
Arithmetical subword complexity

of automatic sequences

Jakub Konieczny

Department of Computer Science
University of Oxford

One World Combinatorics on Words Seminar
23 Jan 2024

How complex is a sequence?

Setup: Let a : N → Ω be a sequence.
Ω = �nite alphabet, e.g. Ω = {0, 1}.

General question: How complex is a? −→ hopelessly vague...

Computational complexity of �nding a(n).

Subword complexity = number of length-ℓ subwords that appear in a:

pa(ℓ) = #
{
w ∈ Ωℓ : (∃ n) a(n+ i) = w(i) for 0 ≤ i < ℓ

}
.

Arithmetical subword complexity complexity = number of length-ℓ subwords
that appear in a along an arithmetic progression:

pAP
a (ℓ) = #

{
w ∈ Ωℓ : (∃ n,m) a(n+ im) = w(i) for 0 ≤ i < ℓ

}
.

polynomial subword complexity, d-complexity, (maximal) pattern complexity,
asymptotic subword complexity, etc., etc.. . . −→ we will not discuss those

1 / 23

How complex is a sequence?

Setup: Let a : N → Ω be a sequence.
Ω = �nite alphabet, e.g. Ω = {0, 1}.

General question: How complex is a? −→ hopelessly vague...

Computational complexity of �nding a(n).

Subword complexity = number of length-ℓ subwords that appear in a:

pa(ℓ) = #
{
w ∈ Ωℓ : (∃ n) a(n+ i) = w(i) for 0 ≤ i < ℓ

}
.

Arithmetical subword complexity complexity = number of length-ℓ subwords
that appear in a along an arithmetic progression:

pAP
a (ℓ) = #

{
w ∈ Ωℓ : (∃ n,m) a(n+ im) = w(i) for 0 ≤ i < ℓ

}
.

polynomial subword complexity, d-complexity, (maximal) pattern complexity,
asymptotic subword complexity, etc., etc.. . . −→ we will not discuss those

1 / 23

How complex is a sequence?

Setup: Let a : N → Ω be a sequence.
Ω = �nite alphabet, e.g. Ω = {0, 1}.

General question: How complex is a? −→ hopelessly vague...

Computational complexity of �nding a(n).

Subword complexity = number of length-ℓ subwords that appear in a:

pa(ℓ) = #
{
w ∈ Ωℓ : (∃ n) a(n+ i) = w(i) for 0 ≤ i < ℓ

}
.

Arithmetical subword complexity complexity = number of length-ℓ subwords
that appear in a along an arithmetic progression:

pAP
a (ℓ) = #

{
w ∈ Ωℓ : (∃ n,m) a(n+ im) = w(i) for 0 ≤ i < ℓ

}
.

polynomial subword complexity, d-complexity, (maximal) pattern complexity,
asymptotic subword complexity, etc., etc.. . . −→ we will not discuss those

1 / 23

How complex is a sequence?

Setup: Let a : N → Ω be a sequence.
Ω = �nite alphabet, e.g. Ω = {0, 1}.

General question: How complex is a? −→ hopelessly vague...

Computational complexity of �nding a(n).

Subword complexity = number of length-ℓ subwords that appear in a:

pa(ℓ) = #
{
w ∈ Ωℓ : (∃ n) a(n+ i) = w(i) for 0 ≤ i < ℓ

}
.

Arithmetical subword complexity complexity = number of length-ℓ subwords
that appear in a along an arithmetic progression:

pAP
a (ℓ) = #

{
w ∈ Ωℓ : (∃ n,m) a(n+ im) = w(i) for 0 ≤ i < ℓ

}
.

polynomial subword complexity, d-complexity, (maximal) pattern complexity,
asymptotic subword complexity, etc., etc.. . . −→ we will not discuss those

1 / 23

How complex is a sequence?

Setup: Let a : N → Ω be a sequence.
Ω = �nite alphabet, e.g. Ω = {0, 1}.

General question: How complex is a? −→ hopelessly vague...

Computational complexity of �nding a(n).

Subword complexity = number of length-ℓ subwords that appear in a:

pa(ℓ) = #
{
w ∈ Ωℓ : (∃ n) a(n+ i) = w(i) for 0 ≤ i < ℓ

}
.

Arithmetical subword complexity complexity = number of length-ℓ subwords
that appear in a along an arithmetic progression:

pAP
a (ℓ) = #

{
w ∈ Ωℓ : (∃ n,m) a(n+ im) = w(i) for 0 ≤ i < ℓ

}
.

polynomial subword complexity, d-complexity, (maximal) pattern complexity,
asymptotic subword complexity, etc., etc.. . . −→ we will not discuss those

1 / 23

How complex is a sequence?

Setup: Let a : N → Ω be a sequence.
Ω = �nite alphabet, e.g. Ω = {0, 1}.

General question: How complex is a? −→ hopelessly vague...

Computational complexity of �nding a(n).

Subword complexity = number of length-ℓ subwords that appear in a:

pa(ℓ) = #
{
w ∈ Ωℓ : (∃ n) a(n+ i) = w(i) for 0 ≤ i < ℓ

}
.

Arithmetical subword complexity complexity = number of length-ℓ subwords
that appear in a along an arithmetic progression:

pAP
a (ℓ) = #

{
w ∈ Ωℓ : (∃ n,m) a(n+ im) = w(i) for 0 ≤ i < ℓ

}
.

polynomial subword complexity, d-complexity, (maximal) pattern complexity,
asymptotic subword complexity, etc., etc.. . . −→ we will not discuss those

1 / 23

Subword complexity

Trivial bound: If a : N → Ω then 1 ≤ pa(ℓ) ≤ #Ωℓ.

Fact (bounded complexity ⇔ eventual periodicity)

If a is eventually periodic then pa is bounded. Conversely, if pa(ℓ) ≤ ℓ for at least one
ℓ then a is eventually periodic.

Fact (minimal complexity ⇔ Sturmian)

If a : N → {0, 1} and pa(ℓ) = ℓ+ 1 for all ℓ then a is a Sturmian sequence:

a(n) = ⌊α(n+ 1) + β⌋ − ⌊αn+ β⌋ n ∈ N,

where α ∈ [0, 1) \Q, β ∈ [0, 1). Conversely, if a is Sturmian then pa(ℓ) = ℓ+ 1.

Fact (linear complexity for automatic sequences)

If a is an automatic sequence then pa(ℓ) = O(ℓ), i.e., pa(ℓ) ≤ Cℓ for a constant C.

2 / 23

Subword complexity

Trivial bound: If a : N → Ω then 1 ≤ pa(ℓ) ≤ #Ωℓ.

Fact (bounded complexity ⇔ eventual periodicity)

If a is eventually periodic then pa is bounded. Conversely, if pa(ℓ) ≤ ℓ for at least one
ℓ then a is eventually periodic.

Fact (minimal complexity ⇔ Sturmian)

If a : N → {0, 1} and pa(ℓ) = ℓ+ 1 for all ℓ then a is a Sturmian sequence:

a(n) = ⌊α(n+ 1) + β⌋ − ⌊αn+ β⌋ n ∈ N,

where α ∈ [0, 1) \Q, β ∈ [0, 1). Conversely, if a is Sturmian then pa(ℓ) = ℓ+ 1.

Fact (linear complexity for automatic sequences)

If a is an automatic sequence then pa(ℓ) = O(ℓ), i.e., pa(ℓ) ≤ Cℓ for a constant C.

2 / 23

Subword complexity

Trivial bound: If a : N → Ω then 1 ≤ pa(ℓ) ≤ #Ωℓ.

Fact (bounded complexity ⇔ eventual periodicity)

If a is eventually periodic then pa is bounded. Conversely, if pa(ℓ) ≤ ℓ for at least one
ℓ then a is eventually periodic.

Fact (minimal complexity ⇔ Sturmian)

If a : N → {0, 1} and pa(ℓ) = ℓ+ 1 for all ℓ then a is a Sturmian sequence:

a(n) = ⌊α(n+ 1) + β⌋ − ⌊αn+ β⌋ n ∈ N,

where α ∈ [0, 1) \Q, β ∈ [0, 1). Conversely, if a is Sturmian then pa(ℓ) = ℓ+ 1.

Fact (linear complexity for automatic sequences)

If a is an automatic sequence then pa(ℓ) = O(ℓ), i.e., pa(ℓ) ≤ Cℓ for a constant C.

2 / 23

Subword complexity

Trivial bound: If a : N → Ω then 1 ≤ pa(ℓ) ≤ #Ωℓ.

Fact (bounded complexity ⇔ eventual periodicity)

If a is eventually periodic then pa is bounded. Conversely, if pa(ℓ) ≤ ℓ for at least one
ℓ then a is eventually periodic.

Fact (minimal complexity ⇔ Sturmian)

If a : N → {0, 1} and pa(ℓ) = ℓ+ 1 for all ℓ then a is a Sturmian sequence:

a(n) = ⌊α(n+ 1) + β⌋ − ⌊αn+ β⌋ n ∈ N,

where α ∈ [0, 1) \Q, β ∈ [0, 1). Conversely, if a is Sturmian then pa(ℓ) = ℓ+ 1.

