Arithmetical subword complexity of automatic sequences

Jakub Konieczny

Department of Computer Science University of Oxford

One World Combinatorics on Words Seminar 23 Jan 2024

Setup: Let $a: \mathbb{N} \to \Omega$ be a sequence. $\Omega =$ finite alphabet, e.g. $\Omega = \{0, 1\}.$

General question: How complex is a

 \rightarrow hopelessly vague...

- Computational complexity of finding a(n).
- Subword complexity = number of length- ℓ subwords that appear in a:

$$p_a(\ell) = \# \left\{ w \in \Omega^{\ell} : (\exists n) \ a(n+i) = w(i) \text{ for } 0 \le i < \ell \right\}.$$

• Arithmetical subword complexity complexity = number of length- ℓ subwords that appear in *a along an arithmetic progression*:

$$p_a^{\mathrm{AP}}(\ell) = \# \left\{ w \in \Omega^\ell \, : \, (\exists \ n, m) \ a(n+im) = w(i) \ \text{for} \ 0 \le i < \ell \right\}.$$

• polynomial subword complexity, *d*-complexity, (maximal) pattern complexity, asymptotic subword complexity, etc., etc., ... \longrightarrow we will not discuss those

Setup: Let $a: \mathbb{N} \to \Omega$ be a sequence. $\Omega =$ finite alphabet, e.g. $\Omega = \{0, 1\}.$

General question: How complex is a?

 \longrightarrow hopelessly vague...

- Computational complexity of finding a(n).
- Subword complexity = number of length- ℓ subwords that appear in a:

$$p_a(\ell) = \# \left\{ w \in \Omega^{\ell} : (\exists n) \ a(n+i) = w(i) \text{ for } 0 \le i < \ell \right\}.$$

• Arithmetical subword complexity complexity = number of length- ℓ subwords that appear in *a along an arithmetic progression*:

$$p_a^{\mathrm{AP}}(\ell) = \# \left\{ w \in \Omega^\ell \, : \, (\exists \ n, m) \ a(n+im) = w(i) \ \text{for} \ 0 \le i < \ell \right\}.$$

 polynomial subword complexity, d-complexity, (maximal) pattern complexity, asymptotic subword complexity, etc., etc.,. → we will not discuss those

Setup: Let $a: \mathbb{N} \to \Omega$ be a sequence. $\Omega =$ finite alphabet, e.g. $\Omega = \{0, 1\}.$

General question: How complex is a?

 \longrightarrow hopelessly vague...

- Computational complexity of finding a(n).
- Subword complexity = number of length- ℓ subwords that appear in a:

$$p_a(\ell) = \# \left\{ w \in \Omega^\ell : (\exists n) \ a(n+i) = w(i) \text{ for } 0 \le i < \ell \right\}.$$

• Arithmetical subword complexity complexity = number of length- ℓ subwords that appear in *a along an arithmetic progression*:

$$p_a^{\mathrm{AP}}(\ell) = \# \left\{ w \in \Omega^\ell \, : \, (\exists \ n, m) \ a(n+im) = w(i) \ \text{for} \ 0 \le i < \ell \right\}.$$

 polynomial subword complexity, d-complexity, (maximal) pattern complexity, asymptotic subword complexity, etc., etc.... → we will not discuss those

Setup: Let $a: \mathbb{N} \to \Omega$ be a sequence. $\Omega = \text{finite alphabet}, \text{ e.g. } \Omega = \{0, 1\}.$

General question: How complex is a?

 \longrightarrow hopelessly vague...

- Computational complexity of finding a(n).
- Subword complexity = number of length- ℓ subwords that appear in a:

$$p_a(\ell) = \# \left\{ w \in \Omega^\ell \ : \ (\exists \ n) \ a(n+i) = w(i) \ \text{for} \ 0 \le i < \ell \right\}.$$

• Arithmetical subword complexity complexity = number of length- ℓ subwords that appear in *a along an arithmetic progression*:

$$p_a^{\mathrm{AP}}(\ell) = \# \left\{ w \in \Omega^\ell \, : \, (\exists \ n, m) \ a(n+im) = w(i) \ \text{for} \ 0 \le i < \ell \right\}.$$

 polynomial subword complexity, d-complexity, (maximal) pattern complexity, asymptotic subword complexity, etc., etc.... → we will not discuss those

Setup: Let $a: \mathbb{N} \to \Omega$ be a sequence. $\Omega = \text{finite alphabet}, \text{ e.g. } \Omega = \{0, 1\}.$

General question: How complex is a?

 \longrightarrow hopelessly vague...

- Computational complexity of finding a(n).
- Subword complexity = number of length- ℓ subwords that appear in a:

$$p_a(\ell) = \# \left\{ w \in \Omega^\ell \ : \ (\exists \ n) \ a(n+i) = w(i) \ \text{for} \ 0 \le i < \ell \right\}.$$

• Arithmetical subword complexity complexity = number of length- ℓ subwords that appear in *a along an arithmetic progression*:

$$p_a^{\operatorname{AP}}(\ell) = \# \left\{ w \in \Omega^\ell \, : \, (\exists \ n,m) \ a(n+im) = w(i) \ \text{for} \ 0 \le i < \ell \right\}.$$

 polynomial subword complexity, d-complexity, (maximal) pattern complexity, asymptotic subword complexity, etc., etc.,. → we will not discuss those

Setup: Let $a: \mathbb{N} \to \Omega$ be a sequence. $\Omega = \text{finite alphabet}, \text{ e.g. } \Omega = \{0, 1\}.$

General question: How complex is a?

 \longrightarrow hopelessly vague...

- Computational complexity of finding a(n).
- Subword complexity = number of length- ℓ subwords that appear in a:

$$p_a(\ell) = \# \left\{ w \in \Omega^\ell \ : \ (\exists \ n) \ a(n+i) = w(i) \ \text{for} \ 0 \le i < \ell \right\}.$$

• Arithmetical subword complexity complexity = number of length- ℓ subwords that appear in *a along an arithmetic progression*:

$$p_a^{\operatorname{AP}}(\ell) = \# \left\{ w \in \Omega^\ell \ : \ (\exists \ n,m) \ a(n+im) = w(i) \ \text{for} \ 0 \le i < \ell \right\}.$$

 polynomial subword complexity, d-complexity, (maximal) pattern complexity, asymptotic subword complexity, etc., etc.,... → we will not discuss those

Trivial bound: If $a: \mathbb{N} \to \Omega$ then $1 \leq p_a(\ell) \leq \#\Omega^{\ell}$.

Fact (bounded complexity \Leftrightarrow eventual periodicity)

If a is eventually periodic then p_a is bounded. Conversely, if $p_a(\ell) \leq \ell$ for at least one ℓ then a is eventually periodic.

Fact (minimal complexity \Leftrightarrow Sturmian)

If $a \colon \mathbb{N} \to \{0,1\}$ and $p_a(\ell) = \ell + 1$ for all ℓ then a is a Sturmian sequence:

 $a(n) = \lfloor \alpha(n+1) + \beta \rfloor - \lfloor \alpha n + \beta \rfloor \qquad n \in \mathbb{N},$

where $\alpha \in [0,1) \setminus \mathbb{Q}$, $\beta \in [0,1)$. Conversely, if a is Sturmian then $p_a(\ell) = \ell + 1$

Fact (linear complexity for automatic sequences)

Trivial bound: If $a: \mathbb{N} \to \Omega$ then $1 \leq p_a(\ell) \leq \#\Omega^{\ell}$.

Fact (bounded complexity \Leftrightarrow eventual periodicity)

If a is eventually periodic then p_a is bounded. Conversely, if $p_a(\ell) \leq \ell$ for at least one ℓ then a is eventually periodic.

Fact (minimal complexity \Leftrightarrow Sturmian) If $a: \mathbb{N} \to \{0, 1\}$ and $p_a(\ell) = \ell + 1$ for all ℓ then a is a Sturmian sequence: $a(n) = \lfloor \alpha(n+1) + \beta \rfloor - \lfloor \alpha n + \beta \rfloor$ $n \in \mathbb{N}$,

where $\alpha \in [0,1) \setminus \mathbb{Q}, \ \beta \in [0,1)$. Conversely, if a is Sturmian then $p_a(\ell) = \ell + 1$.

Fact (linear complexity for automatic sequences)

Trivial bound: If $a: \mathbb{N} \to \Omega$ then $1 \leq p_a(\ell) \leq \#\Omega^{\ell}$.

Fact (bounded complexity \Leftrightarrow eventual periodicity)

If a is eventually periodic then p_a is bounded. Conversely, if $p_a(\ell) \leq \ell$ for at least one ℓ then a is eventually periodic.

Fact (minimal complexity \Leftrightarrow Sturmian)

If $a \colon \mathbb{N} \to \{0,1\}$ and $p_a(\ell) = \ell + 1$ for all ℓ then a is a Sturmian sequence:

$$a(n) = \lfloor \alpha(n+1) + \beta \rfloor - \lfloor \alpha n + \beta \rfloor \qquad n \in \mathbb{N},$$

where $\alpha \in [0,1) \setminus \mathbb{Q}$, $\beta \in [0,1)$. Conversely, if a is Sturmian then $p_a(\ell) = \ell + 1$.

Fact (linear complexity for automatic sequences)

Trivial bound: If $a: \mathbb{N} \to \Omega$ then $1 \leq p_a(\ell) \leq \#\Omega^{\ell}$.

Fact (bounded complexity \Leftrightarrow eventual periodicity)

If a is eventually periodic then p_a is bounded. Conversely, if $p_a(\ell) \leq \ell$ for at least one ℓ then a is eventually periodic.

Fact (minimal complexity \Leftrightarrow Sturmian)

If $a \colon \mathbb{N} \to \{0,1\}$ and $p_a(\ell) = \ell + 1$ for all ℓ then a is a Sturmian sequence:

$$a(n) = \lfloor \alpha(n+1) + \beta \rfloor - \lfloor \alpha n + \beta \rfloor \qquad n \in \mathbb{N},$$

where $\alpha \in [0,1) \setminus \mathbb{Q}$, $\beta \in [0,1)$. Conversely, if a is Sturmian then $p_a(\ell) = \ell + 1$.

Fact (linear complexity for automatic sequences)

$+1, -1, -1, +1, -1, +1, +1, -1, -1, +1, +1, -1, +1, -1, -1, +1, \dots$

• Explicit formula: $t(n) = \begin{cases} +1 & \text{if } n \text{ is } evil \text{ (i.e., sum of binary digits is even),} \\ -1 & \text{if } n \text{ is } odious \text{ (i.e., sum of binary digits is odd).} \end{cases}$

$$t(2^{\alpha}n+m) = t(n)t(m).$$

$+1, -1, -1, +1, -1, +1, +1, -1, -1, +1, +1, -1, +1, -1, +1, -1, +1, \dots$

The Thue–Morse sequence (discovered by Prouhet) $t: \mathbb{N} \to \{+1, -1\}$ is the paradigmatic example of an automatic sequence. It can be defined in several ways:

• Explicit formula: $t(n) = \begin{cases} +1 & \text{if } n \text{ is } evil \text{ (i.e., sum of binary digits is even),} \\ -1 & \text{if } n \text{ is } odious \text{ (i.e., sum of binary digits is odd).} \end{cases}$

2 Automatic sequence:

- **3** Recurrence: t(0) = +1, t(2n) = t(n), t(2n+1) = -t(n).
- (a) Fixed point of a substitution: $+1 \mapsto +1, -1; \quad -1 \mapsto -1, +1.$
- **6** Strongly 2-multiplicative sequence: t(1) = -1, and if $m < 2^{\alpha}$ then

$$t(2^{\alpha}n+m) = t(n)t(m).$$

$+1, -1, -1, +1, -1, +1, +1, -1, -1, +1, +1, -1, +1, -1, +1, -1, +1, \dots$

The Thue–Morse sequence (discovered by Prouhet) $t: \mathbb{N} \to \{+1, -1\}$ is the paradigmatic example of an automatic sequence. It can be defined in several ways:

1 Explicit formula: $t(n) = \begin{cases} +1 & \text{if } n \text{ is } evil \text{ (i.e., sum of binary digits is even),} \\ -1 & \text{if } n \text{ is } odious \text{ (i.e., sum of binary digits is odd).} \end{cases}$

2 Automatic sequence:

- **3** Recurrence: t(0) = +1, t(2n) = t(n), t(2n+1) = -t(n).
- **(a)** Fixed point of a substitution: $+1 \mapsto +1, -1; -1 \mapsto -1, +1.$
- **6** Strongly 2-multiplicative sequence: t(1) = -1, and if $m < 2^{\alpha}$ then

 $t(2^{\alpha}n+m) = t(n)t(m).$

$+1, -1, -1, +1, -1, +1, +1, -1, -1, +1, +1, -1, +1, -1, +1, -1, +1, \dots$

The Thue–Morse sequence (discovered by Prouhet) $t: \mathbb{N} \to \{+1, -1\}$ is the paradigmatic example of an automatic sequence. It can be defined in several ways:

• Explicit formula: $t(n) = \begin{cases} +1 & \text{if } n \text{ is } evil \text{ (i.e., sum of binary digits is even),} \\ -1 & \text{if } n \text{ is } odious \text{ (i.e., sum of binary digits is odd).} \end{cases}$

