchronizing.

This happens rarely (≪ Lk−ελ).

p≤d
f (L) ≤

(
kλ

)d+1
.

(Optional: optimize λ as a function of L.)
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Clemens Müllner Arithmetic subword complexity 9.1. 2024 18 / 29



Proof of Theorem 2

Theorem 2 (Deshouillers, Drmota, M., Shubin, Spiegelhofer; 2024+)

Let a(n) be a synchronizing automatic sequence. Then for any
c > 0 the subword complexity of a(⌊nc⌋) grows sub-exponentially
(exp(o(L))).

Connection to Theorem 1

We use Taylor expansion to write

(n + ℓ)c =
d∑

t=0

A
(n)
t ℓt︸ ︷︷ ︸

P(n)(ℓ)

+g
(n)
ℓ .
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Periodic case (no error term)

⌊P (n)(ℓ)⌋ ≡ uℓ mod m ⇔
{
P (n)(ℓ)

m

}
∈
[
uℓ
m
,
uℓ + 1

m

)
⇔

{
d∑

t=0

{
A
(n)
t

m

}
ℓt

}
∈
[
uℓ
m
,
uℓ + 1

m

)
⇔ ∃z ≤ (d + 1)Ld :

d∑
t=0

{
A
(n)
t

m

}
ℓt ∈

[
z +

uℓ
m
, z +

uℓ + 1

m

)
.

Fix ℓ and treat xt =
{

A
(n)
t

m

}
as variables.

Clemens Müllner Arithmetic subword complexity 9.1. 2024 20 / 29



Periodic case (no error term)

⌊P (n)(ℓ)⌋ ≡ uℓ mod m ⇔
{
P (n)(ℓ)

m

}
∈
[
uℓ
m
,
uℓ + 1

m

)
⇔

{
d∑

t=0

{
A
(n)
t

m

}
ℓt

}
∈
[
uℓ
m
,
uℓ + 1

m

)
⇔ ∃z ≤ (d + 1)Ld :

d∑
t=0

{
A
(n)
t

m

}
ℓt ∈

[
z +

uℓ
m
, z +

uℓ + 1

m

)
.

Fix ℓ and treat xt =
{

A
(n)
t

m

}
as variables.
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Periodic case (no error term)

∑d
t=0 xtℓ

t = z + uℓ
m

is a hyperplane.
Example:

x0

x1

The gray area corresponds to the intersection of the strips
0.5 < x0 < 1, 0.5 < x0 + x1 < 1 and 1 < x0 + 2x1 < 1.5.
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Periodic case (no error term)

There are at most mLd+2 hyperplanes.

There are at most
∑d+1

i=0

(
mLd+2

i

)
≪d md+1L(d+1)(d+2) regions.

We have uniformly in m and L,

#
{(

⌊P (n)(0)⌋ mod m, . . . , ⌊P (n)(L− 1)⌋ mod m
)
: n ≥ 0

}
≪d md+1L(d+1)(d+2).
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Periodic case

d∑
t=0

{
A
(n)
t

m

}
ℓt + g

(n)
ℓ ∈

[
z +

uℓ
m
, z +

uℓ + 1

m

)

⇔
d∑

t=0

{
A
(n)
t

m

}
ℓt ∈

[
z +

uℓ
m

− g
(n)
ℓ , z +

uℓ + 1

m
− g

(n)
ℓ

)

x0

x1

Figure: n = 10

x0

x1

Figure: n = 20

x0

x1

Figure: n = 100

Clemens Müllner Arithmetic subword complexity 9.1. 2024 23 / 29



Periodic case

d∑
t=0

{
A
(n)
t

m

}
ℓt + g

(n)
ℓ ∈

[
z +

uℓ
m
, z +

uℓ + 1

m

)

⇔
d∑

t=0

{
A
(n)
t

m

}
ℓt ∈

[
z +

uℓ
m

− g
(n)
ℓ , z +

uℓ + 1

m
− g

(n)
ℓ

)

x0

x1

Figure: n = 10

x0

x1

Figure: n = 20

x0

x1

Figure: n = 100
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Shifted hyperplanes

The picture does not change qualitatively!

Proof needs some special properties of the error term g
(n)
ℓ

Proposition

There exists cd such that for any m-periodic function f we have
pf (⌊nc⌋)(L) ≪d md+1Lcd .
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Proof of Theorem 2 (general case)

a(⌊(n + ℓ)c⌋) = a(⌊P (n)(ℓ) + g
(n)
ℓ ⌋)

Strategy: Approximate a(n) by a kλ-periodic function f (n).

Lemma (original idea due to Weyl)

Suppose h : Z → R is a polynomial

h(ℓ) = β0 + ℓβ1 + . . .+ ℓdβd .

Let δ > 0 be small. Then at least one of the following holds

1 The discrepancy of (h(ℓ) mod Z)ℓ∈{0,...,L−1} is ≤ δ.

2 There exists 1 ≤ s ≪ δ−Od (1)

sup
1≤j≤d

Lj ∥sβj∥ ≪ δ−Od (1).
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Clemens Müllner Arithmetic subword complexity 9.1. 2024 25 / 29



Proof of Theorem 2 (general case)

a(⌊(n + ℓ)c⌋) = a(⌊P (n)(ℓ) + g
(n)
ℓ ⌋)

Strategy: Approximate a(n) by a kλ-periodic function f (n).

Lemma (original idea due to Weyl)

Suppose h : Z → R is a polynomial

h(ℓ) = β0 + ℓβ1 + . . .+ ℓdβd .

Let δ > 0 be small. Then at least one of the following holds

1 The discrepancy of (h(ℓ) mod Z)ℓ∈{0,...,L−1} is ≤ δ.

2 There exists 1 ≤ s ≪ δ−Od (1)

sup
1≤j≤d

Lj ∥sβj∥ ≪ δ−Od (1).
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Lj ∥sβj∥ ≪ δ−Od (1).
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Proof of Theorem 2 (general case)

a(⌊(n + ℓ)c⌋) = a(⌊P (n)(ℓ) + g
(n)
ℓ ⌋)

Goal: Approximate a by a kλ-periodic function.

Lemma

At least one of the following holds

1 (P (n)(ℓ))ℓ∈{0,...,L−1} equidistributes well modulo kλ.

2 The coefficients of P (n) are very close to rationals with small
denominator (= s).
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Case 1

g
(n)
ℓ is small.

(n + ℓ)c = P (n)(ℓ) + g
(n)
ℓ equi-distributes well modulo kλ.

Approximate a(n) with a kλ-periodic function f (n).

a(⌊(n + ℓ)c⌋) ̸= f (⌊(n + ℓ)c⌋) only when ⌊(n + ℓ)c⌋ mod kλ is
not synchronizing.

This happens rarely.

pf (⌊(n+ℓ)c⌋)(L) ≪ k (d+1)λLcd .

(Optional: optimize λ as a function of L.)
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Case 2

The coefficients of P (n) are very close to rationals with small
denominator (divisor of s).

Along arithmetic progressions (with step size s) we
approximate (n + ℓ)c with Q ∈ Z[x ] with small error term.

Recall: the polynomial subword-complexity grows
sub-exponentially.

The error term is small and “nice”.
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Conclusion

Synchronizing automatic sequences are easier to treat than
general (invertible) automatic sequences. (We can treat higher
degrees.)

However, questions about subword complexity are still difficult!

Open Problem

We know p≤d
a (L) ≪ exp(c · L1−η).

Is there a better upper bound for p≤d
a (L) (maybe even polynomial)?

Thank you for your attention!
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