Fact (linear complexity for automatic sequences)

If a is an automatic sequence then pa(ℓ) = O(ℓ), i.e., pa(ℓ) ≤ Cℓ for a constant C.

2 / 23

The Thue�Morse(�Prouhet) sequence

+1,−1,−1,+1,−1,+1,+1,−1,−1,+1,+1,−1,+1,−1,−1,+1, . . .

The Thue�Morse sequence (discovered by Prouhet) t : N → {+1,−1} is the
paradigmatic example of an automatic sequence. It can be de�ned in several ways:

1 Explicit formula: t(n) =

{
+1 if n is evil (i.e., sum of binary digits is even),

−1 if n is odious (i.e., sum of binary digits is odd).

2 Automatic sequence:

+1start −1

0 0

1

1

3 Recurrence: t(0) = +1, t(2n) = t(n), t(2n+ 1) = −t(n).

4 Fixed point of a substitution: +1 7→ +1,−1; −1 7→ −1,+1.

5 Strongly 2-multiplicative sequence: t(1) = −1, and if m < 2α then

t(2αn+m) = t(n)t(m).

3 / 23

The Thue�Morse(�Prouhet) sequence

+1,−1,−1,+1,−1,+1,+1,−1,−1,+1,+1,−1,+1,−1,−1,+1, . . .

The Thue�Morse sequence (discovered by Prouhet) t : N → {+1,−1} is the
paradigmatic example of an automatic sequence. It can be de�ned in several ways:

1 Explicit formula: t(n) =

{
+1 if n is evil (i.e., sum of binary digits is even),

−1 if n is odious (i.e., sum of binary digits is odd).

2 Automatic sequence:

+1start −1

0 0

1

1

3 Recurrence: t(0) = +1, t(2n) = t(n), t(2n+ 1) = −t(n).

4 Fixed point of a substitution: +1 7→ +1,−1; −1 7→ −1,+1.

5 Strongly 2-multiplicative sequence: t(1) = −1, and if m < 2α then

t(2αn+m) = t(n)t(m).

3 / 23

The Thue�Morse(�Prouhet) sequence

+1,−1,−1,+1,−1,+1,+1,−1,−1,+1,+1,−1,+1,−1,−1,+1, . . .

The Thue�Morse sequence (discovered by Prouhet) t : N → {+1,−1} is the
paradigmatic example of an automatic sequence. It can be de�ned in several ways:

1 Explicit formula: t(n) =

{
+1 if n is evil (i.e., sum of binary digits is even),

−1 if n is odious (i.e., sum of binary digits is odd).

2 Automatic sequence:

+1start −1

0 0

1

1

3 Recurrence: t(0) = +1, t(2n) = t(n), t(2n+ 1) = −t(n).

4 Fixed point of a substitution: +1 7→ +1,−1; −1 7→ −1,+1.

5 Strongly 2-multiplicative sequence: t(1) = −1, and if m < 2α then

t(2αn+m) = t(n)t(m).

3 / 23

The Thue�Morse(�Prouhet) sequence

+1,−1,−1,+1,−1,+1,+1,−1,−1,+1,+1,−1,+1,−1,−1,+1, . . .

The Thue�Morse sequence (discovered by Prouhet) t : N → {+1,−1} is the
paradigmatic example of an automatic sequence. It can be de�ned in several ways:

1 Explicit formula: t(n) =

{
+1 if n is evil (i.e., sum of binary digits is even),

−1 if n is odious (i.e., sum of binary digits is odd).

2 Automatic sequence:

+1start −1

0 0

1

1

3 Recurrence: t(0) = +1, t(2n) = t(n), t(2n+ 1) = −t(n).

4 Fixed point of a substitution: +1 7→ +1,−1; −1 7→ −1,+1.

5 Strongly 2-multiplicative sequence: t(1) = −1, and if m < 2α then

t(2αn+m) = t(n)t(m).

3 / 23

The Thue�Morse(�Prouhet) sequence

+1,−1,−1,+1,−1,+1,+1,−1,−1,+1,+1,−1,+1,−1,−1,+1, . . .

The Thue�Morse sequence (discovered by Prouhet) t : N → {+1,−1} is the
paradigmatic example of an automatic sequence. It can be de�ned in several ways:

1 Explicit formula: t(n) =

{
+1 if n is evil (i.e., sum of binary digits is even),

−1 if n is odious (i.e., sum of binary digits is odd).

2 Automatic sequence:

+1start −1

0 0

1

1

3 Recurrence: t(0) = +1, t(2n) = t(n), t(2n+ 1) = −t(n).

4 Fixed point of a substitution: +1 7→ +1,−1; −1 7→ −1,+1.

5 Strongly 2-multiplicative sequence: t(1) = −1, and if m < 2α then

t(2αn+m) = t(n)t(m).

3 / 23

The Thue�Morse(�Prouhet) sequence

+1,−1,−1,+1,−1,+1,+1,−1,−1,+1,+1,−1,+1,−1,−1,+1, . . .

The Thue�Morse sequence (discovered by Prouhet) t : N → {+1,−1} is the
paradigmatic example of an automatic sequence. It can be de�ned in several ways:

1 Explicit formula: t(n) =

{
+1 if n is evil (i.e., sum of binary digits is even),

−1 if n is odious (i.e., sum of binary digits is odd).

2 Automatic sequence:

+1start −1

0 0

1

1

3 Recurrence: t(0) = +1, t(2n) = t(n), t(2n+ 1) = −t(n).

4 Fixed point of a substitution: +1 7→ +1,−1; −1 7→ −1,+1.

5 Strongly 2-multiplicative sequence: t(1) = −1, and if m < 2α then

t(2αn+m) = t(n)t(m).

3 / 23

The Thue�Morse(�Prouhet) sequence

+1,−1,−1,+1,−1,+1,+1,−1,−1,+1,+1,−1,+1,−1,−1,+1, . . .

The Thue�Morse sequence (discovered by Prouhet) t : N → {+1,−1} is the
paradigmatic example of an automatic sequence. It can be de�ned in several ways:

1 Explicit formula: t(n) =

{
+1 if n is evil (i.e., sum of binary digits is even),

−1 if n is odious (i.e., sum of binary digits is odd).

2 Automatic sequence:

+1start −1

0 0

1

1

3 Recurrence: t(0) = +1, t(2n) = t(n), t(2n+ 1) = −t(n).

4 Fixed point of a substitution: +1 7→ +1,−1; −1 7→ −1,+1.

5 Strongly 2-multiplicative sequence: t(1) = −1, and if m < 2α then

t(2αn+m) = t(n)t(m).

3 / 23

Automatic sequences via �nite automata
Some notation: We let k denote the base in which we work. −→ e.g. k = 10 or k = 2

Σk = {0, 1, . . . , k − 1}, the set of digits in base k;

Σ∗
k is the set of words over Σk, monoid with concatenation;

for n ∈ N, (n)k ∈ Σ∗
k is the base-k expansion of n; −→ no leading zeros

for w ∈ Σ∗
k, [w]k ∈ N is the integer encoded by w.

A �nite k-automaton consists of:

a �nite set of states S with a
distinguished initial state s0;

a transition function δ : S × Σk → S;

an output function τ : S → Ω. +1start −1

+1 −1

1 10 0
1

1

0 0

Computing the sequence:

Extend δ to a map S × Σ∗
k with δ(s, uv) = δ(δ(s, u), v) or δ(δ(s, v), u);

The sequence computed by the automaton is given by a(n) = τ (δ(s0, (n)k)).

The automaton above computes the Rudin�Shapiro sequence (−1)# of 11 in (n)2 .

Intuition: Automatic ⇐⇒ Computable by a �nite device.

4 / 23

Automatic sequences via �nite automata
Some notation: We let k denote the base in which we work. −→ e.g. k = 10 or k = 2

Σk = {0, 1, . . . , k − 1}, the set of digits in base k;

Σ∗
k is the set of words over Σk, monoid with concatenation;

for n ∈ N, (n)k ∈ Σ∗
k is the base-k expansion of n; −→ no leading zeros

for w ∈ Σ∗
k, [w]k ∈ N is the integer encoded by w.

A �nite k-automaton consists of:

a �nite set of states S with a
distinguished initial state s0;

a transition function δ : S × Σk → S;

an output function τ : S → Ω. +1start −1

+1 −1

1 10 0
1

1

0 0

Computing the sequence:

Extend δ to a map S × Σ∗
k with δ(s, uv) = δ(δ(s, u), v) or δ(δ(s, v), u);

The sequence computed by the automaton is given by a(n) = τ (δ(s0, (n)k)).

The automaton above computes the Rudin�Shapiro sequence (−1)# of 11 in (n)2 .

Intuition: Automatic ⇐⇒ Computable by a �nite device.

4 / 23

Automatic sequences via �nite automata
Some notation: We let k denote the base in which we work. −→ e.g. k = 10 or k = 2

Σk = {0, 1, . . . , k − 1}, the set of digits in base k;

Σ∗
k is the set of words over Σk, monoid with concatenation;

for n ∈ N, (n)k ∈ Σ∗
k is the base-k expansion of n; −→ no leading zeros

for w ∈ Σ∗
k, [w]k ∈ N is the integer encoded by w.

