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Automatic Sequences

Definition (Automaton - DFA)

A=(QE={0,....k —1},6,q0,7)

Example (Thue-Morse sequence)

0 0

start — @

n=22=(10110),, t» =1
(£(n))n=0 = 01101001100101101001011001101001 . . .

™ mid = — ne

1
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Different Points of View |

(a(n))nso = 01101001100101101001011001101001 . . .

Clemens Miillner Arithmetic subword complexity 9.1. 2024 3/29



Different Points of View |

(a(n))nso = 01101001100101101001011001101001 . . .

Automaton (Computer Science)

0 0

start — @

1
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Different Points of View |

(a(n))nso = 01101001100101101001011001101001 . . .

Automaton (Computer Science) ¥ Substitution (Dynamics)

0 0 Coding of the fixpoint of a
q substitution:

start —> X — Xy x—0
1

Yy — yx y—1
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Different Points of View Il

(t(n))n=0 = 01101001100101101001011001101001 . . .
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Different Points of View Il

(t(n))n=0 = 01101001100101101001011001101001 . . .

Formal Power Series (Algebra)

Algebraicity over F,(X).
t(X):=>_a(n)X"

n>0

X+ (1+X)t(X)+ (1 + X)’t(X)*=0
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Different Points of View Il

(t(n))n=0 = 01101001100101101001011001101001 . . .

Formal Power Series (Algebra)

Algebraicity over F,(X).

X+ (1+X)t(X)+ (1 + X)’t(X)*=0

Finite Kernel
The k-kernel of a sequence a(n) is defined as

{(a(nk* 4+ r))ps0 : A > 0,0 < r < kM)
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Properties of Automatic Sequences

@ Relatively easy to define (structured).
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Properties of Automatic Sequences

@ Relatively easy to define (structured).
@ Complex enough that interesting phenomena appear.

@ Every subsequence (a(xn + y))n>o along an arithmetic
progression of an automatic sequence a is again automatic.
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Synchronizing Automata

Definition (Synchronizing Automaton / Word)

dwg @ 0(g,wp) = x  Vag.
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Synchronizing Automata

Key Property

@ Any word w containing wy is also synchronizing.
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@ Most words are synchronizing.
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Synchronizing Automata

Key Property

@ Any word w containing wy is also synchronizing.
@ Most words are synchronizing.

@ a can be approximated by periodic sequences:
Let A\ be large. Most words of length A are synchronizing.
a(n) = a(n mod k*) if n mod k* is synchronizing.

"Usual” Strategy

@ Understand the problem for periodic sequences.
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Synchronizing Automata

Key Property

@ Any word w containing wy is also synchronizing.
@ Most words are synchronizing.

@ a can be approximated by periodic sequences:
Let A\ be large. Most words of length A are synchronizing.
a(n) = a(n mod k*) if n mod k* is synchronizing.

"Usual” Strategy

@ Understand the problem for periodic sequences.

@ Transfer the result to synchronizing automatic sequences.
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Subword Complexity

Let A be a finite alphabet and u = (u(n)),en € AN

— = - = = =7
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Subword Complexity

Let A be a finite alphabet and u = (u(n)),en € AN

Definition (Subword Complexity)

The subword complexity of a sequence u € A" is defined by

pu(L) := #{w € A" : 3k, (u(k),...,u(k+L—1)) = w}.
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Subword Complexity

Let A be a finite alphabet and u = (u(n)),en € AN

Definition (Subword Complexity)

The subword complexity of a sequence u € A" is defined by

pu(L) := #{w € A" : 3k, (u(k),...,u(k+L—1)) = w}.

PU(L) < |A|L
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Subword Complexity

Let A be a finite alphabet and u = (u(n)),en € AN

Definition (Subword Complexity)

The subword complexity of a sequence u € AN is defined by

pu(L) := #{w € A" : 3k, (u(k),...,u(k+L—1)) = w}.