2 Automatic sequence:

- **3** Recurrence: t(0) = +1, t(2n) = t(n), t(2n+1) = -t(n).
- **(a)** Fixed point of a substitution: $+1 \mapsto +1, -1; -1 \mapsto -1, +1$.
- **6** Strongly 2-multiplicative sequence: t(1) = -1, and if $m < 2^{\alpha}$ then

$$t(2^{\alpha}n+m) = t(n)t(m).$$

$+1, -1, -1, +1, -1, +1, +1, -1, -1, +1, +1, -1, +1, -1, +1, -1, +1, \dots$

The Thue–Morse sequence (discovered by Prouhet) $t: \mathbb{N} \to \{+1, -1\}$ is the paradigmatic example of an automatic sequence. It can be defined in several ways:

• Explicit formula: $t(n) = \begin{cases} +1 & \text{if } n \text{ is } evil \text{ (i.e., sum of binary digits is even),} \\ -1 & \text{if } n \text{ is } odious \text{ (i.e., sum of binary digits is odd).} \end{cases}$

2 Automatic sequence:

8 Recurrence: t(0) = +1, t(2n) = t(n), t(2n+1) = -t(n).

@ Fixed point of a substitution: $+1 \mapsto +1, -1; -1 \mapsto -1, +1.$

6 Strongly 2-multiplicative sequence: t(1) = -1, and if $m < 2^{\alpha}$ then

 $t(2^{\alpha}n+m) = t(n)t(m).$

$+1, -1, -1, +1, -1, +1, +1, -1, -1, +1, +1, -1, +1, -1, +1, -1, +1, \dots$

The Thue–Morse sequence (discovered by Prouhet) $t: \mathbb{N} \to \{+1, -1\}$ is the paradigmatic example of an automatic sequence. It can be defined in several ways:

• Explicit formula: $t(n) = \begin{cases} +1 & \text{if } n \text{ is } evil \text{ (i.e., sum of binary digits is even),} \\ -1 & \text{if } n \text{ is } odious \text{ (i.e., sum of binary digits is odd).} \end{cases}$

2 Automatic sequence:

- **8** Recurrence: t(0) = +1, t(2n) = t(n), t(2n+1) = -t(n).
- (a) Fixed point of a substitution: $+1 \mapsto +1, -1; -1 \mapsto -1, +1.$

Strongly 2-multiplicative sequence: t(1) = -1, and if $m < 2^{\alpha}$ then

 $t(2^{\alpha}n+m) = t(n)t(m).$

$+1, -1, -1, +1, -1, +1, +1, -1, -1, +1, +1, -1, +1, -1, +1, -1, +1, \dots$

The Thue–Morse sequence (discovered by Prouhet) $t: \mathbb{N} \to \{+1, -1\}$ is the paradigmatic example of an automatic sequence. It can be defined in several ways:

• Explicit formula: $t(n) = \begin{cases} +1 & \text{if } n \text{ is } evil \text{ (i.e., sum of binary digits is even),} \\ -1 & \text{if } n \text{ is } odious \text{ (i.e., sum of binary digits is odd).} \end{cases}$

2 Automatic sequence:

- $\label{eq:Recurrence: t(0) = +1, t(2n) = t(n), t(2n+1) = -t(n). }$
- (a) Fixed point of a substitution: $+1 \mapsto +1, -1; -1 \mapsto -1, +1$.

6 Strongly 2-multiplicative sequence: t(1) = -1, and if $m < 2^{\alpha}$ then

$$t(2^{\alpha}n+m) = t(n)t(m).$$

Some notation: We let k denote the base in which we work. \longrightarrow e.g. k = 10 or k = 2

- $\Sigma_k = \{0, 1, \dots, k-1\}$, the set of digits in base k;
- Σ_k^* is the set of words over Σ_k , monoid with concatenation;
- for $n \in \mathbb{N}$, $(n)_k \in \Sigma_k^*$ is the base-k expansion of n;
- for $w \in \Sigma_k^*$, $[w]_k \in \mathbb{N}$ is the integer encoded by w.

- a finite set of states S with a distinguished initial state s₀;
- a transition function $\delta \colon S \times \Sigma_k \to S;$
- an output function $\tau \colon S \to \Omega$.

Computing the sequence:

- Extend δ to a map $S\times \Sigma_k^*$ with $\delta(s,uv)=\delta(\delta(s,u),v)$ or $\delta(\delta(s,v),u)$
- The sequence computed by the automaton is given by $a(n) = \tau (\delta(s_0, (n)_k))$.
- The automaton above computes the Rudin–Shapiro sequence $(-1)^{\# \text{ of } 11 \text{ in } (n)_2}$.

Intuition: Automatic \iff Computable by a finite device.

Some notation: We let k denote the base in which we work. \longrightarrow e.g. k = 10 or k = 2

- $\Sigma_k = \{0, 1, \dots, k-1\}$, the set of digits in base k;
- Σ_k^* is the set of words over Σ_k , monoid with concatenation;
- for $n \in \mathbb{N}$, $(n)_k \in \Sigma_k^*$ is the base-k expansion of n;
- for $w \in \Sigma_k^*$, $[w]_k \in \mathbb{N}$ is the integer encoded by w.

A finite k-automaton consists of:

- a finite set of states S with a distinguished initial state s₀;
- a transition function $\delta \colon S \times \Sigma_k \to S;$
- an output function $\tau \colon S \to \Omega$.

Computing the sequence:

- Extend δ to a map $S\times \Sigma_k^*$ with $\delta(s,uv)=\delta(\delta(s,u),v)$ or $\delta(\delta(s,v),u)$
- The sequence computed by the automaton is given by $a(n) = \tau (\delta(s_0, (n)_k))$.
- The automaton above computes the Rudin–Shapiro sequence $(-1)^{\# \text{ of } 11 \text{ in } (n)_2}$

Intuition: Automatic \iff Computable by a finite device.

Some notation: We let k denote the base in which we work. \longrightarrow e.g. k = 10 or k = 2

- $\Sigma_k = \{0, 1, \dots, k-1\}$, the set of digits in base k;
- Σ_k^* is the set of words over Σ_k , monoid with concatenation;
- for $n \in \mathbb{N}$, $(n)_k \in \Sigma_k^*$ is the base-k expansion of n;
- for $w \in \Sigma_k^*$, $[w]_k \in \mathbb{N}$ is the integer encoded by w.

A finite k-automaton consists of:

- a finite set of states S with a distinguished initial state s₀;
- a transition function $\delta \colon S \times \Sigma_k \to S;$
- an output function $\tau \colon S \to \Omega$.

Computing the sequence:

- Extend δ to a map $S\times \Sigma_k^*$ with $\delta(s,uv)=\delta(\delta(s,u),v)$ or $\delta(\delta(s,v),u)$
- The sequence computed by the automaton is given by $a(n) = \tau (\delta(s_0, (n)_k))$.
- The automaton above computes the Rudin–Shapiro sequence $(-1)^{\# \text{ of } 11 \text{ in } (n)_2}$.

Intuition: Automatic \iff Computable by a finite device.

Some notation: We let k denote the base in which we work. \rightarrow e.g. k = 10 or k = 2

- $\Sigma_k = \{0, 1, \dots, k-1\}$, the set of digits in base k;
- Σ_k^* is the set of words over Σ_k , monoid with concatenation;
- for $n \in \mathbb{N}$, $(n)_k \in \Sigma_k^*$ is the base-k expansion of n;
- for $w \in \Sigma_k^*$, $[w]_k \in \mathbb{N}$ is the integer encoded by w.

A finite k-automaton consists of:

- a finite set of states S with a distinguished initial state s₀;
- a transition function $\delta \colon S \times \Sigma_k \to S;$
- an output function $\tau \colon S \to \Omega$.

Computing the sequence:

- Extend δ to a map $S\times \Sigma_k^*$ with $\delta(s,uv)=\delta(\delta(s,u),v)$ or $\delta(\delta(s,v),u)$
- The sequence computed by the automaton is given by $a(n) = \tau (\delta(s_0, (n)_k))$.
- The automaton above computes the Rudin–Shapiro sequence $(-1)^{\# \text{ of } 11 \text{ in } (n)_2}$.

Intuition: Automatic \iff Computable by a finite device.

 $0 \begin{pmatrix} +1 & -1 \\ 0 & 1 \\ 1 & 0 \end{pmatrix} 1$ start $\rightarrow +1 & 0 \begin{pmatrix} -1 \\ 0 \\ -1 \end{pmatrix} 0$

Some notation: We let k denote the base in which we work. \rightarrow e.g. k = 10 or k = 2

- $\Sigma_k = \{0, 1, \dots, k-1\}$, the set of digits in base k;
- Σ_k^* is the set of words over Σ_k , monoid with concatenation;
- for $n \in \mathbb{N}$, $(n)_k \in \Sigma_k^*$ is the base-k expansion of n;
- for $w \in \Sigma_k^*$, $[w]_k \in \mathbb{N}$ is the integer encoded by w.

A finite k-automaton consists of:

- a finite set of states S with a distinguished initial state s₀;
- a transition function $\delta \colon S \times \Sigma_k \to S;$
- an output function $\tau \colon S \to \Omega$.

Computing the sequence:

- Extend δ to a map $S\times \Sigma_k^*$ with $\delta(s,uv)=\delta(\delta(s,u),v)$ or $\delta(\delta(s,v),u)$
- The sequence computed by the automaton is given by $a(n) = \tau (\delta(s_0, (n)_k))$.
- The automaton above computes the Rudin–Shapiro sequence $(-1)^{\# \text{ of } 11 \text{ in } (n)_2}$.

Intuition: Automatic \iff Computable by a finite device.

 $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} +1 \\ 1 \\ 0 \\ 1 \end{array} \end{array} \begin{array}{c} 1 \\ 1 \\ 1 \end{array} \begin{array}{c} 0 \\ 1 \end{array} \begin{array}{c} 1 \\ 1 \end{array} \begin{array}{c} 0 \\ 1 \end{array} \begin{array}{c} 1 \\ 1 \\ 1 \end{array} \begin{array}{c} 0 \\ 1 \end{array} \end{array}$ start $\rightarrow \begin{array}{c} \begin{array}{c} +1 \\ 1 \\ 1 \end{array} \begin{array}{c} 0 \\ -1 \end{array} \begin{array}{c} 0 \\ 0 \end{array} \begin{array}{c} 0 \\ 1 \end{array}$

Some notation: We let k denote the base in which we work. \rightarrow e.g. k = 10 or k = 2

- $\Sigma_k = \{0, 1, \dots, k-1\}$, the set of digits in base k;
- Σ_{k}^{*} is the set of words over Σ_{k} , monoid with concatenation;
- for $n \in \mathbb{N}$, $(n)_k \in \Sigma_k^*$ is the base-k expansion of n;
- for $w \in \Sigma_k^*$, $[w]_k \in \mathbb{N}$ is the integer encoded by w.
- A finite k-automaton consists of:
 - a finite set of states S with a distinguished initial state s_0 ;
 - a transition function $\delta \colon S \times \Sigma_k \to S;$
 - an output function $\tau: S \to \Omega$.

Computing the sequence:

- Extend δ to a map $S \times \Sigma_k^*$ with $\delta(s, uv) = \delta(\delta(s, u), v)$ or $\delta(\delta(s, v), u)$;
- The sequence computed by the automaton is given by $a(n) = \tau (\delta(s_0, (n)_k))$.
- The automaton above computes the Rudin-Shapiro sequence $(-1)^{\# \text{ of } 11 \text{ in } (n)_2}$.

0 0 start

Some notation: We let k denote the base in which we work. \rightarrow e.g. k = 10 or k = 2

- $\Sigma_k = \{0, 1, \dots, k-1\}$, the set of digits in base k;
- Σ_{k}^{*} is the set of words over Σ_{k} , monoid with concatenation;
- for $n \in \mathbb{N}$, $(n)_k \in \Sigma_k^*$ is the base-k expansion of n;
- for $w \in \Sigma_k^*$, $[w]_k \in \mathbb{N}$ is the integer encoded by w.
- A finite k-automaton consists of:
 - a finite set of states S with a distinguished initial state s_0 ;
 - a transition function $\delta \colon S \times \Sigma_k \to S;$
 - an output function $\tau: S \to \Omega$.

Computing the sequence:

- Extend δ to a map $S \times \Sigma_k^*$ with $\delta(s, uv) = \delta(\delta(s, u), v)$ or $\delta(\delta(s, v), u)$;
- The sequence computed by the automaton is given by $a(n) = \tau (\delta(s_0, (n)_k))$.
- The automaton above computes the Rudin-Shapiro sequence $(-1)^{\# \text{ of } 11 \text{ in } (n)_2}$.

Intuition: Automatic \iff Computable by a finite device.

0 0 start

Subword complexity of automatic sequences

Proposition

The subword complexity of the Thue–Morse sequence is given by:

$$p_t(\ell) = \begin{cases} 3 \cdot 2^k + 4(r-1) & \text{if } \ell = 2^k + r \text{ with } 1 \le r \le 2^{k-1}, \\ 4 \cdot 2^k + 2(r-1) & \text{if } \ell = 2^k + r \text{ with } 2^{k-1} < r \le 2^k. \end{cases}$$

Proposition

If a is automatic then $p_a(\ell) = O(\ell)$.

Sketch of proof:

- Pick any $\alpha, n \in \mathbb{N}$. For $0 \leq i < k^{\alpha}$, $a(k^{\alpha}n+i)$ is determined by $\delta(s_0, (n)_2)$.
- If $w \in \{0,1\}^{k^{\alpha}}$ then w appears in a between $k^{\alpha}n + r$ and $k^{\alpha}(n+1) + r$ for some $n, r \in \mathbb{N}, r < k^{\alpha}$. Thus, w is determined by $\delta(s_0, (n)_k), \delta(s_0, (n+1)_k)$ and r, and

 $p_a(k^{\alpha}) \le \#S \times \#S \times k^{\alpha}.$

Subword complexity of automatic sequences

Proposition

The subword complexity of the Thue–Morse sequence is given by:

$$p_t(\ell) = \begin{cases} 3 \cdot 2^k + 4(r-1) & \text{if } \ell = 2^k + r \text{ with } 1 \le r \le 2^{k-1}, \\ 4 \cdot 2^k + 2(r-1) & \text{if } \ell = 2^k + r \text{ with } 2^{k-1} < r \le 2^k. \end{cases}$$

Proposition

If a is automatic then $p_a(\ell) = O(\ell)$.