A �nite k-automaton consists of:

a �nite set of states S with a
distinguished initial state s0;

a transition function δ : S × Σk → S;

an output function τ : S → Ω. +1start −1

+1 −1

1 10 0
1

1

0 0

Computing the sequence:

Extend δ to a map S × Σ∗
k with δ(s, uv) = δ(δ(s, u), v) or δ(δ(s, v), u);

The sequence computed by the automaton is given by a(n) = τ (δ(s0, (n)k)).

The automaton above computes the Rudin�Shapiro sequence (−1)# of 11 in (n)2 .

Intuition: Automatic ⇐⇒ Computable by a �nite device.

4 / 23

Automatic sequences via �nite automata
Some notation: We let k denote the base in which we work. −→ e.g. k = 10 or k = 2

Σk = {0, 1, . . . , k − 1}, the set of digits in base k;

Σ∗
k is the set of words over Σk, monoid with concatenation;

for n ∈ N, (n)k ∈ Σ∗
k is the base-k expansion of n; −→ no leading zeros

for w ∈ Σ∗
k, [w]k ∈ N is the integer encoded by w.

A �nite k-automaton consists of:

a �nite set of states S with a
distinguished initial state s0;

a transition function δ : S × Σk → S;

an output function τ : S → Ω. +1start −1

+1 −1

1 10 0
1

1

0 0

Computing the sequence:

Extend δ to a map S × Σ∗
k with δ(s, uv) = δ(δ(s, u), v) or δ(δ(s, v), u);

The sequence computed by the automaton is given by a(n) = τ (δ(s0, (n)k)).

The automaton above computes the Rudin�Shapiro sequence (−1)# of 11 in (n)2 .

Intuition: Automatic ⇐⇒ Computable by a �nite device.

4 / 23

Automatic sequences via �nite automata
Some notation: We let k denote the base in which we work. −→ e.g. k = 10 or k = 2

Σk = {0, 1, . . . , k − 1}, the set of digits in base k;

Σ∗
k is the set of words over Σk, monoid with concatenation;

for n ∈ N, (n)k ∈ Σ∗
k is the base-k expansion of n; −→ no leading zeros

for w ∈ Σ∗
k, [w]k ∈ N is the integer encoded by w.

A �nite k-automaton consists of:

a �nite set of states S with a
distinguished initial state s0;

a transition function δ : S × Σk → S;

an output function τ : S → Ω. +1start −1

+1 −1

1 10 0
1

1

0 0

Computing the sequence:

Extend δ to a map S × Σ∗
k with δ(s, uv) = δ(δ(s, u), v) or δ(δ(s, v), u);

The sequence computed by the automaton is given by a(n) = τ (δ(s0, (n)k)).

The automaton above computes the Rudin�Shapiro sequence (−1)# of 11 in (n)2 .

Intuition: Automatic ⇐⇒ Computable by a �nite device.

4 / 23

Automatic sequences via �nite automata
Some notation: We let k denote the base in which we work. −→ e.g. k = 10 or k = 2

Σk = {0, 1, . . . , k − 1}, the set of digits in base k;

Σ∗
k is the set of words over Σk, monoid with concatenation;

for n ∈ N, (n)k ∈ Σ∗
k is the base-k expansion of n; −→ no leading zeros

for w ∈ Σ∗
k, [w]k ∈ N is the integer encoded by w.

A �nite k-automaton consists of:

a �nite set of states S with a
distinguished initial state s0;

a transition function δ : S × Σk → S;

an output function τ : S → Ω. +1start −1

+1 −1

1 10 0
1

1

0 0

Computing the sequence:

Extend δ to a map S × Σ∗
k with δ(s, uv) = δ(δ(s, u), v) or δ(δ(s, v), u);

The sequence computed by the automaton is given by a(n) = τ (δ(s0, (n)k)).

The automaton above computes the Rudin�Shapiro sequence (−1)# of 11 in (n)2 .

Intuition: Automatic ⇐⇒ Computable by a �nite device.

4 / 23

Automatic sequences via �nite automata
Some notation: We let k denote the base in which we work. −→ e.g. k = 10 or k = 2

Σk = {0, 1, . . . , k − 1}, the set of digits in base k;

Σ∗
k is the set of words over Σk, monoid with concatenation;

for n ∈ N, (n)k ∈ Σ∗
k is the base-k expansion of n; −→ no leading zeros

for w ∈ Σ∗
k, [w]k ∈ N is the integer encoded by w.

A �nite k-automaton consists of:

a �nite set of states S with a
distinguished initial state s0;

a transition function δ : S × Σk → S;

an output function τ : S → Ω. +1start −1

+1 −1

1 10 0
1

1

0 0

Computing the sequence:

Extend δ to a map S × Σ∗
k with δ(s, uv) = δ(δ(s, u), v) or δ(δ(s, v), u);

The sequence computed by the automaton is given by a(n) = τ (δ(s0, (n)k)).

The automaton above computes the Rudin�Shapiro sequence (−1)# of 11 in (n)2 .

Intuition: Automatic ⇐⇒ Computable by a �nite device.

4 / 23

Subword complexity of automatic sequences

Proposition

The subword complexity of the Thue�Morse sequence is given by:

pt(ℓ) =

{
3 · 2k + 4(r − 1) if ℓ = 2k + r with 1 ≤ r ≤ 2k−1,

4 · 2k + 2(r − 1) if ℓ = 2k + r with 2k−1 < r ≤ 2k.

Proposition

If a is automatic then pa(ℓ) = O(ℓ).

Sketch of proof:

Pick any α, n ∈ N. For 0 ≤ i < kα, a(kαn+ i) is determined by δ(s0, (n)2).

If w ∈ {0, 1}k
α

then w appears in a between kαn+ r and kα(n+ 1) + r for some
n, r ∈ N, r < kα. Thus, w is determined by δ(s0, (n)k), δ(s0, (n+ 1)k) and r, and

pa(k
α) ≤ #S ×#S × kα.

5 / 23

Subword complexity of automatic sequences

Proposition

The subword complexity of the Thue�Morse sequence is given by:

pt(ℓ) =

{
3 · 2k + 4(r − 1) if ℓ = 2k + r with 1 ≤ r ≤ 2k−1,

4 · 2k + 2(r − 1) if ℓ = 2k + r with 2k−1 < r ≤ 2k.

Proposition

If a is automatic then pa(ℓ) = O(ℓ).

Sketch of proof:

Pick any α, n ∈ N. For 0 ≤ i < kα, a(kαn+ i) is determined by δ(s0, (n)2).

If w ∈ {0, 1}k
α

then w appears in a between kαn+ r and kα(n+ 1) + r for some
n, r ∈ N, r < kα. Thus, w is determined by δ(s0, (n)k), δ(s0, (n+ 1)k) and r, and

pa(k
α) ≤ #S ×#S × kα.

5 / 23

Subword complexity of automatic sequences

Proposition

The subword complexity of the Thue�Morse sequence is given by:

pt(ℓ) =

{
3 · 2k + 4(r − 1) if ℓ = 2k + r with 1 ≤ r ≤ 2k−1,

4 · 2k + 2(r − 1) if ℓ = 2k + r with 2k−1 < r ≤ 2k.

Proposition

If a is automatic then pa(ℓ) = O(ℓ).

Sketch of proof:

Pick any α, n ∈ N. For 0 ≤ i < kα, a(kαn+ i) is determined by δ(s0, (n)2).

If w ∈ {0, 1}k
α

then w appears in a between kαn+ r and kα(n+ 1) + r for some
n, r ∈ N, r < kα. Thus, w is determined by δ(s0, (n)k), δ(s0, (n+ 1)k) and r, and

pa(k
α) ≤ #S ×#S × kα.

5 / 23

Thue�Morse along subsequences

Intuition: If (m(n))∞n=0 is a sequence that �does not know� about binary expansions
then s(n) = t(m(n)) looks �random�. In particular, we expect that:

s(n) = +1 for half of n:
1

N

∑
n<N

s(n) → 0 as N → ∞;

s is normal: for h1 < h2 < · · · < hr,
1

N

∑
n<N

r∏
i=1

s(n+ hi) → 0 as N → ∞;

maximal subword complexity: ps(ℓ) = 2ℓ.

Theorem (Drmota, Mauduit & Rivat)

The sequence t(n2) is normal (in particular, it has maximal subword complexity).

Theorem (Müllner & Spiegelhofer)

The sequence t(⌊nc⌋) is normal for 1 < c < 3/2.

Fact: The restriction t(An+B) of the Thue�Morse sequence to a given arithmetic
progression is automatic (and hence very non-random).

Hope: The restriction of t(n) to a random arithmetic progression looks random.

6 / 23

Thue�Morse along subsequences

Intuition: If (m(n))∞n=0 is a sequence that �does not know� about binary expansions
then s(n) = t(m(n)) looks �random�. In particular, we expect that:

s(n) = +1 for half of n:
1

N

∑
n<N

s(n) → 0 as N → ∞;

s is normal: for h1 < h2 < · · · < hr,
1

N

∑
n<N

r∏
i=1

s(n+ hi) → 0 as N → ∞;

maximal subword complexity: ps(ℓ) = 2ℓ.