PU(L) < |A|L

Subword complexity of automatic sequences

Let a be an automatic sequence. Then there exists C > 0 such that
forall Le N

pa(L) < C- L.
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Arithmetic subword complexity

Definition (arithmetic subword complexity)

Let u be a sequence over a finite alphabet A.

piP(L) :=#{weA :In>0,m>1:
u(n+im)=w(i) fori=0,...,L —1}.

S

N

Clemens Miillner Arithmetic subword complexity 9.1. 2024 9/29



Arithmetic subword complexity

Definition (arithmetic subword complexity)

Let u be a sequence over a finite alphabet A.

piP(L) :=#{weA :In>0,m>1:
u(n+im)=w(i) fori=0,...,L —1}.

Theorem (Avgustinovich, Fon-Der-Flaass and Frid; 2003)

@ A certain class of invertible automatic sequences has maximal
arithmetic subword complexity. (E.g. Thue-Morse sequence)
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Arithmetic subword complexity

Definition (arithmetic subword complexity)

Let u be a sequence over a finite alphabet A.

piP(L) :=#{weA :In>0,m>1:
u(n+im)=w(i) fori=0,...,L —1}.

Theorem (Avgustinovich, Fon-Der-Flaass and Frid; 2003)

@ A certain class of invertible automatic sequences has maximal
arithmetic subword complexity. (E.g. Thue-Morse sequence)

@ Certain synchronizing automatic sequences have at most linear
arithmetic subword complexity.
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Main Result

Definition (polynomial subword complexity)

Let u be a sequence over a finite alphabet A.

pd(L) == #{w €At : 3P € Z|x], P(N) C N,deg P < d :
u(P(i)) = w(i) for i =0,...,L—1}.
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Theorem 1 (Deshouillers, Drmota, M., Shubin, Spiegelhofer; 2024+)

Let a(n) be a synchronizing automatic sequence. Then for any
d>1

ps(L) < exp(o(L)).
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Main Result

Definition (polynomial subword complexity)

Let u be a sequence over a finite alphabet A.

pd(L) == #{w €At : 3P € Z|x], P(N) C N,deg P < d :
u(P(i)) = w(i) for i =0,...,L—1}.

Theorem 1 (Deshouillers, Drmota, M., Shubin, Spiegelhofer; 2024+)

Let a(n) be a synchronizing automatic sequence. Then for any
d>1

ps(L) < exp(o(L)).

Basically the same proof: there exist ¢ > 0, > 0 such that

ps?(L) < exp(cL™).
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Consequences of Theorem 1

Theorem 2 (Deshouillers, Drmota, M., Shubin, Spiegelhofer; 2024+)

Let a(n) be a synchronizing automatic sequence. Then for any
¢ > 0 the subword complexity of a(|n€|) grows sub-exponentially

(exp(o(L))).
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Let a(n) be a synchronizing automatic sequence. Then for any
¢ > 0 the subword complexity of a(|n€|) grows sub-exponentially

(exp(o(L))).

Remark: The same result holds for any function f with “nice”
derivatives.
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Consequences of Theorem 1

Theorem 2 (Deshouillers, Drmota, M., Shubin, Spiegelhofer; 2024+)

Let a(n) be a synchronizing automatic sequence. Then for any
¢ > 0 the subword complexity of a(|n€|) grows sub-exponentially

(exp(o(L))).

Remark: The same result holds for any function f with “nice”
derivatives.

Theorem 3 (Konieczny, M., 2024+)

Theorem 1 can be used to give rather sharp upper bounds for p=¢
for general automatic sequences a.
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Background to Theorem 1 and 2

Theorem (Drmota, Mauduit, Rivat; 2019)

Let t denote the Thue-Morse sequence. Then
pt(nz)(L) = 2L.

Actually, the Thue-Morse sequence is normal along the squares.

V.

———=———=— = ~
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Background to Theorem 1 and 2

Theorem (Drmota, Mauduit, Rivat; 2019)

Let t denote the Thue-Morse sequence. Then
pt(nz)(L) = 2L.

Actually, the Thue-Morse sequence is normal along the squares.