Sketch of proof:

- Pick any $\alpha, n \in \mathbb{N}$. For $0 \leq i < k^{\alpha}$, $a(k^{\alpha}n+i)$ is determined by $\delta(s_0, (n)_2)$.
- If $w \in \{0,1\}^{k^{\alpha}}$ then w appears in a between $k^{\alpha}n + r$ and $k^{\alpha}(n+1) + r$ for some $n, r \in \mathbb{N}, r < k^{\alpha}$. Thus, w is determined by $\delta(s_0, (n)_k), \delta(s_0, (n+1)_k)$ and r, and

 $p_a(k^{\alpha}) \le \#S \times \#S \times k^{\alpha}.$

Subword complexity of automatic sequences

Proposition

The subword complexity of the Thue–Morse sequence is given by:

$$p_t(\ell) = \begin{cases} 3 \cdot 2^k + 4(r-1) & \text{if } \ell = 2^k + r \text{ with } 1 \le r \le 2^{k-1}, \\ 4 \cdot 2^k + 2(r-1) & \text{if } \ell = 2^k + r \text{ with } 2^{k-1} < r \le 2^k. \end{cases}$$

Proposition

If a is automatic then $p_a(\ell) = O(\ell)$.

Sketch of proof:

- Pick any $\alpha, n \in \mathbb{N}$. For $0 \leq i < k^{\alpha}$, $a(k^{\alpha}n+i)$ is determined by $\delta(s_0, (n)_2)$.
- If $w \in \{0,1\}^{k^{\alpha}}$ then w appears in a between $k^{\alpha}n + r$ and $k^{\alpha}(n+1) + r$ for some $n, r \in \mathbb{N}, r < k^{\alpha}$. Thus, w is determined by $\delta(s_0, (n)_k), \delta(s_0, (n+1)_k)$ and r, and

$$p_a(k^{\alpha}) \le \#S \times \#S \times k^{\alpha}.$$

Intuition: If $(m(n))_{n=0}^{\infty}$ is a sequence that "does not know" about binary expansions then s(n) = t(m(n)) looks "random". In particular, we expect that:

• maximal subword complexity: $p_s(\ell) = 2^{\ell}$.

Theorem (Drmota, Mauduit & Rivat)

The sequence $t(n^2)$ is normal (in particular, it has maximal subword complexity).

Theorem (Müllner & Spiegelhofer)

The sequence $t(\lfloor n^c \rfloor)$ is normal for 1 < c < 3/2.

Intuition: If $(m(n))_{n=0}^{\infty}$ is a sequence that "does not know" about binary expansions then s(n) = t(m(n)) looks "random". In particular, we expect that:

•
$$s(n) = +1$$
 for half of n : $\frac{1}{N} \sum_{n < N} s(n) \to 0$ as $N \to \infty$;

• s is normal: for
$$h_1 < h_2 < \dots < h_r$$
, $\frac{1}{N} \sum_{n < N} \prod_{i=1}^r s(n+h_i) \to 0$ as $N \to \infty$;

• maximal subword complexity: $p_s(\ell) = 2^{\ell}$.

Theorem (Drmota, Mauduit & Rivat)

The sequence $t(n^2)$ is normal (in particular, it has maximal subword complexity).

Theorem (Müllner & Spiegelhofer)

The sequence $t(\lfloor n^c \rfloor)$ is normal for 1 < c < 3/2.

Intuition: If $(m(n))_{n=0}^{\infty}$ is a sequence that "does not know" about binary expansions then s(n) = t(m(n)) looks "random". In particular, we expect that:

•
$$s(n) = +1$$
 for half of n : $\frac{1}{N} \sum_{n < N} s(n) \to 0$ as $N \to \infty$;

• s is normal: for
$$h_1 < h_2 < \dots < h_r$$
, $\frac{1}{N} \sum_{n < N} \prod_{i=1}^r s(n+h_i) \to 0$ as $N \to \infty$;

• maximal subword complexity: $p_s(\ell) = 2^{\ell}$.

Theorem (Drmota, Mauduit & Rivat)

The sequence $t(n^2)$ is normal (in particular, it has maximal subword complexity).

Theorem (Müllner & Spiegelhofer)

The sequence $t(\lfloor n^c \rfloor)$ is normal for 1 < c < 3/2.

Intuition: If $(m(n))_{n=0}^{\infty}$ is a sequence that "does not know" about binary expansions then s(n) = t(m(n)) looks "random". In particular, we expect that:

•
$$s(n) = +1$$
 for half of n : $\frac{1}{N} \sum_{n < N} s(n) \to 0$ as $N \to \infty$;

• s is normal: for
$$h_1 < h_2 < \dots < h_r$$
, $\frac{1}{N} \sum_{n < N} \prod_{i=1}^r s(n+h_i) \to 0$ as $N \to \infty$;

• maximal subword complexity: $p_s(\ell) = 2^{\ell}$.

Theorem (Drmota, Mauduit & Rivat)

The sequence $t(n^2)$ is normal (in particular, it has maximal subword complexity).

Theorem (Müllner & Spiegelhofer)

The sequence $t(\lfloor n^c \rfloor)$ is normal for 1 < c < 3/2.

Intuition: If $(m(n))_{n=0}^{\infty}$ is a sequence that "does not know" about binary expansions then s(n) = t(m(n)) looks "random". In particular, we expect that:

•
$$s(n) = +1$$
 for half of n : $\frac{1}{N} \sum_{n < N} s(n) \to 0$ as $N \to \infty$;

• s is normal: for
$$h_1 < h_2 < \dots < h_r$$
, $\frac{1}{N} \sum_{n < N} \prod_{i=1}^r s(n+h_i) \to 0$ as $N \to \infty$;

• maximal subword complexity: $p_s(\ell) = 2^{\ell}$.

Theorem (Drmota, Mauduit & Rivat)

The sequence $t(n^2)$ is normal (in particular, it has maximal subword complexity).

Theorem (Müllner & Spiegelhofer)

The sequence $t(\lfloor n^c \rfloor)$ is normal for 1 < c < 3/2.

Intuition: If $(m(n))_{n=0}^{\infty}$ is a sequence that "does not know" about binary expansions then s(n) = t(m(n)) looks "random". In particular, we expect that:

•
$$s(n) = +1$$
 for half of n : $\frac{1}{N} \sum_{n < N} s(n) \to 0$ as $N \to \infty$;

• s is normal: for
$$h_1 < h_2 < \dots < h_r$$
, $\frac{1}{N} \sum_{n < N} \prod_{i=1}^r s(n+h_i) \to 0$ as $N \to \infty$;

• maximal subword complexity: $p_s(\ell) = 2^{\ell}$.

Theorem (Drmota, Mauduit & Rivat)

The sequence $t(n^2)$ is normal (in particular, it has maximal subword complexity).

Theorem (Müllner & Spiegelhofer)

The sequence $t(\lfloor n^c \rfloor)$ is normal for 1 < c < 3/2.

Intuition: If $(m(n))_{n=0}^{\infty}$ is a sequence that "does not know" about binary expansions then s(n) = t(m(n)) looks "random". In particular, we expect that:

•
$$s(n) = +1$$
 for half of n : $\frac{1}{N} \sum_{n < N} s(n) \to 0$ as $N \to \infty$;

• s is normal: for
$$h_1 < h_2 < \dots < h_r$$
, $\frac{1}{N} \sum_{n < N} \prod_{i=1}^r s(n+h_i) \to 0$ as $N \to \infty$;

• maximal subword complexity: $p_s(\ell) = 2^{\ell}$.

Theorem (Drmota, Mauduit & Rivat)

The sequence $t(n^2)$ is normal (in particular, it has maximal subword complexity).

Theorem (Müllner & Spiegelhofer)

The sequence $t(\lfloor n^c \rfloor)$ is normal for 1 < c < 3/2.

Fact: The restriction t(An + B) of the Thue–Morse sequence to a given arithmetic progression is automatic (and hence very non-random).

Hope: The restriction of t(n) to a random arithmetic progression looks random.

Intuition: If $(m(n))_{n=0}^{\infty}$ is a sequence that "does not know" about binary expansions then s(n) = t(m(n)) looks "random". In particular, we expect that:

•
$$s(n) = +1$$
 for half of n : $\frac{1}{N} \sum_{n < N} s(n) \to 0$ as $N \to \infty$;

• s is normal: for
$$h_1 < h_2 < \dots < h_r$$
, $\frac{1}{N} \sum_{n < N} \prod_{i=1}^r s(n+h_i) \to 0$ as $N \to \infty$;

• maximal subword complexity: $p_s(\ell) = 2^{\ell}$.

Theorem (Drmota, Mauduit & Rivat)

The sequence $t(n^2)$ is normal (in particular, it has maximal subword complexity).

Theorem (Müllner & Spiegelhofer)

The sequence $t(\lfloor n^c \rfloor)$ is normal for 1 < c < 3/2.

Fact: The restriction t(An + B) of the Thue-Morse sequence to a given arithmetic progression is automatic (and hence very non-random).

Hope: The restriction of t(n) to a random arithmetic progression looks random.
Higher order Fourier analysis: first glance

Definition (Gowers norm)

Fix $d \ge 2$. Let $f: [N] := \{0, 1, \dots, N-1\} \to \mathbb{C}$. Then $||f||_{U^d[N]} \ge 0$ is defined by:

$$\|f\|_{U^{d}[N]}^{2^{d}} = \mathbb{E}_{\mathbf{n}} \prod_{\omega \in \{0,1\}^{d}} \mathsf{C}^{|\omega|} f(n_{0} + \omega_{1}n_{1} + \dots \omega_{d}n_{d}),$$

where the average is taken over all parallelepipeds in [N], i.e., over all $\mathbf{n} = (n_0, \ldots, n_d) \in \mathbb{Z}^{d+1}$ such that $n_0 + \omega_1 n_1 + \ldots \omega_d n_d \in [N]$ for all $\omega \in \{0, 1\}^d$.

Theorem (Generalised von Neumann Theorem) Fix $d \ge 2$ and let $f_0, f_1, \dots, f_d \colon [N] \to \mathbb{C}$ be 1-bounded. Then $\left| \prod_{n,m} f_0(n) f_1(n+m) f_2(n+2m) \dots f_d(n+dm) \right| \ll \min_{0 \le i \le d} \|f_i\|_{U^d[N]}.$

Higher order Fourier analysis: first glance

Definition (Gowers norm)

Fix $d \ge 2$. Let $f: [N] := \{0, 1, \dots, N-1\} \to \mathbb{C}$. Then $||f||_{U^d[N]} \ge 0$ is defined by:

$$\|f\|_{U^{d}[N]}^{2^{d}} = \mathbb{E}_{\mathbf{n}} \prod_{\omega \in \{0,1\}^{d}} \mathsf{C}^{|\omega|} f(n_{0} + \omega_{1}n_{1} + \dots \omega_{d}n_{d}),$$

where the average is taken over all parallelepipeds in [N], i.e., over all $\mathbf{n} = (n_0, \ldots, n_d) \in \mathbb{Z}^{d+1}$ such that $n_0 + \omega_1 n_1 + \ldots \omega_d n_d \in [N]$ for all $\omega \in \{0, 1\}^d$.

Theorem (Generalised von Neumann Theorem)

Fix $d \geq 2$ and let $f_0, f_1, \ldots, f_d \colon [N] \to \mathbb{C}$ be 1-bounded. Then

$$\left| \mathbb{E}_{n,m} f_0(n) f_1(n+m) f_2(n+2m) \dots f_d(n+dm) \right| \ll \min_{0 \le i \le d} \|f_i\|_{U^d[N]}.$$

Higher order Fourier analysis and arithmetical subword complexity

Corollary 1: If $f: [N] \to \{-1, +1\}$ and $||f||_{U^d[N]} \leq \varepsilon$ then f looks random along random (d+1)-term APs in [N], meaning that for $w \in \{-1, +1\}^{d+1}$ we have:

$$\frac{\#\left\{(n,m)\,:\,n+im\in[N]\text{ and }f(n+im)=w(i)\text{ for }0\leq i\leq d\right\}}{\#\left\{(n,m)\,:\,n+im\in[N]\text{ for }0\leq i\leq d\right\}}=\frac{1}{2^{d+1}}+O(\varepsilon).$$

Corollary 2: In particular, if $f: \mathbb{N} \to \{-1, +1\}$ and $||f||_{U^d[N]} \to 0$ as $N \to \infty$ for each $d \geq 2$ then f has maximal arithmetical subword complexity, $p_f^{AP}(\ell) = 2^{\ell}$.

Theorem (K.)

The Thue-Morse sequence is Gowers uniform of all orders. More precisely, for each $d \geq 2$ there exists $\kappa > 0$ such that

$$\|t\|_{U^d[N]} \ll N^{-\kappa}.$$

In particular, t(n) has maximal arithmetical subword complexity, $p_t^{
m AP}(\ell)=2^\ell$.

Remark: The fact that $p_t^{AP}(\ell) = 2^{\ell}$ has been proven several times.