Theorem (Drmota, Mauduit & Rivat)

The sequence t(n2) is normal (in particular, it has maximal subword complexity).

Theorem (Müllner & Spiegelhofer)

The sequence t(⌊nc⌋) is normal for 1 < c < 3/2.

Fact: The restriction t(An+B) of the Thue�Morse sequence to a given arithmetic
progression is automatic (and hence very non-random).

Hope: The restriction of t(n) to a random arithmetic progression looks random.

6 / 23

Thue�Morse along subsequences

Intuition: If (m(n))∞n=0 is a sequence that �does not know� about binary expansions
then s(n) = t(m(n)) looks �random�. In particular, we expect that:

s(n) = +1 for half of n:
1

N

∑
n<N

s(n) → 0 as N → ∞;

s is normal: for h1 < h2 < · · · < hr,
1

N

∑
n<N

r∏
i=1

s(n+ hi) → 0 as N → ∞;

maximal subword complexity: ps(ℓ) = 2ℓ.

Theorem (Drmota, Mauduit & Rivat)

The sequence t(n2) is normal (in particular, it has maximal subword complexity).

Theorem (Müllner & Spiegelhofer)

The sequence t(⌊nc⌋) is normal for 1 < c < 3/2.

Fact: The restriction t(An+B) of the Thue�Morse sequence to a given arithmetic
progression is automatic (and hence very non-random).

Hope: The restriction of t(n) to a random arithmetic progression looks random.

6 / 23

Thue�Morse along subsequences

Intuition: If (m(n))∞n=0 is a sequence that �does not know� about binary expansions
then s(n) = t(m(n)) looks �random�. In particular, we expect that:

s(n) = +1 for half of n:
1

N

∑
n<N

s(n) → 0 as N → ∞;

s is normal: for h1 < h2 < · · · < hr,
1

N

∑
n<N

r∏
i=1

s(n+ hi) → 0 as N → ∞;

maximal subword complexity: ps(ℓ) = 2ℓ.

Theorem (Drmota, Mauduit & Rivat)

The sequence t(n2) is normal (in particular, it has maximal subword complexity).

Theorem (Müllner & Spiegelhofer)

The sequence t(⌊nc⌋) is normal for 1 < c < 3/2.

Fact: The restriction t(An+B) of the Thue�Morse sequence to a given arithmetic
progression is automatic (and hence very non-random).

Hope: The restriction of t(n) to a random arithmetic progression looks random.

6 / 23

Thue�Morse along subsequences

Intuition: If (m(n))∞n=0 is a sequence that �does not know� about binary expansions
then s(n) = t(m(n)) looks �random�. In particular, we expect that:

s(n) = +1 for half of n:
1

N

∑
n<N

s(n) → 0 as N → ∞;

s is normal: for h1 < h2 < · · · < hr,
1

N

∑
n<N

r∏
i=1

s(n+ hi) → 0 as N → ∞;

maximal subword complexity: ps(ℓ) = 2ℓ.

Theorem (Drmota, Mauduit & Rivat)

The sequence t(n2) is normal (in particular, it has maximal subword complexity).

Theorem (Müllner & Spiegelhofer)

The sequence t(⌊nc⌋) is normal for 1 < c < 3/2.

Fact: The restriction t(An+B) of the Thue�Morse sequence to a given arithmetic
progression is automatic (and hence very non-random).

Hope: The restriction of t(n) to a random arithmetic progression looks random.

6 / 23

Thue�Morse along subsequences

Intuition: If (m(n))∞n=0 is a sequence that �does not know� about binary expansions
then s(n) = t(m(n)) looks �random�. In particular, we expect that:

s(n) = +1 for half of n:
1

N

∑
n<N

s(n) → 0 as N → ∞;

s is normal: for h1 < h2 < · · · < hr,
1

N

∑
n<N

r∏
i=1

s(n+ hi) → 0 as N → ∞;

maximal subword complexity: ps(ℓ) = 2ℓ.

Theorem (Drmota, Mauduit & Rivat)

The sequence t(n2) is normal (in particular, it has maximal subword complexity).

Theorem (Müllner & Spiegelhofer)

The sequence t(⌊nc⌋) is normal for 1 < c < 3/2.

Fact: The restriction t(An+B) of the Thue�Morse sequence to a given arithmetic
progression is automatic (and hence very non-random).

Hope: The restriction of t(n) to a random arithmetic progression looks random.

6 / 23

Thue�Morse along subsequences

Intuition: If (m(n))∞n=0 is a sequence that �does not know� about binary expansions
then s(n) = t(m(n)) looks �random�. In particular, we expect that:

s(n) = +1 for half of n:
1

N

∑
n<N

s(n) → 0 as N → ∞;

s is normal: for h1 < h2 < · · · < hr,
1

N

∑
n<N

r∏
i=1

s(n+ hi) → 0 as N → ∞;

maximal subword complexity: ps(ℓ) = 2ℓ.

Theorem (Drmota, Mauduit & Rivat)

The sequence t(n2) is normal (in particular, it has maximal subword complexity).

Theorem (Müllner & Spiegelhofer)

The sequence t(⌊nc⌋) is normal for 1 < c < 3/2.

Fact: The restriction t(An+B) of the Thue�Morse sequence to a given arithmetic
progression is automatic (and hence very non-random).

Hope: The restriction of t(n) to a random arithmetic progression looks random.

6 / 23

Thue�Morse along subsequences

Intuition: If (m(n))∞n=0 is a sequence that �does not know� about binary expansions
then s(n) = t(m(n)) looks �random�. In particular, we expect that:

s(n) = +1 for half of n:
1

N

∑
n<N

s(n) → 0 as N → ∞;

s is normal: for h1 < h2 < · · · < hr,
1

N

∑
n<N

r∏
i=1

s(n+ hi) → 0 as N → ∞;

maximal subword complexity: ps(ℓ) = 2ℓ.

Theorem (Drmota, Mauduit & Rivat)

The sequence t(n2) is normal (in particular, it has maximal subword complexity).

Theorem (Müllner & Spiegelhofer)

The sequence t(⌊nc⌋) is normal for 1 < c < 3/2.

Fact: The restriction t(An+B) of the Thue�Morse sequence to a given arithmetic
progression is automatic (and hence very non-random).

Hope: The restriction of t(n) to a random arithmetic progression looks random.

6 / 23

Higher order Fourier analysis: �rst glance

De�nition (Gowers norm)

Fix d ≥ 2. Let f : [N] := {0, 1, . . . , N − 1} → C. Then ∥f∥Ud[N] ≥ 0 is de�ned by:

∥f∥2
d

Ud[N] =E
n

∏
ω∈{0,1}d

C|ω|f (n0 + ω1n1 + . . . ωdnd) ,

where the average is taken over all parallelepipeds in [N], i.e., over all
n = (n0, . . . , nd) ∈ Zd+1 such that n0 + ω1n1 + . . . ωdnd ∈ [N] for all ω ∈ {0, 1}d.

Theorem (Generalised von Neumann Theorem)

Fix d ≥ 2 and let f0, f1, . . . , fd : [N] → C be 1-bounded. Then∣∣∣∣∣En,m

f0(n)f1(n+m)f2(n+ 2m) . . . fd(n+ dm)

∣∣∣∣∣ ≪ min
0≤i≤d

∥fi∥Ud[N] .

7 / 23

Higher order Fourier analysis: �rst glance

De�nition (Gowers norm)

Fix d ≥ 2. Let f : [N] := {0, 1, . . . , N − 1} → C. Then ∥f∥Ud[N] ≥ 0 is de�ned by:

∥f∥2
d

Ud[N] =E
n

∏
ω∈{0,1}d

C|ω|f (n0 + ω1n1 + . . . ωdnd) ,

where the average is taken over all parallelepipeds in [N], i.e., over all
n = (n0, . . . , nd) ∈ Zd+1 such that n0 + ω1n1 + . . . ωdnd ∈ [N] for all ω ∈ {0, 1}d.

Theorem (Generalised von Neumann Theorem)

Fix d ≥ 2 and let f0, f1, . . . , fd : [N] → C be 1-bounded. Then∣∣∣∣∣En,m

f0(n)f1(n+m)f2(n+ 2m) . . . fd(n+ dm)

∣∣∣∣∣ ≪ min
0≤i≤d

∥fi∥Ud[N] .

7 / 23

Higher order Fourier analysis and arithmetical subword complexity

Corollary 1: If f : [N] → {−1,+1} and ∥f∥Ud[N] ≤ ε then f looks random along

random (d+ 1)-term APs in [N], meaning that for w ∈ {−1,+1}d+1 we have:

{(n,m) : n+ im ∈ [N] and f(n+ im) = w(i) for 0 ≤ i ≤ d}
{(n,m) : n+ im ∈ [N] for 0 ≤ i ≤ d} =

1

2d+1
+O(ε).

Corollary 2: In particular, if f : N → {−1,+1} and ∥f∥Ud[N] → 0 as N → ∞ for

each d ≥ 2 then f has maximal arithmetical subword complexity, pAP
f (ℓ) = 2ℓ.

Theorem (K.)

The Thue�Morse sequence is Gowers uniform of all orders. More precisely, for each
d ≥ 2 there exists κ > 0 such that

∥t∥Ud[N] ≪ N−κ.