Theorem (M., 2018)

The same also holds for block-additive functions modulo m instead
of the Thue-Morse sequence.

Theorem (M., Spiegelhofer, 2017)

Let t denote the Thue-Morse sequence and let 1 < ¢ < % Then
(t(|n€]))nen is normal.

Clemens Miillner Arithmetic subword complexity 9.1. 2024 12 /29
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Proof of Theorem 1

Naive approach

o Let f be a m-periodic function. Then p=?(L) < m+1,
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Proof of Theorem 1

Naive approach

o Let f be a m-periodic function. Then p=?(L) < m+1,
e Approximate a(n) by a k*-periodic function f(n).
@ a(n) and f(n) agree on most residue classes modulo k*.
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Proof of Theorem 1

Naive approach

o Let f be a m-periodic function. Then p=?(L) < m+1,
e Approximate a(n) by a k*-periodic function f(n).
@ a(n) and f(n) agree on most residue classes modulo k*.

@ Problem: P can hit the "bad” residue classes very often.
(Trivial example: P(x) = k*x + r.)
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We study (a(P(n)),a(P(n+1)),...,a(P(n+ L —1))).

Clemens Miillner Arithmetic subword complexity 9.1. 2024 14 /29



Arithmetic subword complexity 9.1. 2024



We study (a(P(n)),a(P(n+1)),...,a(P(n+ L —1))).
o Let Q(¢) = P(n+{). Study
(a(Q(0)), a(Q(1)), .- -, a(Q(L — 1))).
@ Avoid trivial problems:
Q(0) = k™ (2t + ...+ z{l + Z§) +r.
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We study (a(P(n)),a(P(n+1)),...,a(P(n+ L —1))).
o Let Q(¢) = P(n+{). Study
(a(Q(0)), a(Q(1)), .- -, a(Q(L — 1))).
@ Avoid trivial problems:
Q(0) = k™ (2t + ...+ z{l + Z§) +r.
Using the kernel: Elb € Kerk(a) with b;(n) = a(nk? + r).
a(Q(0)) = bi(zhtd + ... + zj0 + Zb) = bi(Q'(Y)).
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We study (a(P(n)),a(P(n+1)),...,a(P(n+ L —1))).

o Let Q(¢) = P(n+{). Study
(a(Q(0)), a(Q(1)), ..., a(Q(L = 1))).

@ Avoid trivial problems:
Q(0) = k™ (2t + ...+ z{l + Z§) +r.
Using the kernel: 3b; € Kery(a) with b;(n) = a(nk™ + r).
a(Q(0)) = bi(z4t? + ... + zi0 + z) = bi(Q'(¢)).

@ Remains to study b;(Q'(¢)) where some z/ (i > 1) is not
divisible by k.
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@ Problem: We still only hit few residue classes modulo k*. (E.g.
Q'(¢) =5-3*- ¢ mod 6*))
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@ Problem: We still only hit few residue classes modulo k*. (E.g.
Q'(¢) =5-3"- £ mod 6.
e "low" digits: Q'(¢) might still not equidistribute modk*.
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@ Problem: We still only hit few residue classes modulo k*. (E.g.
Q'(¢) =5-3"- £ mod 6.

e "low" digits: Q'(¢) might still not equidistribute modk*.

e "high" digits work: Je(k) > 0 such that for any w € A* we
have #{¢ < k* : (Q'(¢) mod kM), starts with w} =~ k*(1=2),
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Equidistribution of high digits

@ Detection of digits: The digits of ¢ in base k between positions
p and X\ coincide with the digits of m < k*# iff

14 m m+1
oy S o o )
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Equidistribution of high digits

@ Detection of digits: The digits of ¢ in base k between positions
p and X\ coincide with the digits of m < k*# iff

14 m m+1
oy S o o )

@ Expand the indicator function into a Fourier series.
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Equidistribution of high digits

@ Detection of digits: The digits of ¢ in base k between positions
p and X\ coincide with the digits of m < k*# iff

14 m m+1
oy S o o )

@ Expand the indicator function into a Fourier series.