Higher order Fourier analysis and arithmetical subword complexity

Corollary 1: If $f: [N] \to \{-1, +1\}$ and $||f||_{U^d[N]} \leq \varepsilon$ then f looks random along random (d+1)-term APs in [N], meaning that for $w \in \{-1, +1\}^{d+1}$ we have:

$$\frac{\#\left\{(n,m)\,:\,n+im\in[N]\text{ and }f(n+im)=w(i)\text{ for }0\leq i\leq d\right\}}{\#\left\{(n,m)\,:\,n+im\in[N]\text{ for }0\leq i\leq d\right\}}=\frac{1}{2^{d+1}}+O(\varepsilon).$$

Corollary 2: In particular, if $f: \mathbb{N} \to \{-1, +1\}$ and $||f||_{U^d[N]} \to 0$ as $N \to \infty$ for each $d \geq 2$ then f has maximal arithmetical subword complexity, $p_f^{AP}(\ell) = 2^{\ell}$.

Theorem (K.)

The Thue-Morse sequence is Gowers uniform of all orders. More precisely, for each $d \geq 2$ there exists $\kappa > 0$ such that

$$\left\|t\right\|_{U^{d}[N]} \ll N^{-\kappa}.$$

In particular, t(n) has maximal arithmetical subword complexity, $p_t^{
m AP}(\ell)=2^\ell$.

Remark: The fact that $p_t^{AP}(\ell) = 2^{\ell}$ has been proven several times.

Higher order Fourier analysis and arithmetical subword complexity

Corollary 1: If $f: [N] \to \{-1, +1\}$ and $||f||_{U^d[N]} \leq \varepsilon$ then f looks random along random (d+1)-term APs in [N], meaning that for $w \in \{-1, +1\}^{d+1}$ we have:

$$\frac{\#\left\{(n,m)\,:\,n+im\in[N]\text{ and }f(n+im)=w(i)\text{ for }0\leq i\leq d\right\}}{\#\left\{(n,m)\,:\,n+im\in[N]\text{ for }0\leq i\leq d\right\}}=\frac{1}{2^{d+1}}+O(\varepsilon).$$

Corollary 2: In particular, if $f: \mathbb{N} \to \{-1, +1\}$ and $||f||_{U^d[N]} \to 0$ as $N \to \infty$ for each $d \geq 2$ then f has maximal arithmetical subword complexity, $p_f^{AP}(\ell) = 2^{\ell}$.

Theorem (K.)

The Thue-Morse sequence is Gowers uniform of all orders. More precisely, for each $d \ge 2$ there exists $\kappa > 0$ such that

$$\|t\|_{U^d[N]} \ll N^{-\kappa}.$$

In particular, t(n) has maximal arithmetical subword complexity, $p_t^{AP}(\ell) = 2^{\ell}$.

Remark: The fact that $p_t^{AP}(\ell) = 2^{\ell}$ has been proven several times.

Uniformity of automatic sequences

Question: Which automatic sequences are Gowers uniform?

Theorem (Byszewski, K., Müllner)

For an automatic sequence $a \colon \mathbb{N} \to \mathbb{C}$, the following are equivalent:

- $||a||_{U^d[N]} \to 0$ as $N \to \infty$ for each $d \ge 2$;
- $||a||_{U^2[N]} \to 0$ as $N \to \infty$;
- $\frac{1}{N}\sum_{n=0}^{N-1}a(An+B) \to 0$ as $N \to \infty$ for each $A \ge 1$, $B \ge 0$.

Rationale: Only linear obstructions to uniformity, no quadratic structure possible.

Proposition

Let $a \colon \mathbb{N} \to \{0, 1\}$ be an automatic sequence. Suppose for some $\alpha \in (0, 1)$ we have:

$$\frac{1}{N}\sum_{n=0}^{N-1}a(An+B) \to \alpha \qquad \qquad \text{for each } A \ge 1, \ B \ge 0.$$

Then a has maximal arithmetical subword complexity: $p_a^{AP}(\ell) = 2^{\ell}$.

Rationale: $a - \alpha 1_{\mathbb{N}}$ is Gowers uniform of all orders.

Uniformity of automatic sequences

Question: Which automatic sequences are Gowers uniform?

Theorem (Byszewski, K., Müllner)

For an automatic sequence $a \colon \mathbb{N} \to \mathbb{C}$, the following are equivalent:

•
$$||a||_{U^d[N]} \to 0$$
 as $N \to \infty$ for each $d \ge 2$;

•
$$||a||_{U^2[N]} \to 0 \text{ as } N \to \infty;$$

• $\frac{1}{N}\sum_{n=0}^{N-1}a(An+B) \to 0$ as $N \to \infty$ for each $A \ge 1$, $B \ge 0$.

Rationale: Only linear obstructions to uniformity, no quadratic structure possible.

Proposition

Let $a \colon \mathbb{N} \to \{0, 1\}$ be an automatic sequence. Suppose for some $\alpha \in (0, 1)$ we have:

$$\frac{1}{N}\sum_{n=0}^{N-1} a(An+B) \to \alpha \qquad \qquad \text{for each } A \ge 1, \ B \ge 0$$

Then a has maximal arithmetical subword complexity: $p_a^{AP}(\ell) = 2^{\ell}$.

Rationale: $a - \alpha 1_{\mathbb{N}}$ is Gowers uniform of all orders.

Uniformity of automatic sequences

Question: Which automatic sequences are Gowers uniform?

Theorem (Byszewski, K., Müllner)

For an automatic sequence $a \colon \mathbb{N} \to \mathbb{C}$, the following are equivalent:

•
$$||a||_{U^d[N]} \to 0$$
 as $N \to \infty$ for each $d \ge 2$;

•
$$||a||_{U^2[N]} \to 0 \text{ as } N \to \infty;$$

• $\frac{1}{N}\sum_{n=0}^{N-1}a(An+B) \to 0$ as $N \to \infty$ for each $A \ge 1$, $B \ge 0$.

Rationale: Only linear obstructions to uniformity, no quadratic structure possible.

Proposition

Let $a: \mathbb{N} \to \{0, 1\}$ be an automatic sequence. Suppose for some $\alpha \in (0, 1)$ we have:

$$\frac{1}{N}\sum_{n=0}^{N-1} a(An+B) \to \alpha \qquad \qquad \text{for each } A \ge 1, \ B \ge 0.$$

Then a has maximal arithmetical subword complexity: $p_a^{AP}(\ell) = 2^{\ell}$.

Rationale: $a - \alpha 1_{\mathbb{N}}$ is Gowers uniform of all orders.

If a = [constant] + [uniform], we can apply generalised von Neumann. **Question:** Which automatic sequences *do not* have this form?

Basic classes of non-uniform sequences:

- periodic, such as $(-1)^n$;
- 2) forwards synchronising, such as $(-1)^{\nu_2(n)}$;
- 3 backwards synchronising, such as $(-1)^{\lfloor \log_2(n) \rfloor}$

Definition (Synchronisation)

 An automaton A = (S, s₀, Σ_k, δ, Ω, τ) is synchronising if there exists a word w ∈ Σ^{*}_k which synchronises A to a state s ∈ S, meaning that:

 $\delta(s', w) = s \qquad \qquad \text{for all } s' \in S.$

- A sequence a: N → Ω is forwards synchronising if it is computed by a synchronising automaton reading input starting with the most significant digit.
- A sequence a: N → Ω is backwards synchronising if it is computed by a synchronising automaton reading input starting with the least significant digit.

If a = [constant] + [uniform], we can apply generalised von Neumann. **Question:** Which automatic sequences *do not* have this form?

Basic classes of non-uniform sequences:

- periodic, such as $(-1)^n$;
- 2 forwards synchronising, such as $(-1)^{\nu_2(n)}$;
- **3** backwards synchronising, such as $(-1)^{\lfloor \log_2(n) \rfloor}$.

Definition (Synchronisation)

 An automaton A = (S, s₀, Σ_k, δ, Ω, τ) is synchronising if there exists a word w ∈ Σ^{*}_k which synchronises A to a state s ∈ S, meaning that:

 $\delta(s', w) = s \qquad \qquad \text{for all } s' \in S.$

- A sequence a: N → Ω is forwards synchronising if it is computed by a synchronising automaton reading input starting with the most significant digit.
- A sequence a: N → Ω is backwards synchronising if it is computed by a synchronising automaton reading input starting with the least significant digit.

 $\longrightarrow 2^{\nu_2(n)} \parallel n$:

If a = [constant] + [uniform], we can apply generalised von Neumann. **Question:** Which automatic sequences *do not* have this form?

Basic classes of non-uniform sequences:

- periodic, such as $(-1)^n$;
- 2 forwards synchronising, such as $(-1)^{\nu_2(n)}$;
- **3** backwards synchronising, such as $(-1)^{\lfloor \log_2(n) \rfloor}$.

Definition (Synchronisation)

 An automaton A = (S, s₀, Σ_k, δ, Ω, τ) is synchronising if there exists a word w ∈ Σ^{*}_k which synchronises A to a state s ∈ S, meaning that:

$$\delta(s', w) = s \qquad \qquad \text{for all } s' \in S.$$

- A sequence a: N→ Ω is forwards synchronising if it is computed by a synchronising automaton reading input starting with the most significant digit.
- A sequence $a \colon \mathbb{N} \to \Omega$ is backwards synchronising if it is computed by a synchronising automaton reading input starting with the *least* significant digit.

 $\longrightarrow 2^{\nu_2(n)} \parallel n$:

Theorem (Deshouillers, Drmota, Müllner, Shubin & Spiegelhofer) If $a: \mathbb{N} \to \Omega$ is a forwards synchronising automatic sequence then

 $p_a^{\rm AP}(\ell) = \exp(o(\ell)).$

In fact, same estimate holds for polynomial subword complexity.

Remark: Similar estimates can be proved for backwards synchronising.

Synchronizing automatic sequences along Piatetski-Shapiro sequences

Arithmetic subword complexity of automatic sequences - part I

Clemens Müllner

TU Wien

Tuesday, January 9, 2024

Theorem (Deshouillers, Drmota, Müllner, Shubin & Spiegelhofer) If $a: \mathbb{N} \to \Omega$ is a forwards synchronising automatic sequence then

 $p_a^{\rm AP}(\ell) = \exp(o(\ell)).$

In fact, same estimate holds for polynomial subword complexity.

Remark: Similar estimates can be proved for backwards synchronising.

Synchronizing automatic sequences along Piatetski-Shapiro sequences

Arithmetic subword complexity of automatic sequences - part I

Clemens Müllner

TU Wien

Tuesday, January 9, 2024

Example: Uniform \times Non-uniform

Let $a \colon \mathbb{N} \to \{\pm 1, \pm 2\}$ be defined by

$$a(n) = \begin{cases} t(n') & \text{if } n = 2n', \\ 2t(n') & \text{if } n = 2n' + 1. \end{cases}$$

$$(a(n))_{n=0}^{\infty} = (+1, +2, -1, -2, -1, -2, +1, +2, -1, -2, +1, +2, +1, +2, -1, -2, -1, -2, +1, +2, -1, -2, +1, +2, -1, -2, +1, +2, -1, -2, +1, +2, \dots)$$

There are three types of factors that appear in a(n) along arithmetic progressions:

- factors (along arithmetic progressions) of t(n);
- factors (along arithmetic progressions) of 2t(n);
- shuffles of factors of t(n) and factors of 2t(n) (two ways to combine).

We can estimate arithmetical subword complexity of a(n):

$$p_a^{\rm AP}(\ell) \le p_t^{\rm AP}(\ell) + p_{2t}^{\rm AP}(\ell) + 2 \times p_t^{\rm AP}(\ell/2) + p_{2t}^{\rm AP}(\ell/2) \le 4 \times 2^{\ell}.$$

Takeaway: Passing to arithmetic progressions, we reduced alphabet size to 2.

Example: Uniform \times Non-uniform

Let $a \colon \mathbb{N} \to \{\pm 1, \pm 2\}$ be defined by

$$a(n) = \begin{cases} t(n') & \text{if } n = 2n', \\ 2t(n') & \text{if } n = 2n' + 1. \end{cases}$$

$$(a(n))_{n=0}^{\infty} = (+1, +2, -1, -2, -1, -2, +1, +2, -1, -2, +1, +2, +1, +2, -1, -2, -1, -2, +1, +2, -1, -2, +1, +2, -1, -2, +1, +2, -1, -2, +1, +2, \dots)$$

There are three types of factors that appear in a(n) along arithmetic progressions:

- factors (along arithmetic progressions) of t(n);
- factors (along arithmetic progressions) of 2t(n);
- shuffles of factors of t(n) and factors of 2t(n) (two ways to combine).

We can estimate arithmetical subword complexity of a(n):

 $p_a^{\rm AP}(\ell) \le p_t^{\rm AP}(\ell) + p_{2t}^{\rm AP}(\ell) + 2 \times p_t^{\rm AP}(\ell/2) + p_{2t}^{\rm AP}(\ell/2) \le 4 \times 2^{\ell}.$

Takeaway: Passing to arithmetic progressions, we reduced alphabet size to 2.

Example: Uniform \times Non-uniform

Let $a \colon \mathbb{N} \to \{\pm 1, \pm 2\}$ be defined by

$$a(n) = \begin{cases} t(n') & \text{if } n = 2n', \\ 2t(n') & \text{if } n = 2n' + 1. \end{cases}$$

$$(a(n))_{n=0}^{\infty} = (+1, +2, -1, -2, -1, -2, +1, +2, -1, -2, +1, +2, +1, +2, -1, -2, -1, -2, +1, +2, -1, -2, +1, +2, -1, -2, +1, +2, -1, -2, +1, +2, \dots)$$

There are three types of factors that appear in a(n) along arithmetic progressions:

- factors (along arithmetic progressions) of t(n);
- factors (along arithmetic progressions) of 2t(n);
- shuffles of factors of t(n) and factors of 2t(n) (two ways to combine).