In particular, t(n) has maximal arithmetical subword complexity, pAP
t (ℓ) = 2ℓ.

Remark: The fact that pAP
t (ℓ) = 2ℓ has been proven several times.

8 / 23

Higher order Fourier analysis and arithmetical subword complexity

Corollary 1: If f : [N] → {−1,+1} and ∥f∥Ud[N] ≤ ε then f looks random along

random (d+ 1)-term APs in [N], meaning that for w ∈ {−1,+1}d+1 we have:

{(n,m) : n+ im ∈ [N] and f(n+ im) = w(i) for 0 ≤ i ≤ d}
{(n,m) : n+ im ∈ [N] for 0 ≤ i ≤ d} =

1

2d+1
+O(ε).

Corollary 2: In particular, if f : N → {−1,+1} and ∥f∥Ud[N] → 0 as N → ∞ for

each d ≥ 2 then f has maximal arithmetical subword complexity, pAP
f (ℓ) = 2ℓ.

Theorem (K.)

The Thue�Morse sequence is Gowers uniform of all orders. More precisely, for each
d ≥ 2 there exists κ > 0 such that

∥t∥Ud[N] ≪ N−κ.

In particular, t(n) has maximal arithmetical subword complexity, pAP
t (ℓ) = 2ℓ.

Remark: The fact that pAP
t (ℓ) = 2ℓ has been proven several times.

8 / 23

Higher order Fourier analysis and arithmetical subword complexity

Corollary 1: If f : [N] → {−1,+1} and ∥f∥Ud[N] ≤ ε then f looks random along

random (d+ 1)-term APs in [N], meaning that for w ∈ {−1,+1}d+1 we have:

{(n,m) : n+ im ∈ [N] and f(n+ im) = w(i) for 0 ≤ i ≤ d}
{(n,m) : n+ im ∈ [N] for 0 ≤ i ≤ d} =

1

2d+1
+O(ε).

Corollary 2: In particular, if f : N → {−1,+1} and ∥f∥Ud[N] → 0 as N → ∞ for

each d ≥ 2 then f has maximal arithmetical subword complexity, pAP
f (ℓ) = 2ℓ.

Theorem (K.)

The Thue�Morse sequence is Gowers uniform of all orders. More precisely, for each
d ≥ 2 there exists κ > 0 such that

∥t∥Ud[N] ≪ N−κ.

In particular, t(n) has maximal arithmetical subword complexity, pAP
t (ℓ) = 2ℓ.

Remark: The fact that pAP
t (ℓ) = 2ℓ has been proven several times.

8 / 23

Uniformity of automatic sequences

Question: Which automatic sequences are Gowers uniform?

Theorem (Byszewski, K., Müllner)

For an automatic sequence a : N → C, the following are equivalent:

∥a∥Ud[N] → 0 as N → ∞ for each d ≥ 2;

∥a∥U2[N] → 0 as N → ∞;

1
N

∑N−1
n=0 a(An+B) → 0 as N → ∞ for each A ≥ 1, B ≥ 0.

Rationale: Only linear obstructions to uniformity, no quadratic structure possible.

Proposition

Let a : N → {0, 1} be an automatic sequence. Suppose for some α ∈ (0, 1) we have:

1

N

N−1∑
n=0

a(An+B) → α for each A ≥ 1, B ≥ 0.

Then a has maximal arithmetical subword complexity: pAP
a (ℓ) = 2ℓ.

Rationale: a− α1N is Gowers uniform of all orders.

9 / 23

Uniformity of automatic sequences

Question: Which automatic sequences are Gowers uniform?

Theorem (Byszewski, K., Müllner)

For an automatic sequence a : N → C, the following are equivalent:

∥a∥Ud[N] → 0 as N → ∞ for each d ≥ 2;

∥a∥U2[N] → 0 as N → ∞;

1
N

∑N−1
n=0 a(An+B) → 0 as N → ∞ for each A ≥ 1, B ≥ 0.

Rationale: Only linear obstructions to uniformity, no quadratic structure possible.

Proposition

Let a : N → {0, 1} be an automatic sequence. Suppose for some α ∈ (0, 1) we have:

1

N

N−1∑
n=0

a(An+B) → α for each A ≥ 1, B ≥ 0.

Then a has maximal arithmetical subword complexity: pAP
a (ℓ) = 2ℓ.

Rationale: a− α1N is Gowers uniform of all orders.

9 / 23

Uniformity of automatic sequences

Question: Which automatic sequences are Gowers uniform?

Theorem (Byszewski, K., Müllner)

For an automatic sequence a : N → C, the following are equivalent:

∥a∥Ud[N] → 0 as N → ∞ for each d ≥ 2;

∥a∥U2[N] → 0 as N → ∞;

1
N

∑N−1
n=0 a(An+B) → 0 as N → ∞ for each A ≥ 1, B ≥ 0.

Rationale: Only linear obstructions to uniformity, no quadratic structure possible.

Proposition

Let a : N → {0, 1} be an automatic sequence. Suppose for some α ∈ (0, 1) we have:

1

N

N−1∑
n=0

a(An+B) → α for each A ≥ 1, B ≥ 0.

Then a has maximal arithmetical subword complexity: pAP
a (ℓ) = 2ℓ.

Rationale: a− α1N is Gowers uniform of all orders.

9 / 23

Non-uniform automatic sequences

If a = [constant] + [uniform], we can apply generalised von Neumann.
Question: Which automatic sequences do not have this form?

Basic classes of non-uniform sequences:

1 periodic, such as (−1)n;

2 forwards synchronising, such as (−1)ν2(n); −→ 2ν2(n) || n ;

3 backwards synchronising, such as (−1)⌊log2(n)⌋.

De�nition (Synchronisation)

An automaton A = (S, s0,Σk, δ,Ω, τ) is synchronising if there exists a word
w ∈ Σ∗

k which synchronises A to a state s ∈ S, meaning that:

δ(s′, w) = s for all s′ ∈ S.

A sequence a : N → Ω is forwards synchronising if it is computed by a
synchronising automaton reading input starting with the most signi�cant digit.

A sequence a : N → Ω is backwards synchronising if it is computed by a
synchronising automaton reading input starting with the least signi�cant digit.

10 / 23

Non-uniform automatic sequences

If a = [constant] + [uniform], we can apply generalised von Neumann.
Question: Which automatic sequences do not have this form?

Basic classes of non-uniform sequences:

1 periodic, such as (−1)n;

2 forwards synchronising, such as (−1)ν2(n); −→ 2ν2(n) || n ;

3 backwards synchronising, such as (−1)⌊log2(n)⌋.

De�nition (Synchronisation)

An automaton A = (S, s0,Σk, δ,Ω, τ) is synchronising if there exists a word
w ∈ Σ∗

k which synchronises A to a state s ∈ S, meaning that:

δ(s′, w) = s for all s′ ∈ S.

A sequence a : N → Ω is forwards synchronising if it is computed by a
synchronising automaton reading input starting with the most signi�cant digit.

A sequence a : N → Ω is backwards synchronising if it is computed by a
synchronising automaton reading input starting with the least signi�cant digit.

10 / 23

Non-uniform automatic sequences

If a = [constant] + [uniform], we can apply generalised von Neumann.
Question: Which automatic sequences do not have this form?

Basic classes of non-uniform sequences:

1 periodic, such as (−1)n;

2 forwards synchronising, such as (−1)ν2(n); −→ 2ν2(n) || n ;

3 backwards synchronising, such as (−1)⌊log2(n)⌋.

De�nition (Synchronisation)

An automaton A = (S, s0,Σk, δ,Ω, τ) is synchronising if there exists a word
w ∈ Σ∗

k which synchronises A to a state s ∈ S, meaning that:

δ(s′, w) = s for all s′ ∈ S.

A sequence a : N → Ω is forwards synchronising if it is computed by a
synchronising automaton reading input starting with the most signi�cant digit.

A sequence a : N → Ω is backwards synchronising if it is computed by a
synchronising automaton reading input starting with the least signi�cant digit.

10 / 23

Non-uniform automatic sequences

Theorem (Deshouillers, Drmota, Müllner, Shubin & Spiegelhofer)

If a : N → Ω is a forwards synchronising automatic sequence then

pAP
a (ℓ) = exp(o(ℓ)).

In fact, same estimate holds for polynomial subword complexity.

Remark: Similar estimates can be proved for backwards synchronising.

Synchronizing automatic sequences along

Piatetski-Shapiro sequences
Arithmetic subword complexity of automatic sequences - part I

Clemens Müllner

TU Wien

Tuesday, January 9, 2024

Clemens Müllner Arithmetic subword complexity 9.1. 2024 1 / 29

11 / 23

https://researchseminars.org/talk/CombinatoricsOnWords/84/

Non-uniform automatic sequences

Theorem (Deshouillers, Drmota, Müllner, Shubin & Spiegelhofer)

If a : N → Ω is a forwards synchronising automatic sequence then

pAP
a (ℓ) = exp(o(ℓ)).

In fact, same estimate holds for polynomial subword complexity.

Remark: Similar estimates can be proved for backwards synchronising.