1 e ) 3 qu(h'gw)-

k kA= g A—p
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Equidistribution of high digits

@ Detection of digits: The digits of ¢ in base k between positions
p and X\ coincide with the digits of m < k*# iff

14 m m+1
oy S o o )

@ Expand the indicator function into a Fourier series.

1 e ) 3 qu(h'gw)-

k kA= g A—p
<k |lh|<H  f<kX

@ Use classical estimates for

Ze(”'f;“’),

£< k>

depending on min; ;<4 ged(z], k*).
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Putting everything together

e Approximate b;(n) with a k*-periodic function f(n).
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Putting everything together

e Approximate b;(n) with a k*-periodic function f(n).
e b(Q'(0)) # f(Q'(¢)) only when Q'(¢) mod k* is not

synchronizing.
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Putting everything together

e Approximate b;(n) with a k*-periodic function f(n).

o bi(Q'(0)) # f(Q'(¢)) only when Q'(£) mod k* is not
synchronizing.

@ This happens rarely (< Lk=*).
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Putting everything together

e Approximate b;(n) with a k*-periodic function f(n).

o bi(Q'(0)) # f(Q'(¢)) only when Q'(£) mod k* is not
synchronizing.

@ This happens rarely (< Lk=*).

o prd(L) < (k)™M
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Putting everything together

Approximate b;(n) with a k*-periodic function f(n).
bi(Q'(¢)) # f(Q'(£)) only when Q'(¢) mod k* is not

synchronizing.
This happens rarely (< Lk==*).
d+1
pré(L) < (k)
(Optional: optimize A as a function of L.)
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Proof of Theorem 2

Theorem 2 (Deshouillers, Drmota, M., Shubin, Spiegelhofer; 2024+)

Let a(n) be a synchronizing automatic sequence. Then for any
¢ > 0 the subword complexity of a(|n]) grows sub-exponentially

(exp(o(L))).

Clemens Miillner Arithmetic subword complexity 9.1. 2024 19 /29



Proof of Theorem 2

Theorem 2 (Deshouillers, Drmota, M., Shubin, Spiegelhofer; 2024+)

Let a(n) be a synchronizing automatic sequence. Then for any
¢ > 0 the subword complexity of a(|n]) grows sub-exponentially

(exp(o(L))).

Connection to Theorem 1

We use Taylor expansion to write

d
(n+0° =3 At g,
t=0
P (&)
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Periodic case (no error term)

|PM(0)] = vy mod m
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Periodic case (no error term)

PO = o m 5 {P(n)(f)} . {%7 ur + 1)

m m m
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Periodic case (no error term)

PO = o m 5 {P(n)(f)} . {%7 ur + 1)

m

d (n)
A; ¢ up up+1
S el
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Periodic case (no error term
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Periodic case (no error term

. (m) .
Fix ¢ and treat x; = {%} as variables.
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Periodic case (no error term)

Z?:o x¢l* = z + 2 is a hyperplane.
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Periodic case (no error term)

Z?:o x¢l* = z + 2 is a hyperplane.
Example:

X1

BN

X0

The gray area corresponds to the intersection of the strips
05<x<1,05<x+x<landl<xg+2x; < 1.5.

Clemens Miillner Arithmetic subword complexity 9.1. 2024 21/29



Periodic case (no error term)

@ There are at most mL9*2 hyperplanes.
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Periodic case (no error term)

@ There are at most mL9*2 hyperplanes.

d .
@ There are at most Z?jol (mL,. +2) g mItLLEHD(E+2) regions.
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Periodic case (no error term)

@ There are at most mL9*2 hyperplanes.
o There are at most 3¢ (mL;M) g mItLLEHD(E+2) regions.