We can estimate arithmetical subword complexity of a(n):

$$p_a^{\rm AP}(\ell) \le p_t^{\rm AP}(\ell) + p_{2t}^{\rm AP}(\ell) + 2 \times p_t^{\rm AP}(\ell/2) + p_{2t}^{\rm AP}(\ell/2) \le 4 \times 2^{\ell}.$$

Takeaway: Passing to arithmetic progressions, we reduced alphabet size to 2.

Let \mathcal{AP}_k denote the family of all sets P of the form

$$P = \left\{ \begin{array}{ccc} n \equiv r \mod q, \\ u \text{ is a prefix of } (n)_k, \\ v \text{ is a suffix of } (n)_k, \\ ength \text{ of } (n)_k \equiv c \mod \ell \end{array} \right\}$$

Intuition: Like a residue class, plus base-k information.

Definition (Effective alphabet size)

The effective alphabet size of a k-automatic sequence $a: \mathbb{N} \to \Omega$ is the largest integer r_a such that there exists $P \in \mathcal{AP}_k$ such that for each $Q \in \mathcal{AP}_k$ with $Q \subset P$ we have

 $\# \{a(n) : n \in Q\} \ge r_a.$

Remark: In fact, above we have $\# \{a(n) : n \in Q\} = r$.

Let \mathcal{AP}_k denote the family of all sets P of the form

$$P = \left\{ \begin{array}{cc} n \equiv r \mod q, \\ u \text{ is a prefix of } (n)_k, \\ v \text{ is a suffix of } (n)_k, \\ \text{ length of } (n)_k \equiv c \mod \ell \end{array} \right\}$$

Intuition: Like a residue class, plus base-k information.

Definition (Effective alphabet size)

The effective alphabet size of a k-automatic sequence $a: \mathbb{N} \to \Omega$ is the largest integer r_a such that there exists $P \in \mathcal{AP}_k$ such that for each $Q \in \mathcal{AP}_k$ with $Q \subset P$ we have

 $\# \{a(n) : n \in Q\} \ge r_a.$

Remark: In fact, above we have $\# \{a(n) : n \in Q\} = r$.

Example

If a is periodic, forwards synchronising, or backwards synchronising then the effective alphabet size of a is $r_a = 1$.

Example

The effective alphabet size of the Thue–Morse sequence is $r_t = 2$.

Basic properties:

- For $a: \mathbb{N} \to \Omega, b: \mathbb{N} \to \Lambda$ we have $r_{a \times b} \leq r_a \times r_b$.
- For $a \colon \mathbb{N} \to \Omega, \ \phi \colon \Omega \to \Lambda$ we have $r_{\phi \circ a} \leq r_a$.

Thus, if a is constructed out of periodic and synchronising sequences then $r_a = 1$.

Fact: For each $\varepsilon > 0$ we can find a finite cover

 $\mathbb{N} = P_1 \cup P_2 \cup \cdots \cup P_N \cup Q_1 \cup Q_2 \cup \cdots \cup Q_M$

by $P_i, Q_j \in \mathcal{AP}_k$ such that $\# \{a(n) : n \in P_i\} \leq r_a$ and $\overline{d}(Q_1 \cup Q_2 \cup \cdots \cup Q_M) < \varepsilon$.

Example

If a is periodic, forwards synchronising, or backwards synchronising then the effective alphabet size of a is $r_a = 1$.

Example

The effective alphabet size of the Thue–Morse sequence is $r_t = 2$.

Basic properties:

- For $a \colon \mathbb{N} \to \Omega$, $b \colon \mathbb{N} \to \Lambda$ we have $r_{a \times b} \leq r_a \times r_b$.
- For $a \colon \mathbb{N} \to \Omega, \ \phi \colon \Omega \to \Lambda$ we have $r_{\phi \circ a} \leq r_a$.

Thus, if a is constructed out of periodic and synchronising sequences then $r_a = 1$.

Fact: For each $\varepsilon > 0$ we can find a finite cover

 $\mathbb{N} = P_1 \cup P_2 \cup \cdots \cup P_N \cup Q_1 \cup Q_2 \cup \cdots \cup Q_M$

by $P_i, Q_j \in \mathcal{AP}_k$ such that $\# \{a(n) : n \in P_i\} \leq r_a$ and $\overline{d}(Q_1 \cup Q_2 \cup \cdots \cup Q_M) < \varepsilon$.

Example

If a is periodic, forwards synchronising, or backwards synchronising then the effective alphabet size of a is $r_a = 1$.

Example

The effective alphabet size of the Thue–Morse sequence is $r_t = 2$.

Basic properties:

- For $a \colon \mathbb{N} \to \Omega$, $b \colon \mathbb{N} \to \Lambda$ we have $r_{a \times b} \leq r_a \times r_b$.
- For $a \colon \mathbb{N} \to \Omega, \phi \colon \Omega \to \Lambda$ we have $r_{\phi \circ a} \leq r_a$.

Thus, if a is constructed out of periodic and synchronising sequences then $r_a = 1$.

Fact: For each $\varepsilon > 0$ we can find a finite cover

 $\mathbb{N} = P_1 \cup P_2 \cup \cdots \cup P_N \cup Q_1 \cup Q_2 \cup \cdots \cup Q_M$

by $P_i, Q_j \in \mathcal{AP}_k$ such that $\#\{a(n) : n \in P_i\} \leq r_a$ and $\overline{d}(Q_1 \cup Q_2 \cup \cdots \cup Q_M) < \varepsilon$.

Example

If a is periodic, forwards synchronising, or backwards synchronising then the effective alphabet size of a is $r_a = 1$.

Example

The effective alphabet size of the Thue–Morse sequence is $r_t = 2$.

Basic properties:

- For $a \colon \mathbb{N} \to \Omega$, $b \colon \mathbb{N} \to \Lambda$ we have $r_{a \times b} \leq r_a \times r_b$.
- For $a \colon \mathbb{N} \to \Omega, \phi \colon \Omega \to \Lambda$ we have $r_{\phi \circ a} \leq r_a$.

Thus, if a is constructed out of periodic and synchronising sequences then $r_a = 1$.

Fact: For each $\varepsilon > 0$ we can find a finite cover

 $\mathbb{N} = P_1 \cup P_2 \cup \cdots \cup P_N \cup Q_1 \cup Q_2 \cup \cdots \cup Q_M$

by $P_i, Q_j \in \mathcal{AP}_k$ such that $\# \{a(n) : n \in P_i\} \leq r_a$ and $\overline{d}(Q_1 \cup Q_2 \cup \cdots \cup Q_M) < \varepsilon$.

Main result

Theorem (K., Müllner)

Let $a \colon \mathbb{N} \to \Omega$ be an automatic sequence with effective alphabet size r_a . Then

 $p_a^{\rm AP}(\ell) = (r_a + o(1))^{\ell}.$

Remarks:

- In fact, in one direction we have exact inequality $p_a^{AP}(\ell) \ge r_a^{\ell}$.
- We can find $\Lambda \subset \Omega$ with $\#\Lambda = r_a$ such that all words over Λ appear in a along an arithmetic progression.
- Same estimate for polynomial subword complexity.
- The value of r_a is computable, given a representation of a.

Corollary

Let $a \colon \mathbb{N} \to \Omega$ be an automatic sequence with maximal arithmetical subword complexity, i.e. $p_a^{AP}(\ell) = \#\Omega^{\ell}$. Then for each $\ell \in \mathbb{N}$ and $w \in \Omega^{\ell}$ we have:

 $\liminf_{N \to \infty} \# \left\{ (n,m) \, : \, n + im \in [N] \text{ and } a(n + im) = w(i) \text{ for } 0 \le i < \ell \right\} / N^2 > 0$

Main result

Theorem (K., Müllner)

Let $a \colon \mathbb{N} \to \Omega$ be an automatic sequence with effective alphabet size r_a . Then

 $p_a^{\rm AP}(\ell) = (r_a + o(1))^{\ell}.$

Remarks:

- In fact, in one direction we have exact inequality $p_a^{AP}(\ell) \ge r_a^{\ell}$.
- We can find $\Lambda \subset \Omega$ with $\#\Lambda = r_a$ such that all words over Λ appear in a along an arithmetic progression.
- Same estimate for polynomial subword complexity.
- The value of r_a is computable, given a representation of a.

Corollary

Let $a \colon \mathbb{N} \to \Omega$ be an automatic sequence with maximal arithmetical subword complexity, i.e. $p_a^{AP}(\ell) = \#\Omega^{\ell}$. Then for each $\ell \in \mathbb{N}$ and $w \in \Omega^{\ell}$ we have:

 $\liminf_{N \to \infty} \# \left\{ (n,m) \, : \, n + im \in [N] \text{ and } a(n+im) = w(i) \text{ for } 0 \le i < \ell \right\} / N^2 > 0$

Main result

Theorem (K., Müllner)

Let $a \colon \mathbb{N} \to \Omega$ be an automatic sequence with effective alphabet size r_a . Then

 $p_a^{\rm AP}(\ell) = (r_a + o(1))^{\ell}.$

Remarks:

- In fact, in one direction we have exact inequality $p_a^{AP}(\ell) \ge r_a^{\ell}$.
- We can find $\Lambda \subset \Omega$ with $\#\Lambda = r_a$ such that all words over Λ appear in a along an arithmetic progression.
- Same estimate for polynomial subword complexity.
- The value of r_a is computable, given a representation of a.

Corollary

Let $a \colon \mathbb{N} \to \Omega$ be an automatic sequence with maximal arithmetical subword complexity, i.e. $p_a^{AP}(\ell) = \#\Omega^{\ell}$. Then for each $\ell \in \mathbb{N}$ and $w \in \Omega^{\ell}$ we have:

 $\liminf_{N \to \infty} \# \left\{ (n,m) \, : \, n + im \in [N] \text{ and } a(n + im) = w(i) \text{ for } 0 \le i < \ell \right\} / N^2 > 0$

Arithmetic regularity lemma for automatic sequences

Definition (Structured sequences)

A k-automatic sequence $a: \mathbb{N} \to \Omega$ is structured if there exist automatic sequences $a_{\text{per}}, a_{\text{fs}}, a_{\text{bs}}: \mathbb{N}_0 \to \Omega_{\text{per}}, \Omega_{\text{fs}}, \Omega_{\text{bs}}$ which are periodic, forward synchronising and backward synchronising respectively and a map $F: \Omega_{\text{per}} \times \Omega_{\text{fs}} \times \Omega_{\text{bs}} \to \mathbb{C}$ such that

 $a(n) = F\left(a_{\text{per}}(n), a_{\text{fs}}(n), a_{\text{bs}}(n)\right).$

Theorem (Byszewski, K. & Müllner)

Each automatic sequence $a: \mathbb{N} \to \mathbb{C}$ has a decomposition $a = a_{\text{str}} + a_{\text{uni}}$, where

- a_{str} is structured in the sense defined above;
- $a_{ ext{uni}}$ is uniform in the sense that for each $d \geq 2$ there exists $\kappa > 0$ such that

 $\|a_{\mathrm{uni}}\|_{U^d[N]} \ll N^{-\kappa}.$

Arithmetic regularity lemma for automatic sequences

Definition (Structured sequences)

A k-automatic sequence $a: \mathbb{N} \to \Omega$ is structured if there exist automatic sequences $a_{\text{per}}, a_{\text{fs}}, a_{\text{bs}}: \mathbb{N}_0 \to \Omega_{\text{per}}, \Omega_{\text{fs}}, \Omega_{\text{bs}}$ which are periodic, forward synchronising and backward synchronising respectively and a map $F: \Omega_{\text{per}} \times \Omega_{\text{fs}} \times \Omega_{\text{bs}} \to \mathbb{C}$ such that

 $a(n) = F\left(a_{\text{per}}(n), a_{\text{fs}}(n), a_{\text{bs}}(n)\right).$

Theorem (Byszewski, K. & Müllner)

Each automatic sequence $a: \mathbb{N} \to \mathbb{C}$ has a decomposition $a = a_{str} + a_{uni}$, where

- a_{str} is structured in the sense defined above;
- a_{uni} is uniform in the sense that for each $d \geq 2$ there exists $\kappa > 0$ such that

 $\|a_{\mathrm{uni}}\|_{U^d[N]} \ll N^{-\kappa}.$

Arithmetic regularity lemma

Theorem (Green & Tao (2010))

Fix $s \geq 1$, $\varepsilon > 0$ and a growth function $\mathcal{F} \colon \mathbb{R}_+ \to \mathbb{R}_+$. Each sequence $a \colon [N] \to [0,1]$ has a decomposition $a = a_{nil} + a_{sml} + a_{uni}$, where M = O(1) and

- **1** a_{uni} is uniform in the sense that $||a_{\text{uni}}||_{U^{s+1}[N]} \leq 1/\mathcal{F}(M)$.
- 2 a_{sml} is small in the sense that $||a_{\text{sml}}||_{L^2[N]} \leq \varepsilon$.

 \mathfrak{g} a_{nil} is a $(\mathcal{F}(M), N)$ -irrational virtual degree s nilsequence of complexity $\leq M$.

Recall: If a is automatic, then $a_{\text{str}}(n) = F(a_{\text{per}}(n), a_{\text{fs}}(n), a_{\text{bs}}(n))$, where

- a_{per} is periodic;
- $a_{\rm fs}$ is essentially periodic;

 $\rightarrow a_{
m fs} = [k^i$ -periodic] $+ O(1/k^{i\eta})$ in $L^2[N]$

• $a_{\rm bs}$ is constant on long intervals.