Synchronizing automatic sequences along

Piatetski-Shapiro sequences
Arithmetic subword complexity of automatic sequences - part I

Clemens Müllner

TU Wien

Tuesday, January 9, 2024

Clemens Müllner Arithmetic subword complexity 9.1. 2024 1 / 29

11 / 23

https://researchseminars.org/talk/CombinatoricsOnWords/84/

Example: Uniform × Non-uniform

Let a : N → {±1,±2} be de�ned by

a(n) =

{
t(n′) if n = 2n′,

2t(n′) if n = 2n′ + 1.

(a(n))∞n=0 = (+1,+2,−1,−2,−1,−2,+1,+2,−1,−2,+1,+2,+1,+2,−1,−2,

−1,−2,+1,+2,+1,+2,−1,−2,+1,+2,−1,−2,−1,−2,+1,+2, . . .)

There are three types of factors that appear in a(n) along arithmetic progressions:

factors (along arithmetic progressions) of t(n);

factors (along arithmetic progressions) of 2t(n);

shu�es of factors of t(n) and factors of 2t(n) (two ways to combine).

We can estimate arithmetical subword complexity of a(n):

pAP
a (ℓ) ≤ pAP

t (ℓ) + pAP
2t (ℓ) + 2× pAP

t (ℓ/2) + pAP
2t (ℓ/2) ≤ 4× 2ℓ.

Takeaway: Passing to arithmetic progressions, we reduced alphabet size to 2.

12 / 23

Example: Uniform × Non-uniform

Let a : N → {±1,±2} be de�ned by

a(n) =

{
t(n′) if n = 2n′,

2t(n′) if n = 2n′ + 1.

(a(n))∞n=0 = (+1,+2,−1,−2,−1,−2,+1,+2,−1,−2,+1,+2,+1,+2,−1,−2,

−1,−2,+1,+2,+1,+2,−1,−2,+1,+2,−1,−2,−1,−2,+1,+2, . . .)

There are three types of factors that appear in a(n) along arithmetic progressions:

factors (along arithmetic progressions) of t(n);

factors (along arithmetic progressions) of 2t(n);

shu�es of factors of t(n) and factors of 2t(n) (two ways to combine).

We can estimate arithmetical subword complexity of a(n):

pAP
a (ℓ) ≤ pAP

t (ℓ) + pAP
2t (ℓ) + 2× pAP

t (ℓ/2) + pAP
2t (ℓ/2) ≤ 4× 2ℓ.

Takeaway: Passing to arithmetic progressions, we reduced alphabet size to 2.

12 / 23

Example: Uniform × Non-uniform

Let a : N → {±1,±2} be de�ned by

a(n) =

{
t(n′) if n = 2n′,

2t(n′) if n = 2n′ + 1.

(a(n))∞n=0 = (+1,+2,−1,−2,−1,−2,+1,+2,−1,−2,+1,+2,+1,+2,−1,−2,

−1,−2,+1,+2,+1,+2,−1,−2,+1,+2,−1,−2,−1,−2,+1,+2, . . .)

There are three types of factors that appear in a(n) along arithmetic progressions:

factors (along arithmetic progressions) of t(n);

factors (along arithmetic progressions) of 2t(n);

shu�es of factors of t(n) and factors of 2t(n) (two ways to combine).

We can estimate arithmetical subword complexity of a(n):

pAP
a (ℓ) ≤ pAP

t (ℓ) + pAP
2t (ℓ) + 2× pAP

t (ℓ/2) + pAP
2t (ℓ/2) ≤ 4× 2ℓ.

Takeaway: Passing to arithmetic progressions, we reduced alphabet size to 2.

12 / 23

E�ective alphabet size

Let APk denote the family of all sets P of the form

P =

n ∈ N :

n ≡ r mod q,
u is a pre�x of (n)k,
v is a su�x of (n)k,
length of (n)k ≡ c mod ℓ

 .

Intuition: Like a residue class, plus base-k information.

De�nition (E�ective alphabet size)

The e�ective alphabet size of a k-automatic sequence a : N → Ω is the largest integer
ra such that there exists P ∈ APk such that for each Q ∈ APk with Q ⊂ P we have

{a(n) : n ∈ Q} ≥ ra.

Remark: In fact, above we have # {a(n) : n ∈ Q} = r.

13 / 23

E�ective alphabet size

Let APk denote the family of all sets P of the form

P =

n ∈ N :

n ≡ r mod q,
u is a pre�x of (n)k,
v is a su�x of (n)k,
length of (n)k ≡ c mod ℓ

 .

Intuition: Like a residue class, plus base-k information.

De�nition (E�ective alphabet size)

The e�ective alphabet size of a k-automatic sequence a : N → Ω is the largest integer
ra such that there exists P ∈ APk such that for each Q ∈ APk with Q ⊂ P we have

{a(n) : n ∈ Q} ≥ ra.

Remark: In fact, above we have # {a(n) : n ∈ Q} = r.

13 / 23

E�ective alphabet size

Example

If a is periodic, forwards synchronising, or backwards synchronising then the e�ective
alphabet size of a is ra = 1.

Example

The e�ective alphabet size of the Thue�Morse sequence is rt = 2.

Basic properties:

For a : N → Ω, b : N → Λ we have ra×b ≤ ra × rb.

For a : N → Ω, ϕ : Ω → Λ we have rϕ◦a ≤ ra.

Thus, if a is constructed out of periodic and synchronising sequences then ra = 1.

Fact: For each ε > 0 we can �nd a �nite cover

N = P1 ∪ P2 ∪ · · · ∪ PN ∪Q1 ∪Q2 ∪ · · · ∪QM

by Pi, Qj ∈ APk such that # {a(n) : n ∈ Pi} ≤ ra and d̄ (Q1 ∪Q2 ∪ · · · ∪QM) < ε.

14 / 23

E�ective alphabet size

Example

If a is periodic, forwards synchronising, or backwards synchronising then the e�ective
alphabet size of a is ra = 1.

Example

The e�ective alphabet size of the Thue�Morse sequence is rt = 2.

Basic properties:

For a : N → Ω, b : N → Λ we have ra×b ≤ ra × rb.

For a : N → Ω, ϕ : Ω → Λ we have rϕ◦a ≤ ra.

Thus, if a is constructed out of periodic and synchronising sequences then ra = 1.

Fact: For each ε > 0 we can �nd a �nite cover

N = P1 ∪ P2 ∪ · · · ∪ PN ∪Q1 ∪Q2 ∪ · · · ∪QM

by Pi, Qj ∈ APk such that # {a(n) : n ∈ Pi} ≤ ra and d̄ (Q1 ∪Q2 ∪ · · · ∪QM) < ε.

14 / 23

E�ective alphabet size

Example

If a is periodic, forwards synchronising, or backwards synchronising then the e�ective
alphabet size of a is ra = 1.

Example

The e�ective alphabet size of the Thue�Morse sequence is rt = 2.

Basic properties:

For a : N → Ω, b : N → Λ we have ra×b ≤ ra × rb.

For a : N → Ω, ϕ : Ω → Λ we have rϕ◦a ≤ ra.

Thus, if a is constructed out of periodic and synchronising sequences then ra = 1.

Fact: For each ε > 0 we can �nd a �nite cover

N = P1 ∪ P2 ∪ · · · ∪ PN ∪Q1 ∪Q2 ∪ · · · ∪QM

by Pi, Qj ∈ APk such that # {a(n) : n ∈ Pi} ≤ ra and d̄ (Q1 ∪Q2 ∪ · · · ∪QM) < ε.

14 / 23

E�ective alphabet size

Example

If a is periodic, forwards synchronising, or backwards synchronising then the e�ective
alphabet size of a is ra = 1.

Example

The e�ective alphabet size of the Thue�Morse sequence is rt = 2.

Basic properties:

For a : N → Ω, b : N → Λ we have ra×b ≤ ra × rb.

For a : N → Ω, ϕ : Ω → Λ we have rϕ◦a ≤ ra.

Thus, if a is constructed out of periodic and synchronising sequences then ra = 1.

Fact: For each ε > 0 we can �nd a �nite cover

N = P1 ∪ P2 ∪ · · · ∪ PN ∪Q1 ∪Q2 ∪ · · · ∪QM

by Pi, Qj ∈ APk such that # {a(n) : n ∈ Pi} ≤ ra and d̄ (Q1 ∪Q2 ∪ · · · ∪QM) < ε.

14 / 23

Main result

Theorem (K., Müllner)

Let a : N → Ω be an automatic sequence with e�ective alphabet size ra. Then

pAP
a (ℓ) = (ra + o(1))ℓ.

Remarks:

In fact, in one direction we have exact inequality pAP
a (ℓ) ≥ rℓa.

We can �nd Λ ⊂ Ω with #Λ = ra such that all words over Λ appear in a along
an arithmetic progression.

Same estimate for polynomial subword complexity.

The value of ra is computable, given a representation of a.

Corollary

Let a : N → Ω be an automatic sequence with maximal arithmetical subword
complexity, i.e. pAP

a (ℓ) = #Ωℓ. Then for each ℓ ∈ N and w ∈ Ωℓ we have:

lim inf
N→∞

{(n,m) : n+ im ∈ [N] and a(n+ im) = w(i) for 0 ≤ i < ℓ} /N2 > 0

15 / 23

Main result

Theorem (K., Müllner)

Let a : N → Ω be an automatic sequence with e�ective alphabet size ra. Then

pAP
a (ℓ) = (ra + o(1))ℓ.