@ We have uniformly in m and L,

#{(LP"(0)] mod m,...,[P")(L—1)] mod m):n>0}
<y m d+1 L(d+1)(d+2).
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Periodic case

d (n)
A n 1
Z{L}“g’é)e {”%»HW )
m m m

t=0
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Periodic case

d n
¢ () Uy u+1
()i )
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Periodic case

d n
¢ () Uy u+1
()i )

X1

X0

Figure: n =10
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Periodic case

d n
¢ () Uy u+1
()i )

X1 X1

X0 Xo

Figure: n =10 Figure: n =20
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Periodic case

d n
¢ () Uy u+1
()i )

X1 X1 X1

X0 Xo X0

Figure: n =10 Figure: n =20 Figure: n =100
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Shifted hyperplanes

@ The picture does not change qualitatively!
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Shifted hyperplanes

@ The picture does not change qualitatively!

@ Proof needs some special properties of the error term gg(")
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Shifted hyperplanes

@ The picture does not change qualitatively!

@ Proof needs some special properties of the error term gg(")

Proposition

There exists ¢4 such that for any m-periodic function f we have
pr(Lnepy (L) g meHLE.
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Proof of Theorem 2 (general case)

a(|(n+0)°]) = a([P"(0) +g"])
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Proof of Theorem 2 (general case)

a(L(n+0))) = a(LPO() + "))
Strategy: Approximate a(n) by a k*-periodic function f(n).
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Proof of Theorem 2 (general case)

a(L(n+0))) = a(LPO() + "))
Strategy: Approximate a(n) by a k*-periodic function f(n).

Lemma (original idea due to Weyl)
Suppose h: Z — R is a polynomial
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a(L(n+0))) = a(LPO() + "))
Strategy: Approximate a(n) by a k*-periodic function f(n).

Lemma (original idea due to Weyl)
Suppose h: Z — R is a polynomial

h(€) = Bo+£B1 + ...+ £9Bg.

Let 6 > 0 be small. Then at least one of the following holds
@ The discrepancy of (h(¥) mod Z)ecqo
@ There exists 1 < s <« § 9

.....

sup U [|sgj|| < 6%
1<j<d
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Proof of Theorem 2 (general case)

a(l(n+0))) = a(|P"(¢) + &)
Goal: Approximate a by a k*-periodic function.

At least one of the following holds

-----

@ The coefficients of P{") are very close to rationals with small
denominator (= s).
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Case 1

° gé") is small.
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gé") is small.

(n+4£)¢ = P"(¢) + gg(") equi-distributes well modulo k*.
Approximate a(n) with a k*-periodic function f(n).

a([(n+0)]) # f(L(n+€)<]) only when |(n+ ¢)¢] mod k* is
not synchronizing.

This happens rarely.
Pr(l(nsoe)) (L) < KTFDALSS,
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gé") is small.

(n+4£)¢ = P"(¢) + gg(") equi-distributes well modulo k*.
Approximate a(n) with a k*-periodic function f(n).

a([(n+0)]) # f(L(n+€)<]) only when |(n+ ¢)¢] mod k* is
not synchronizing.

@ This happens rarely.
© pr((n+o)))(L) < kUTDALE,
o (Optional: optimize A as a function of L.)
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o The coefficients of P(") are very close to rationals with small
denominator (divisor of s).
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o The coefficients of P(") are very close to rationals with small
denominator (divisor of s).

@ Along arithmetic progressions (with step size s) we
approximate (n + ¢)¢ with Q € Z[x] with small error term.

@ Recall: the polynomial subword-complexity grows
sub-exponentially.

@ The error term is small and “nice”.

Clemens Miillner Arithmetic subword complexity 9.1. 2024 28/29



Conclusion

@ Synchronizing automatic sequences are easier to treat than
general (invertible) automatic sequences. (We can treat higher
degrees.)
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Conclusion

@ Synchronizing automatic sequences are easier to treat than
general (invertible) automatic sequences. (We can treat higher
degrees.)

@ However, questions about subword complexity are still difficult!

Open Problem

We know ps9(L) < exp(c - L177).
s there a better upper bound for p=9(L) (maybe even polynomial)?

Thank you for your attention!
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