Hence, $a_{\rm str} = [1$ -step nilsequence] + [small error].

Key differences:

- For automatic sequences, 1-step nilsequences are enough.
- Quantitative bounds in the decomposition are reasonable.

Arithmetic regularity lemma

Theorem (Green & Tao (2010))

Fix $s \ge 1$, $\varepsilon > 0$ and a growth function $\mathcal{F} \colon \mathbb{R}_+ \to \mathbb{R}_+$. Each sequence $a \colon [N] \to [0, 1]$ has a decomposition $a = a_{nil} + a_{sml} + a_{uni}$, where M = O(1) and

- **1** a_{uni} is uniform in the sense that $||a_{\text{uni}}||_{U^{s+1}[N]} \leq 1/\mathcal{F}(M)$.
- **2** a_{sml} is small in the sense that $||a_{\text{sml}}||_{L^2[N]} \leq \varepsilon$.

 \mathfrak{G} a_{nil} is a $(\mathcal{F}(M), N)$ -irrational virtual degree s nilsequence of complexity $\leq M$.

Recall: If a is automatic, then $a_{str}(n) = F(a_{per}(n), a_{fs}(n), a_{bs}(n))$, where

- $a_{\rm per}$ is periodic;
- $a_{\rm fs}$ is essentially periodic; $\longrightarrow a_{\rm fs} = [k^i \text{-periodic}] + O(1/k^{i\eta})$ in $L^2[N]$
- $a_{\rm bs}$ is constant on long intervals.

Hence, $a_{\text{str}} = [1\text{-step nilsequence}] + [\text{small error}].$

Key differences:

- For automatic sequences, 1-step nilsequences are enough.
- Quantitative bounds in the decomposition are reasonable.

Arithmetic regularity lemma

Theorem (Green & Tao (2010))

Fix $s \ge 1$, $\varepsilon > 0$ and a growth function $\mathcal{F} \colon \mathbb{R}_+ \to \mathbb{R}_+$. Each sequence $a \colon [N] \to [0, 1]$ has a decomposition $a = a_{nil} + a_{sml} + a_{uni}$, where M = O(1) and

- **1** a_{uni} is uniform in the sense that $||a_{\text{uni}}||_{U^{s+1}[N]} \leq 1/\mathcal{F}(M)$.
- **2** a_{sml} is small in the sense that $||a_{\text{sml}}||_{L^2[N]} \leq \varepsilon$.

 \mathfrak{G} a_{nil} is a $(\mathcal{F}(M), N)$ -irrational virtual degree s nilsequence of complexity $\leq M$.

Recall: If a is automatic, then $a_{str}(n) = F(a_{per}(n), a_{fs}(n), a_{bs}(n))$, where

- $a_{\rm per}$ is periodic;
- $a_{\rm fs}$ is essentially periodic; $\longrightarrow a_{\rm fs} = [k^i \text{-periodic}] + O(1/k^{i\eta})$ in $L^2[N]$
- $a_{\rm bs}$ is constant on long intervals.

Hence, $a_{\text{str}} = [1\text{-step nilsequence}] + [\text{small error}].$

Key differences:

- For automatic sequences, 1-step nilsequences are enough.
- Quantitative bounds in the decomposition are reasonable.

Arithmetic regularity lemma and effective alphabet size

Observation: If $b: \mathbb{N} \to \Omega$ is a structured k-automatic sequence and $P \in \mathcal{AP}_k$ then there exists $Q \in \mathcal{AP}_k$ with $Q \subset P$ on which b is constant.

Lemma

Let $a \colon \mathbb{N} \to [0,1]$ be a k-automatic sequence and $P \in \mathcal{AP}_k$. Suppose that for all $Q \in \mathcal{AP}_k$ with $Q \subset P$ there exists $n \in Q$ with a(n) > 0. Then there exists $Q \in \mathcal{AP}_k$ with $Q \subset P$ such that a_{str} is constant and positive on Q.

Let $a: \mathbb{N} \to \Omega$ be a k-automatic sequence. For $x \in \Omega$, let $a^{(x)}(n) = \begin{cases} 1 & \text{if } a(n) = x, \\ 0 & \text{otherwise.} \end{cases}$

Lemma

Let $a \colon \mathbb{N} \to \Omega$ be a k-automatic sequence with effective alphabet size r_a . Then there exist $\Lambda \subset \Omega$ with $\#\Lambda = r_a$ and $P \in \mathcal{AP}_k$ such that $a_{str}^{(x)}$ is constant and positive on P for all $x \in \Lambda$.

Proof: Apply the previous lemma repeatedly.

Arithmetic regularity lemma and effective alphabet size

Observation: If $b: \mathbb{N} \to \Omega$ is a structured k-automatic sequence and $P \in \mathcal{AP}_k$ then there exists $Q \in \mathcal{AP}_k$ with $Q \subset P$ on which b is constant.

Lemma

Let $a \colon \mathbb{N} \to [0,1]$ be a k-automatic sequence and $P \in \mathcal{AP}_k$. Suppose that for all $Q \in \mathcal{AP}_k$ with $Q \subset P$ there exists $n \in Q$ with a(n) > 0. Then there exists $Q \in \mathcal{AP}_k$ with $Q \subset P$ such that a_{str} is constant and positive on Q.

Let $a: \mathbb{N} \to \Omega$ be a k-automatic sequence. For $x \in \Omega$, let $a^{(x)}(n) = \begin{cases} 1 & \text{if } a(n) = x, \\ 0 & \text{otherwise.} \end{cases}$

Lemma

Let $a \colon \mathbb{N} \to \Omega$ be a k-automatic sequence with effective alphabet size r_a . Then there exist $\Lambda \subset \Omega$ with $\#\Lambda = r_a$ and $P \in \mathcal{AP}_k$ such that $a_{\text{str}}^{(x)}$ is constant and positive on P for all $x \in \Lambda$.

Proof: Apply the previous lemma repeatedly.

Arithmetic regularity lemma and effective alphabet size

Observation: If $b: \mathbb{N} \to \Omega$ is a structured k-automatic sequence and $P \in \mathcal{AP}_k$ then there exists $Q \in \mathcal{AP}_k$ with $Q \subset P$ on which b is constant.

Lemma

Let $a \colon \mathbb{N} \to [0,1]$ be a k-automatic sequence and $P \in \mathcal{AP}_k$. Suppose that for all $Q \in \mathcal{AP}_k$ with $Q \subset P$ there exists $n \in Q$ with a(n) > 0. Then there exists $Q \in \mathcal{AP}_k$ with $Q \subset P$ such that a_{str} is constant and positive on Q.

Let $a \colon \mathbb{N} \to \Omega$ be a k-automatic sequence. For $x \in \Omega$, let $a^{(x)}(n) = \begin{cases} 1 & \text{if } a(n) = x, \\ 0 & \text{otherwise.} \end{cases}$

Lemma

Let $a \colon \mathbb{N} \to \Omega$ be a k-automatic sequence with effective alphabet size r_a . Then there exist $\Lambda \subset \Omega$ with $\#\Lambda = r_a$ and $P \in \mathcal{AP}_k$ such that $a_{str}^{(x)}$ is constant and positive on P for all $x \in \Lambda$.

Proof: Apply the previous lemma repeatedly.

Proof of the lower bound

We are now ready to show that $p_a^{AP}(\ell) \ge r_a^{\ell}$ for all $\ell \ge 1$.

- Let $\Lambda \subset \Omega$ and $P \in \mathcal{AP}_k$ be like on the previous slide. Pick any $w \in \Lambda^{\ell}$. We claim that w appears in a along an arithmetic progression contained in P.
- Let N be a large integer. We will estimate the count of ℓ -term arithmetic progressions in $P \cap [N]$ where w appears in a:

$$C = \sum_{n,m=0}^{N-1} \prod_{i=0}^{\ell-1} \mathbb{1}_{P \cap [N]}(n+im) a^{(w(i))}(n+im).$$

• By generalised von Neumann theorem:

$$C \simeq \sum_{n,m=0}^{N-1} \prod_{i=0}^{\ell-1} \mathbb{1}_{P \cap [N]}(n+im) a_{\text{str}}^{(w(i))}(n+im)$$

• Recall that $a_{\text{str}}^{(w(i))}$ has constant value on P, say $\alpha_{w(i)} > 0$, so

$$C \simeq \prod_{i=0}^{\ell-1} \alpha_{w(i)} \cdot \# \{ (n,m) \, : \, n+im \in P \cap [N] \text{ for } 0 \le i < \ell \} \gg N^2.$$

Proof of the lower bound

We are now ready to show that $p_a^{AP}(\ell) \ge r_a^{\ell}$ for all $\ell \ge 1$.

- Let $\Lambda \subset \Omega$ and $P \in \mathcal{AP}_k$ be like on the previous slide. Pick any $w \in \Lambda^{\ell}$. We claim that w appears in a along an arithmetic progression contained in P.
- Let N be a large integer. We will estimate the count of ℓ -term arithmetic progressions in $P \cap [N]$ where w appears in a:

$$C = \sum_{n,m=0}^{N-1} \prod_{i=0}^{\ell-1} \mathbb{1}_{P \cap [N]}(n+im)a^{(w(i))}(n+im).$$

• By generalised von Neumann theorem:

$$C \simeq \sum_{n,m=0}^{N-1} \prod_{i=0}^{\ell-1} \mathbb{1}_{P \cap [N]}(n+im) a_{\text{str}}^{(w(i))}(n+im)$$

• Recall that $a_{\text{str}}^{(w(i))}$ has constant value on P, say $\alpha_{w(i)} > 0$, so

$$C\simeq \prod_{i=0}^{\ell-1} \alpha_{w(i)}\cdot \#\left\{(n,m)\,:\,n+im\in P\cap [N] \text{ for } 0\leq i<\ell\right\}\gg N^2.$$

Proof of the lower bound

We are now ready to show that $p_a^{AP}(\ell) \ge r_a^{\ell}$ for all $\ell \ge 1$.

- Let $\Lambda \subset \Omega$ and $P \in \mathcal{AP}_k$ be like on the previous slide. Pick any $w \in \Lambda^{\ell}$. We claim that w appears in a along an arithmetic progression contained in P.
- Let N be a large integer. We will estimate the count of ℓ -term arithmetic progressions in $P \cap [N]$ where w appears in a:

$$C = \sum_{n,m=0}^{N-1} \prod_{i=0}^{\ell-1} 1_{P \cap [N]} (n+im) a^{(w(i))} (n+im).$$

• By generalised von Neumann theorem:

$$C \simeq \sum_{n,m=0}^{N-1} \prod_{i=0}^{\ell-1} \mathbb{1}_{P \cap [N]}(n+im) a_{\rm str}^{(w(i))}(n+im)$$

• Recall that $a_{\text{str}}^{(w(i))}$ has constant value on P, say $\alpha_{w(i)} > 0$, so

$$C\simeq \prod_{i=0}^{\ell-1} \alpha_{w(i)}\cdot \#\left\{(n,m)\,:\,n+im\in P\cap [N] \text{ for } 0\leq i<\ell\right\}\gg N^2.$$
Proof of the lower bound

We are now ready to show that $p_a^{AP}(\ell) \ge r_a^{\ell}$ for all $\ell \ge 1$.

- Let $\Lambda \subset \Omega$ and $P \in \mathcal{AP}_k$ be like on the previous slide. Pick any $w \in \Lambda^{\ell}$. We claim that w appears in a along an arithmetic progression contained in P.
- Let N be a large integer. We will estimate the count of ℓ -term arithmetic progressions in $P \cap [N]$ where w appears in a:

$$C = \sum_{n,m=0}^{N-1} \prod_{i=0}^{\ell-1} 1_{P \cap [N]} (n+im) a^{(w(i))} (n+im).$$

• By generalised von Neumann theorem:

$$C \simeq \sum_{n,m=0}^{N-1} \prod_{i=0}^{\ell-1} \mathbb{1}_{P \cap [N]} (n+im) a_{\text{str}}^{(w(i))}(n+im)$$

• Recall that $a_{\text{str}}^{(w(i))}$ has constant value on P, say $\alpha_{w(i)} > 0$, so

$$C \simeq \prod_{i=0}^{\ell-1} \alpha_{w(i)} \cdot \# \{ (n,m) : n+im \in P \cap [N] \text{ for } 0 \le i < \ell \} \gg N^2.$$

Proof of the lower bound

We are now ready to show that $p_a^{AP}(\ell) \ge r_a^{\ell}$ for all $\ell \ge 1$.

- Let $\Lambda \subset \Omega$ and $P \in \mathcal{AP}_k$ be like on the previous slide. Pick any $w \in \Lambda^{\ell}$. We claim that w appears in a along an arithmetic progression contained in P.
- Let N be a large integer. We will estimate the count of ℓ -term arithmetic progressions in $P \cap [N]$ where w appears in a:

$$C = \sum_{n,m=0}^{N-1} \prod_{i=0}^{\ell-1} 1_{P \cap [N]} (n+im) a^{(w(i))} (n+im).$$

• By generalised von Neumann theorem:

$$C \simeq \sum_{n,m=0}^{N-1} \prod_{i=0}^{\ell-1} \mathbb{1}_{P \cap [N]}(n+im) a_{\text{str}}^{(w(i))}(n+im)$$

• Recall that $a_{\text{str}}^{(w(i))}$ has constant value on P, say $\alpha_{w(i)} > 0$, so

$$C \simeq \prod_{i=0}^{\ell-1} \alpha_{w(i)} \cdot \# \left\{ (n,m) \, : \, n+im \in P \cap [N] \text{ for } 0 \le i < \ell \right\} \gg N^2.$$

Let $a \colon \mathbb{N} \to \Omega$ be k-automatic, produced by automaton $\mathcal{A} = (S, s_0, \Sigma_k, \delta, \Omega, \tau)$.