Remarks:

In fact, in one direction we have exact inequality pAP
a (ℓ) ≥ rℓa.

We can �nd Λ ⊂ Ω with #Λ = ra such that all words over Λ appear in a along
an arithmetic progression.

Same estimate for polynomial subword complexity.

The value of ra is computable, given a representation of a.

Corollary

Let a : N → Ω be an automatic sequence with maximal arithmetical subword
complexity, i.e. pAP

a (ℓ) = #Ωℓ. Then for each ℓ ∈ N and w ∈ Ωℓ we have:

lim inf
N→∞

{(n,m) : n+ im ∈ [N] and a(n+ im) = w(i) for 0 ≤ i < ℓ} /N2 > 0

15 / 23

Main result

Theorem (K., Müllner)

Let a : N → Ω be an automatic sequence with e�ective alphabet size ra. Then

pAP
a (ℓ) = (ra + o(1))ℓ.

Remarks:

In fact, in one direction we have exact inequality pAP
a (ℓ) ≥ rℓa.

We can �nd Λ ⊂ Ω with #Λ = ra such that all words over Λ appear in a along
an arithmetic progression.

Same estimate for polynomial subword complexity.

The value of ra is computable, given a representation of a.

Corollary

Let a : N → Ω be an automatic sequence with maximal arithmetical subword
complexity, i.e. pAP

a (ℓ) = #Ωℓ. Then for each ℓ ∈ N and w ∈ Ωℓ we have:

lim inf
N→∞

{(n,m) : n+ im ∈ [N] and a(n+ im) = w(i) for 0 ≤ i < ℓ} /N2 > 0

15 / 23

Arithmetic regularity lemma for automatic sequences

De�nition (Structured sequences)

A k-automatic sequence a : N → Ω is structured if there exist automatic sequences
aper, afs, abs : N0 → Ωper,Ωfs,Ωbs which are periodic, forward synchronising and
backward synchronising respectively and a map F : Ωper × Ωfs × Ωbs → C such that

a(n) = F (aper(n), afs(n), abs(n)) .

Theorem (Byszewski, K. & Müllner)

Each automatic sequence a : N → C has a decomposition a = astr + auni, where

astr is structured in the sense de�ned above;

auni is uniform in the sense that for each d ≥ 2 there exists κ > 0 such that

∥auni∥Ud[N] ≪ N−κ.

16 / 23

Arithmetic regularity lemma for automatic sequences

De�nition (Structured sequences)

A k-automatic sequence a : N → Ω is structured if there exist automatic sequences
aper, afs, abs : N0 → Ωper,Ωfs,Ωbs which are periodic, forward synchronising and
backward synchronising respectively and a map F : Ωper × Ωfs × Ωbs → C such that

a(n) = F (aper(n), afs(n), abs(n)) .

Theorem (Byszewski, K. & Müllner)

Each automatic sequence a : N → C has a decomposition a = astr + auni, where

astr is structured in the sense de�ned above;

auni is uniform in the sense that for each d ≥ 2 there exists κ > 0 such that

∥auni∥Ud[N] ≪ N−κ.

16 / 23

Arithmetic regularity lemma

Theorem (Green & Tao (2010))

Fix s ≥ 1, ε > 0 and a growth function F : R+ → R+. Each sequence a : [N] → [0, 1]
has a decomposition a = anil + asml + auni, where M = O(1) and

1 auni is uniform in the sense that ∥auni∥Us+1[N] ≤ 1/F(M).

2 asml is small in the sense that ∥asml∥L2[N] ≤ ε.

3 anil is a (F(M), N)-irrational virtual degree s nilsequence of complexity ≤ M .

Recall: If a is automatic, then astr(n) = F (aper(n), afs(n), abs(n)) , where

aper is periodic;

afs is essentially periodic; −→ afs = [ki-periodic]+O(1/kiη) in L2[N]

abs is constant on long intervals.

Hence, astr = [1-step nilsequence]+ [small error].

Key di�erences:

For automatic sequences, 1-step nilsequences are enough.

Quantitative bounds in the decomposition are reasonable.

17 / 23

Arithmetic regularity lemma

Theorem (Green & Tao (2010))

Fix s ≥ 1, ε > 0 and a growth function F : R+ → R+. Each sequence a : [N] → [0, 1]
has a decomposition a = anil + asml + auni, where M = O(1) and

1 auni is uniform in the sense that ∥auni∥Us+1[N] ≤ 1/F(M).

2 asml is small in the sense that ∥asml∥L2[N] ≤ ε.

3 anil is a (F(M), N)-irrational virtual degree s nilsequence of complexity ≤ M .

Recall: If a is automatic, then astr(n) = F (aper(n), afs(n), abs(n)) , where

aper is periodic;

afs is essentially periodic; −→ afs = [ki-periodic]+O(1/kiη) in L2[N]

abs is constant on long intervals.

Hence, astr = [1-step nilsequence]+ [small error].

Key di�erences:

For automatic sequences, 1-step nilsequences are enough.

Quantitative bounds in the decomposition are reasonable.

17 / 23

Arithmetic regularity lemma

Theorem (Green & Tao (2010))

Fix s ≥ 1, ε > 0 and a growth function F : R+ → R+. Each sequence a : [N] → [0, 1]
has a decomposition a = anil + asml + auni, where M = O(1) and

1 auni is uniform in the sense that ∥auni∥Us+1[N] ≤ 1/F(M).

2 asml is small in the sense that ∥asml∥L2[N] ≤ ε.

3 anil is a (F(M), N)-irrational virtual degree s nilsequence of complexity ≤ M .

Recall: If a is automatic, then astr(n) = F (aper(n), afs(n), abs(n)) , where

aper is periodic;

afs is essentially periodic; −→ afs = [ki-periodic]+O(1/kiη) in L2[N]

abs is constant on long intervals.

Hence, astr = [1-step nilsequence]+ [small error].

Key di�erences:

For automatic sequences, 1-step nilsequences are enough.

Quantitative bounds in the decomposition are reasonable.

17 / 23

Arithmetic regularity lemma and e�ective alphabet size

Observation: If b : N → Ω is a structured k-automatic sequence and P ∈ APk then
there exists Q ∈ APk with Q ⊂ P on which b is constant.

Lemma

Let a : N → [0, 1] be a k-automatic sequence and P ∈ APk. Suppose that for all
Q ∈ APk with Q ⊂ P there exists n ∈ Q with a(n) > 0. Then there exists Q ∈ APk

with Q ⊂ P such that astr is constant and positive on Q.

Let a : N → Ω be a k-automatic sequence. For x ∈ Ω, let a(x)(n) =

{
1 if a(n) = x,

0 otherwise.

Lemma

Let a : N → Ω be a k-automatic sequence with e�ective alphabet size ra. Then there
exist Λ ⊂ Ω with #Λ = ra and P ∈ APk such that a

(x)
str is constant and positive on P

for all x ∈ Λ.

Proof: Apply the previous lemma repeatedly.

18 / 23

Arithmetic regularity lemma and e�ective alphabet size

Observation: If b : N → Ω is a structured k-automatic sequence and P ∈ APk then
there exists Q ∈ APk with Q ⊂ P on which b is constant.

Lemma

Let a : N → [0, 1] be a k-automatic sequence and P ∈ APk. Suppose that for all
Q ∈ APk with Q ⊂ P there exists n ∈ Q with a(n) > 0. Then there exists Q ∈ APk

with Q ⊂ P such that astr is constant and positive on Q.

Let a : N → Ω be a k-automatic sequence. For x ∈ Ω, let a(x)(n) =

{
1 if a(n) = x,

0 otherwise.

Lemma

Let a : N → Ω be a k-automatic sequence with e�ective alphabet size ra. Then there
exist Λ ⊂ Ω with #Λ = ra and P ∈ APk such that a

(x)
str is constant and positive on P

for all x ∈ Λ.

Proof: Apply the previous lemma repeatedly.

18 / 23

Arithmetic regularity lemma and e�ective alphabet size

Observation: If b : N → Ω is a structured k-automatic sequence and P ∈ APk then
there exists Q ∈ APk with Q ⊂ P on which b is constant.

Lemma

Let a : N → [0, 1] be a k-automatic sequence and P ∈ APk. Suppose that for all
Q ∈ APk with Q ⊂ P there exists n ∈ Q with a(n) > 0. Then there exists Q ∈ APk

with Q ⊂ P such that astr is constant and positive on Q.

Let a : N → Ω be a k-automatic sequence. For x ∈ Ω, let a(x)(n) =

{
1 if a(n) = x,

0 otherwise.

Lemma

Let a : N → Ω be a k-automatic sequence with e�ective alphabet size ra. Then there
exist Λ ⊂ Ω with #Λ = ra and P ∈ APk such that a

(x)
str is constant and positive on P

for all x ∈ Λ.

Proof: Apply the previous lemma repeatedly.

18 / 23

Proof of the lower bound
We are now ready to show that pAP

a (ℓ) ≥ rℓa for all ℓ ≥ 1.