Simplifying assumption: \mathcal{A} is primitive (strongly connected, gcd of loop lengths = 1).

Recall: k-automatic \Leftrightarrow coding of a k-uniform substitution.

Suppose $\eta: \Omega \to \Omega^k$ be a substitution with $\eta(a) = a$, i.e.:

$$(a(n))_{n=0}^{\infty} = \underbrace{a(0), a(1), \dots, a(k-1)}_{=\eta(a(0))}, \dots \underbrace{a(nk), a(nk+1), \dots, a((n+1)k-1)}_{=\eta(a(n))}, \dots$$

Definition

The height h of η is given by

 $h = \max \{m : m \perp k, m \mid d \text{ for all } d \ge 0 \text{ such that } a(d) = a(0) \}$ $= \max \{m : m \perp k, m \mid d \text{ for all } d \ge 0 \text{ such that } a(n+d) = a(n) \}$

Let $a \colon \mathbb{N} \to \Omega$ be k-automatic, produced by automaton $\mathcal{A} = (S, s_0, \Sigma_k, \delta, \Omega, \tau)$.

Simplifying assumption: \mathcal{A} is primitive (strongly connected, gcd of loop lengths = 1).

Recall: k-automatic \Leftrightarrow coding of a k-uniform substitution.

Suppose $\eta: \Omega \to \Omega^k$ be a substitution with $\eta(a) = a$, i.e.:

$$(a(n))_{n=0}^{\infty} = \underbrace{a(0), a(1), \dots, a(k-1)}_{=\eta(a(0))}, \dots \underbrace{a(nk), a(nk+1), \dots, a((n+1)k-1)}_{=\eta(a(n))}, \dots$$

Definition

The height h of η is given by

 $h = \max \{m : m \perp k, m \mid d \text{ for all } d \ge 0 \text{ such that } a(d) = a(0) \}$ $= \max \{m : m \perp k, m \mid d \text{ for all } d \ge 0 \text{ such that } a(n+d) = a(n) \}$

Let $a \colon \mathbb{N} \to \Omega$ be k-automatic, produced by automaton $\mathcal{A} = (S, s_0, \Sigma_k, \delta, \Omega, \tau)$.

Simplifying assumption: \mathcal{A} is primitive (strongly connected, gcd of loop lengths = 1).

Recall: k-automatic \Leftrightarrow coding of a k-uniform substitution.

Suppose $\eta \colon \Omega \to \Omega^k$ be a substitution with $\eta(a) = a$, i.e.:

$$(a(n))_{n=0}^{\infty} = \underbrace{a(0), a(1), \dots, a(k-1)}_{=\eta(a(0))}, \dots \underbrace{a(nk), a(nk+1), \dots, a((n+1)k-1)}_{=\eta(a(n))}, \dots$$

Definition

The height h of η is given by

 $h = \max \{m : m \perp k, m \mid d \text{ for all } d \ge 0 \text{ such that } a(d) = a(0) \}$ $= \max \{m : m \perp k, m \mid d \text{ for all } d \ge 0 \text{ such that } a(n+d) = a(n) \}$

Let $a \colon \mathbb{N} \to \Omega$ be k-automatic, produced by automaton $\mathcal{A} = (S, s_0, \Sigma_k, \delta, \Omega, \tau)$.

Simplifying assumption: \mathcal{A} is primitive (strongly connected, gcd of loop lengths = 1).

Recall: k-automatic \Leftrightarrow coding of a k-uniform substitution.

Suppose $\eta \colon \Omega \to \Omega^k$ be a substitution with $\eta(a) = a$, i.e.:

$$(a(n))_{n=0}^{\infty} = \underbrace{a(0), a(1), \dots, a(k-1)}_{=\eta(a(0))}, \dots \underbrace{a(nk), a(nk+1), \dots, a((n+1)k-1)}_{=\eta(a(n))}, \dots$$

Definition

The height h of η is given by

 $h = \max \{m : m \perp k, m \mid d \text{ for all } d \ge 0 \text{ such that } a(d) = a(0) \}$ $= \max \{m : m \perp k, m \mid d \text{ for all } d \ge 0 \text{ such that } a(n+d) = a(n) \}$

Let $a \colon \mathbb{N} \to \Omega$ be k-automatic, produced by automaton $\mathcal{A} = (S, s_0, \Sigma_k, \delta, \Omega, \tau)$.

Simplifying assumption: \mathcal{A} is primitive (strongly connected, gcd of loop lengths = 1).

Recall: k-automatic \Leftrightarrow coding of a k-uniform substitution.

Suppose $\eta \colon \Omega \to \Omega^k$ be a substitution with $\eta(a) = a$, i.e.:

$$(a(n))_{n=0}^{\infty} = \underbrace{a(0), a(1), \dots, a(k-1)}_{=\eta(a(0))}, \dots \underbrace{a(nk), a(nk+1), \dots, a((n+1)k-1)}_{=\eta(a(n))}, \dots$$

Definition

The height h of η is given by

 $h = \max \{m : m \perp k, m \mid d \text{ for all } d \ge 0 \text{ such that } a(d) = a(0) \}$ $= \max \{m : m \perp k, m \mid d \text{ for all } d \ge 0 \text{ such that } a(n+d) = a(n) \}$

Let $a: \mathbb{N} \to \Omega$ be k-automatic, produced by automaton $\mathcal{A} = (S, s_0, \Sigma_k, \delta, \Omega, \tau)$.

Simplifying assumption: \mathcal{A} is primitive (strongly connected, gcd of loop lengths = 1).

Recall: k-automatic \Leftrightarrow coding of a k-uniform substitution.

Suppose $\eta \colon \Omega \to \Omega^k$ be a substitution with $\eta(a) = a$, i.e.:

$$(a(n))_{n=0}^{\infty} = \underbrace{a(0), a(1), \dots, a(k-1)}_{=\eta(a(0))}, \dots \underbrace{a(nk), a(nk+1), \dots, a((n+1)k-1)}_{=\eta(a(n))}, \dots$$

Definition

The height h of η is given by

$$h = \max \{m : m \perp k, m \mid d \text{ for all } d \ge 0 \text{ such that } a(d) = a(0) \}$$
$$= \max \{m : m \perp k, m \mid d \text{ for all } d \ge 0 \text{ such that } a(n+d) = a(n) \}$$

Height and periodicity

Let $C_j := \{a(n) : n \equiv j \mod h\}.$

- **1** For each i, j either $C_j = C_i$ or $C_i \cap C_j = \emptyset$.
- **2** The sequence C_0, C_1, C_2, \ldots is periodic.
- **3** The height is the largest integer $h \perp k$ such that the above hold.

The sequence C_0, C_1, C_2, \ldots contains all information about periodic behaviour of a(n) that we would need in the argument.

Simplifying assumption: h = 1 (no periodic component).

Height and periodicity

Let $C_j := \{a(n) : n \equiv j \mod h\}.$

- **1** For each i, j either $C_j = C_i$ or $C_i \cap C_j = \emptyset$.
- **2** The sequence C_0, C_1, C_2, \ldots is periodic.
- **3** The height is the largest integer $h \perp k$ such that the above hold.

The sequence C_0, C_1, C_2, \ldots contains all information about periodic behaviour of a(n) that we would need in the argument.

Simplifying assumption: h = 1 (no periodic component).

Height and periodicity

Let $C_j := \{a(n) : n \equiv j \mod h\}.$

- **1** For each i, j either $C_j = C_i$ or $C_i \cap C_j = \emptyset$.
- **2** The sequence C_0, C_1, C_2, \ldots is periodic.
- **3** The height is the largest integer $h \perp k$ such that the above hold.

The sequence C_0, C_1, C_2, \ldots contains all information about periodic behaviour of a(n) that we would need in the argument.

Simplifying assumption: h = 1 (no periodic component).

- Let $c = \min \{ \# \delta(S, w) : w \in \Sigma_k^* \}$, where $\delta(S, w) = \{ \delta(s, w) : s \in S \}$.
- Let $\mathcal{M} = \{M_0, M_1, \dots, M_{p-1}\} = \{\delta(S, w) : w \in \Sigma_k^*, \ \#\delta(S, w) = c\}.$ Without loss of generality: $s_0 \in M_0$.

Fact: For each $M \in \mathcal{M}$ and $u \in \Sigma_k^*$ we have $\delta(M, u) \in \mathcal{M}$.

- Let $s(n) = \delta(s_0, (n)_k) \in S$ where $n \in \mathbb{N}$.
- Let $i(n) \in \{0, 1, \dots, p-1\}$ be such that $\delta(M_0, (n)_k) = M_{i(n)}$.

Fact: For each $n \in \mathbb{N}$ we have $s(n) \in M_{i(n)}$

Proposition

The effective alphabet size is alternatively given by:

$$r_a = \max_{0 \le i < p} \# \tau(M_i).$$

- $r_a \leq \max_i \#\tau(M_i)$: If $P \in \mathcal{AP}_k$ then there are $Q \in \mathcal{AP}_k$, $Q \subset P$ and $M \in \mathcal{M}$, such that $\{a(n) : n \in Q\} \subseteq \{\tau(s) : s \in M\}$.
- $r_a \ge \max_i \# \tau(M_i)$: Given *i*, we can find $P \in \mathcal{AP}_k$ with i(n) = i for all $n \in P$. Remains to show: for each $Q \in \mathcal{AP}_k$, $Q \subset P$ we have $\{s(n) : n \in Q\} = M_i$.

- Let $c = \min \{ \# \delta(S, w) : w \in \Sigma_k^* \}$, where $\delta(S, w) = \{ \delta(s, w) : s \in S \}$.
- Let $\mathcal{M} = \{M_0, M_1, \dots, M_{p-1}\} = \{\delta(S, w) : w \in \Sigma_k^*, \ \#\delta(S, w) = c\}.$ Without loss of generality: $s_0 \in M_0$.

Fact: For each $M \in \mathcal{M}$ and $u \in \Sigma_k^*$ we have $\delta(M, u) \in \mathcal{M}$.

- Let $s(n) = \delta(s_0, (n)_k) \in S$ where $n \in \mathbb{N}$.
- Let $i(n) \in \{0, 1, ..., p-1\}$ be such that $\delta(M_0, (n)_k) = M_{i(n)}$.

Fact: For each $n \in \mathbb{N}$ we have $s(n) \in M_{i(n)}$

Proposition

The effective alphabet size is alternatively given by:

$$r_a = \max_{0 \le i < p} \# \tau(M_i).$$

- $r_a \leq \max_i \# \tau(M_i)$: If $P \in \mathcal{AP}_k$ then there are $Q \in \mathcal{AP}_k$, $Q \subset P$ and $M \in \mathcal{M}$, such that $\{a(n) : n \in Q\} \subseteq \{\tau(s) : s \in M\}$.
- $r_a \ge \max_i \# \tau(M_i)$: Given *i*, we can find $P \in \mathcal{AP}_k$ with i(n) = i for all $n \in P$. Remains to show: for each $Q \in \mathcal{AP}_k$, $Q \subset P$ we have $\{s(n) : n \in Q\} = M_i$.

- Let $c = \min \{ \# \delta(S, w) : w \in \Sigma_k^* \}$, where $\delta(S, w) = \{ \delta(s, w) : s \in S \}$.
- Let $\mathcal{M} = \{M_0, M_1, \dots, M_{p-1}\} = \{\delta(S, w) : w \in \Sigma_k^*, \ \#\delta(S, w) = c\}.$ Without loss of generality: $s_0 \in M_0$.

Fact: For each $M \in \mathcal{M}$ and $u \in \Sigma_k^*$ we have $\delta(M, u) \in \mathcal{M}$.

- Let $s(n) = \delta(s_0, (n)_k) \in S$ where $n \in \mathbb{N}$.
- Let $i(n) \in \{0, 1, ..., p-1\}$ be such that $\delta(M_0, (n)_k) = M_{i(n)}$.

Fact: For each $n \in \mathbb{N}$ we have $s(n) \in M_{i(n)}$

Proposition

The effective alphabet size is alternatively given by:

$$r_a = \max_{0 \le i < p} \# \tau(M_i).$$

- $r_a \leq \max_i \# \tau(M_i)$: If $P \in \mathcal{AP}_k$ then there are $Q \in \mathcal{AP}_k$, $Q \subset P$ and $M \in \mathcal{M}$, such that $\{a(n) : n \in Q\} \subseteq \{\tau(s) : s \in M\}$.
- $r_a \ge \max_i \# \tau(M_i)$: Given *i*, we can find $P \in \mathcal{AP}_k$ with i(n) = i for all $n \in P$. Remains to show: for each $Q \in \mathcal{AP}_k$, $Q \subset P$ we have $\{s(n) : n \in Q\} = M_i$.

- Let $c = \min \{ \# \delta(S, w) : w \in \Sigma_k^* \}$, where $\delta(S, w) = \{ \delta(s, w) : s \in S \}$.
- Let $\mathcal{M} = \{M_0, M_1, \dots, M_{p-1}\} = \{\delta(S, w) : w \in \Sigma_k^*, \ \#\delta(S, w) = c\}.$ Without loss of generality: $s_0 \in M_0$.

Fact: For each $M \in \mathcal{M}$ and $u \in \Sigma_k^*$ we have $\delta(M, u) \in \mathcal{M}$.

- Let $s(n) = \delta(s_0, (n)_k) \in S$ where $n \in \mathbb{N}$.
- Let $i(n) \in \{0, 1, ..., p-1\}$ be such that $\delta(M_0, (n)_k) = M_{i(n)}$.

Fact: For each $n \in \mathbb{N}$ we have $s(n) \in M_{i(n)}$.

Proposition

The effective alphabet size is alternatively given by:

$$r_a = \max_{0 \le i < p} \# \tau(M_i).$$

- $r_a \leq \max_i \# \tau(M_i)$: If $P \in \mathcal{AP}_k$ then there are $Q \in \mathcal{AP}_k$, $Q \subset P$ and $M \in \mathcal{M}$, such that $\{a(n) : n \in Q\} \subseteq \{\tau(s) : s \in M\}$.
- $r_a \ge \max_i \# \tau(M_i)$: Given *i*, we can find $P \in \mathcal{AP}_k$ with i(n) = i for all $n \in P$. Remains to show: for each $Q \in \mathcal{AP}_k$, $Q \subset P$ we have $\{s(n) : n \in Q\} = M_i$.

- Let $c = \min \{ \# \delta(S, w) : w \in \Sigma_k^* \}$, where $\delta(S, w) = \{ \delta(s, w) : s \in S \}$.
- Let $\mathcal{M} = \{M_0, M_1, \dots, M_{p-1}\} = \{\delta(S, w) : w \in \Sigma_k^*, \ \#\delta(S, w) = c\}.$ Without loss of generality: $s_0 \in M_0$.

Fact: For each $M \in \mathcal{M}$ and $u \in \Sigma_k^*$ we have $\delta(M, u) \in \mathcal{M}$.

- Let $s(n) = \delta(s_0, (n)_k) \in S$ where $n \in \mathbb{N}$.
- Let $i(n) \in \{0, 1, ..., p-1\}$ be such that $\delta(M_0, (n)_k) = M_{i(n)}$.

Fact: For each $n \in \mathbb{N}$ we have $s(n) \in M_{i(n)}$.

Proposition

The effective alphabet size is alternatively given by:

$$r_a = \max_{0 \le i < p} \# \tau(M_i).$$

- $r_a \leq \max_i \# \tau(M_i)$: If $P \in \mathcal{AP}_k$ then there are $Q \in \mathcal{AP}_k$, $Q \subset P$ and $M \in \mathcal{M}$, such that $\{a(n) : n \in Q\} \subseteq \{\tau(s) : s \in M\}$.
- $r_a \ge \max_i \# \tau(M_i)$: Given *i*, we can find $P \in \mathcal{AP}_k$ with i(n) = i for all $n \in P$. Remains to show: for each $Q \in \mathcal{AP}_k$, $Q \subset P$ we have $\{s(n) : n \in Q\} = M_i$.

- Let $c = \min \{ \# \delta(S, w) : w \in \Sigma_k^* \}$, where $\delta(S, w) = \{ \delta(s, w) : s \in S \}$.
- Let $\mathcal{M} = \{M_0, M_1, \dots, M_{p-1}\} = \{\delta(S, w) : w \in \Sigma_k^*, \ \#\delta(S, w) = c\}.$ Without loss of generality: $s_0 \in M_0$.

Fact: For each $M \in \mathcal{M}$ and $u \in \Sigma_k^*$ we have $\delta(M, u) \in \mathcal{M}$.

- Let $s(n) = \delta(s_0, (n)_k) \in S$ where $n \in \mathbb{N}$.
- Let $i(n) \in \{0, 1, ..., p-1\}$ be such that $\delta(M_0, (n)_k) = M_{i(n)}$.

Fact: For each $n \in \mathbb{N}$ we have $s(n) \in M_{i(n)}$.

Proposition

The effective alphabet size is alternatively given by:

$$r_a = \max_{0 \le i < p} \# \tau(M_i).$$

- $r_a \leq \max_i \#\tau(M_i)$: If $P \in \mathcal{AP}_k$ then there are $Q \in \mathcal{AP}_k$, $Q \subset P$ and $M \in \mathcal{M}$, such that $\{a(n) : n \in Q\} \subseteq \{\tau(s) : s \in M\}$.
- $r_a \ge \max_i \# \tau(M_i)$: Given *i*, we can find $P \in \mathcal{AP}_k$ with i(n) = i for all $n \in P$. Remains to show: for each $Q \in \mathcal{AP}_k$, $Q \subset P$ we have $\{s(n) : n \in Q\} = M_i$.

We are now ready to show that $p_a^{AP}(\ell) \leq r_a^{\ell} \exp(o(\ell))$ for all $\ell \geq 1$.

• Since $s(n) \in M_{i(n)}$ and $\#\tau(M_i) \leq r_a$, we have

$$p_a^{\rm AP}(\ell) \le r_a^\ell \times p_i^{\rm AP}(\ell). \tag{1}$$

• Since $i: \mathbb{N} \to \{0, 1, \dots, p-1\}$ is k-automatic and synchronising, we have

$$p_i^{\rm AP}(\ell) = \exp(o(\ell)) \tag{2}$$

by the Deshouillers, Drmota, Müllner, Shubin & Spiegelhofer.

• Combining (1) and (2) yields the claim.

- Recall that we have made simplifying assumptions. \longrightarrow more work
- Same result for polynomial subword complexity.
- The factor $\exp(o(\ell))$ can be improved to $\exp(O(\ell^{1-\kappa}))$ with $\kappa > 0$.

We are now ready to show that $p_a^{AP}(\ell) \leq r_a^{\ell} \exp(o(\ell))$ for all $\ell \geq 1$.

• Since $s(n) \in M_{i(n)}$ and $\#\tau(M_i) \leq r_a$, we have

$$p_a^{\rm AP}(\ell) \le r_a^\ell \times p_i^{\rm AP}(\ell). \tag{1}$$

• Since $i: \mathbb{N} \to \{0, 1, \dots, p-1\}$ is k-automatic and synchronising, we have

$$p_i^{\rm AP}(\ell) = \exp(o(\ell)) \tag{2}$$

by the Deshouillers, Drmota, Müllner, Shubin & Spiegelhofer.

• Combining (1) and (2) yields the claim.

- Recall that we have made simplifying assumptions. \longrightarrow more work
- Same result for polynomial subword complexity.
- The factor $\exp(o(\ell))$ can be improved to $\exp(O(\ell^{1-\kappa}))$ with $\kappa > 0$.

We are now ready to show that $p_a^{AP}(\ell) \leq r_a^{\ell} \exp(o(\ell))$ for all $\ell \geq 1$.

• Since $s(n) \in M_{i(n)}$ and $\#\tau(M_i) \leq r_a$, we have

$$p_a^{\rm AP}(\ell) \le r_a^\ell \times p_i^{\rm AP}(\ell). \tag{1}$$

• Since $i: \mathbb{N} \to \{0, 1, \dots, p-1\}$ is k-automatic and synchronising, we have

$$p_i^{\rm AP}(\ell) = \exp(o(\ell)) \tag{2}$$

by the Deshouillers, Drmota, Müllner, Shubin & Spiegelhofer.

• Combining (1) and (2) yields the claim.

- Recall that we have made simplifying assumptions. \longrightarrow more work
- Same result for polynomial subword complexity.
- The factor $\exp(o(\ell))$ can be improved to $\exp(O(\ell^{1-\kappa}))$ with $\kappa > 0$.

We are now ready to show that $p_a^{AP}(\ell) \leq r_a^{\ell} \exp(o(\ell))$ for all $\ell \geq 1$.

• Since $s(n) \in M_{i(n)}$ and $\#\tau(M_i) \leq r_a$, we have

$$p_a^{\rm AP}(\ell) \le r_a^\ell \times p_i^{\rm AP}(\ell). \tag{1}$$

• Since $i: \mathbb{N} \to \{0, 1, \dots, p-1\}$ is k-automatic and synchronising, we have

$$p_i^{\rm AP}(\ell) = \exp(o(\ell)) \tag{2}$$

by the Deshouillers, Drmota, Müllner, Shubin & Spiegelhofer.

• Combining (1) and (2) yields the claim.

- Recall that we have made simplifying assumptions. \longrightarrow more work
- Same result for polynomial subword complexity.
- The factor $\exp(o(\ell))$ can be improved to $\exp(O(\ell^{1-\kappa}))$ with $\kappa > 0$.

We are now ready to show that $p_a^{AP}(\ell) \leq r_a^{\ell} \exp(o(\ell))$ for all $\ell \geq 1$.

• Since $s(n) \in M_{i(n)}$ and $\#\tau(M_i) \leq r_a$, we have

$$p_a^{\rm AP}(\ell) \le r_a^\ell \times p_i^{\rm AP}(\ell). \tag{1}$$

• Since $i: \mathbb{N} \to \{0, 1, \dots, p-1\}$ is k-automatic and synchronising, we have

$$p_i^{\rm AP}(\ell) = \exp(o(\ell)) \tag{2}$$

by the Deshouillers, Drmota, Müllner, Shubin & Spiegelhofer.

• Combining (1) and (2) yields the claim.

- Recall that we have made simplifying assumptions. \longrightarrow more work
- Same result for polynomial subword complexity.
- The factor $\exp(o(\ell))$ can be improved to $\exp(O(\ell^{1-\kappa}))$ with $\kappa > 0$.

THANK YOU FOR YOUR ATTENTION!

Theorem (Cobham (1969))

Let $k,\ell\geq 2$ and let $a\colon \mathbb{N}\to \Omega$ be a sequence that is both k- and $\ell\text{-}automatic.$ Then

- k and ℓ are multiplicatively dependent, i.e., $\log_k(\ell) \in \mathbb{Q}$; or
- a is eventually periodic (and hence automatic in every base).

Question: How similar can a k-automatic sequence be to an ℓ -automatic sequence?

- We already know that they cannot be equal, or even asymptotically equal.
- We need to account for possible correlations with periodic sequences.

Theorem (Adamczewski, K., Müllner)

Let $k, \ell \geq 2$ be multiplicatively independent integers and let $a, b: \mathbb{N} \to \mathbb{C}$ be k- and ℓ -automatic, respectively. Then

$$\sum_{n < N} a(n)b(n) = \sum_{n < N} a_{\operatorname{str}}(n)b_{\operatorname{str}}(n) + O(N^{1-c}).$$

Corollary: Each Gowers uniform k-automatic sequence a is a orthogonal to each l-automatic sequence b,

$$\sum_{n < N} a(n)b(n) = O(N^{1-c}).$$

Theorem (Cobham (1969))

Let $k, \ell \geq 2$ and let $a \colon \mathbb{N} \to \Omega$ be a sequence that is both k- and ℓ -automatic. Then

- k and ℓ are multiplicatively dependent, i.e., $\log_k(\ell) \in \mathbb{Q}$; or
- a is eventually periodic (and hence automatic in every base).

Question: How similar can a k-automatic sequence be to an ℓ -automatic sequence?

- We already know that they cannot be equal, or even asymptotically equal.
- We need to account for possible correlations with periodic sequences.

Theorem (Adamczewski, K., Müllner)

Let $k, \ell \geq 2$ be multiplicatively independent integers and let $a, b \colon \mathbb{N} \to \mathbb{C}$ be k- and ℓ -automatic, respectively. Then

$$\sum_{n < N} a(n)b(n) = \sum_{n < N} a_{\operatorname{str}}(n)b_{\operatorname{str}}(n) + O(N^{1-c}).$$

Corollary: Each Gowers uniform k-automatic sequence a is a orthogonal to each l-automatic sequence b,

$$\sum_{n < N} a(n)b(n) = O(N^{1-c}).$$

Theorem (Cobham (1969))

Let $k,\ell\geq 2$ and let $a\colon \mathbb{N}\to \Omega$ be a sequence that is both k- and $\ell\text{-}automatic.$ Then

- k and ℓ are multiplicatively dependent, i.e., $\log_k(\ell) \in \mathbb{Q}$; or
- a is eventually periodic (and hence automatic in every base).

Question: How similar can a k-automatic sequence be to an ℓ -automatic sequence?

- We already know that they cannot be equal, or even asymptotically equal.
- We need to account for possible correlations with periodic sequences.

Theorem (Adamczewski, K., Müllner)

Let $k, \ell \geq 2$ be multiplicatively independent integers and let $a, b: \mathbb{N} \to \mathbb{C}$ be k- and ℓ -automatic, respectively. Then

$$\sum_{n < N} a(n)b(n) = \sum_{n < N} a_{\text{str}}(n)b_{\text{str}}(n) + O(N^{1-c}).$$

Corollary: Each Gowers uniform k-automatic sequence a is a orthogonal to each ℓ -automatic sequence b,

$$\sum_{n < N} a(n)b(n) = O(N^{1-c}).$$

Theorem (Cobham (1969))

Let $k,\ell\geq 2$ and let $a\colon \mathbb{N}\to \Omega$ be a sequence that is both k- and $\ell\text{-}automatic.$ Then

- k and ℓ are multiplicatively dependent, i.e., $\log_k(\ell) \in \mathbb{Q}$; or
- a is eventually periodic (and hence automatic in every base).

Question: How similar can a k-automatic sequence be to an ℓ -automatic sequence?

- We already know that they cannot be equal, or even asymptotically equal.
- We need to account for possible correlations with periodic sequences.

Theorem (Adamczewski, K., Müllner)

Let $k, \ell \geq 2$ be multiplicatively independent integers and let $a, b: \mathbb{N} \to \mathbb{C}$ be k- and ℓ -automatic, respectively. Then

$$\sum_{n < N} a(n)b(n) = \sum_{n < N} a_{\text{str}}(n)b_{\text{str}}(n) + O(N^{1-c}).$$

Corollary: Each Gowers uniform k-automatic sequence a is a orthogonal to each ℓ -automatic sequence b,

$$\sum_{n < N} a(n)b(n) = O(N^{1-c}).$$