Let Λ ⊂ Ω and P ∈ APk be like on the previous slide. Pick any w ∈ Λℓ. We
claim that w appears in a along an arithmetic progression contained in P .

Let N be a large integer. We will estimate the count of ℓ-term arithmetic
progressions in P ∩ [N] where w appears in a:

C =

N−1∑
n,m=0

ℓ−1∏
i=0

1P∩[N](n+ im)a(w(i))(n+ im).

By generalised von Neumann theorem:

C ≃
N−1∑

n,m=0

ℓ−1∏
i=0

1P∩[N](n+ im)a
(w(i))
str (n+ im).

Recall that a
(w(i))
str has constant value on P , say αw(i) > 0, so

C ≃
ℓ−1∏
i=0

αw(i) ·# {(n,m) : n+ im ∈ P ∩ [N] for 0 ≤ i < ℓ} ≫ N2.

19 / 23

Proof of the lower bound
We are now ready to show that pAP

a (ℓ) ≥ rℓa for all ℓ ≥ 1.

Let Λ ⊂ Ω and P ∈ APk be like on the previous slide. Pick any w ∈ Λℓ. We
claim that w appears in a along an arithmetic progression contained in P .

Let N be a large integer. We will estimate the count of ℓ-term arithmetic
progressions in P ∩ [N] where w appears in a:

C =

N−1∑
n,m=0

ℓ−1∏
i=0

1P∩[N](n+ im)a(w(i))(n+ im).

By generalised von Neumann theorem:

C ≃
N−1∑

n,m=0

ℓ−1∏
i=0

1P∩[N](n+ im)a
(w(i))
str (n+ im).

Recall that a
(w(i))
str has constant value on P , say αw(i) > 0, so

C ≃
ℓ−1∏
i=0

αw(i) ·# {(n,m) : n+ im ∈ P ∩ [N] for 0 ≤ i < ℓ} ≫ N2.

19 / 23

Proof of the lower bound
We are now ready to show that pAP

a (ℓ) ≥ rℓa for all ℓ ≥ 1.

Let Λ ⊂ Ω and P ∈ APk be like on the previous slide. Pick any w ∈ Λℓ. We
claim that w appears in a along an arithmetic progression contained in P .

Let N be a large integer. We will estimate the count of ℓ-term arithmetic
progressions in P ∩ [N] where w appears in a:

C =

N−1∑
n,m=0

ℓ−1∏
i=0

1P∩[N](n+ im)a(w(i))(n+ im).

By generalised von Neumann theorem:

C ≃
N−1∑

n,m=0

ℓ−1∏
i=0

1P∩[N](n+ im)a
(w(i))
str (n+ im).

Recall that a
(w(i))
str has constant value on P , say αw(i) > 0, so

C ≃
ℓ−1∏
i=0

αw(i) ·# {(n,m) : n+ im ∈ P ∩ [N] for 0 ≤ i < ℓ} ≫ N2.

19 / 23

Proof of the lower bound
We are now ready to show that pAP

a (ℓ) ≥ rℓa for all ℓ ≥ 1.

Let Λ ⊂ Ω and P ∈ APk be like on the previous slide. Pick any w ∈ Λℓ. We
claim that w appears in a along an arithmetic progression contained in P .

Let N be a large integer. We will estimate the count of ℓ-term arithmetic
progressions in P ∩ [N] where w appears in a:

C =

N−1∑
n,m=0

ℓ−1∏
i=0

1P∩[N](n+ im)a(w(i))(n+ im).

By generalised von Neumann theorem:

C ≃
N−1∑

n,m=0

ℓ−1∏
i=0

1P∩[N](n+ im)a
(w(i))
str (n+ im).

Recall that a
(w(i))
str has constant value on P , say αw(i) > 0, so

C ≃
ℓ−1∏
i=0

αw(i) ·# {(n,m) : n+ im ∈ P ∩ [N] for 0 ≤ i < ℓ} ≫ N2.

19 / 23

Proof of the lower bound
We are now ready to show that pAP

a (ℓ) ≥ rℓa for all ℓ ≥ 1.

Let Λ ⊂ Ω and P ∈ APk be like on the previous slide. Pick any w ∈ Λℓ. We
claim that w appears in a along an arithmetic progression contained in P .

Let N be a large integer. We will estimate the count of ℓ-term arithmetic
progressions in P ∩ [N] where w appears in a:

C =

N−1∑
n,m=0

ℓ−1∏
i=0

1P∩[N](n+ im)a(w(i))(n+ im).

By generalised von Neumann theorem:

C ≃
N−1∑

n,m=0

ℓ−1∏
i=0

1P∩[N](n+ im)a
(w(i))
str (n+ im).

Recall that a
(w(i))
str has constant value on P , say αw(i) > 0, so

C ≃
ℓ−1∏
i=0

αw(i) ·# {(n,m) : n+ im ∈ P ∩ [N] for 0 ≤ i < ℓ} ≫ N2.

19 / 23

Height of a substitution

Let a : N → Ω be k-automatic, produced by automaton A = (S, s0,Σk, δ,Ω, τ).

Simplifying assumption: A is primitive (strongly connected, gcd of loop lengths = 1).

Recall: k-automatic ⇔ coding of a k-uniform substitution.

Suppose η : Ω → Ωk be a substitution with η(a) = a, i.e.:

(a(n))∞n=0 = a(0), a(1), . . . , a(k − 1)︸ ︷︷ ︸
=η(a(0))

, . . . a(nk), a(nk + 1), . . . , a((n+ 1)k − 1)︸ ︷︷ ︸
=η(a(n))

, . . .

De�nition

The height h of η is given by

h = max {m : m ⊥ k, m | d for all d ≥ 0 such that a(d) = a(0)}
= max {m : m ⊥ k, m | d for all d ≥ 0 such that a(n+ d) = a(n)}

Example: The Thue�Morse sequence has height 1.

20 / 23

Height of a substitution

Let a : N → Ω be k-automatic, produced by automaton A = (S, s0,Σk, δ,Ω, τ).

Simplifying assumption: A is primitive (strongly connected, gcd of loop lengths = 1).

Recall: k-automatic ⇔ coding of a k-uniform substitution.

Suppose η : Ω → Ωk be a substitution with η(a) = a, i.e.:

(a(n))∞n=0 = a(0), a(1), . . . , a(k − 1)︸ ︷︷ ︸
=η(a(0))

, . . . a(nk), a(nk + 1), . . . , a((n+ 1)k − 1)︸ ︷︷ ︸
=η(a(n))

, . . .

De�nition

The height h of η is given by

h = max {m : m ⊥ k, m | d for all d ≥ 0 such that a(d) = a(0)}
= max {m : m ⊥ k, m | d for all d ≥ 0 such that a(n+ d) = a(n)}

Example: The Thue�Morse sequence has height 1.

20 / 23

Height of a substitution

Let a : N → Ω be k-automatic, produced by automaton A = (S, s0,Σk, δ,Ω, τ).

Simplifying assumption: A is primitive (strongly connected, gcd of loop lengths = 1).

Recall: k-automatic ⇔ coding of a k-uniform substitution.

Suppose η : Ω → Ωk be a substitution with η(a) = a, i.e.:

(a(n))∞n=0 = a(0), a(1), . . . , a(k − 1)︸ ︷︷ ︸
=η(a(0))

, . . . a(nk), a(nk + 1), . . . , a((n+ 1)k − 1)︸ ︷︷ ︸
=η(a(n))

, . . .

De�nition

The height h of η is given by

h = max {m : m ⊥ k, m | d for all d ≥ 0 such that a(d) = a(0)}
= max {m : m ⊥ k, m | d for all d ≥ 0 such that a(n+ d) = a(n)}

Example: The Thue�Morse sequence has height 1.

20 / 23

Height of a substitution

Let a : N → Ω be k-automatic, produced by automaton A = (S, s0,Σk, δ,Ω, τ).

Simplifying assumption: A is primitive (strongly connected, gcd of loop lengths = 1).

Recall: k-automatic ⇔ coding of a k-uniform substitution.

Suppose η : Ω → Ωk be a substitution with η(a) = a, i.e.:

(a(n))∞n=0 = a(0), a(1), . . . , a(k − 1)︸ ︷︷ ︸
=η(a(0))

, . . . a(nk), a(nk + 1), . . . , a((n+ 1)k − 1)︸ ︷︷ ︸
=η(a(n))

, . . .

De�nition

The height h of η is given by

h = max {m : m ⊥ k, m | d for all d ≥ 0 such that a(d) = a(0)}
= max {m : m ⊥ k, m | d for all d ≥ 0 such that a(n+ d) = a(n)}

Example: The Thue�Morse sequence has height 1.

20 / 23

Height of a substitution

Let a : N → Ω be k-automatic, produced by automaton A = (S, s0,Σk, δ,Ω, τ).

Simplifying assumption: A is primitive (strongly connected, gcd of loop lengths = 1).

Recall: k-automatic ⇔ coding of a k-uniform substitution.

Suppose η : Ω → Ωk be a substitution with η(a) = a, i.e.:

(a(n))∞n=0 = a(0), a(1), . . . , a(k − 1)︸ ︷︷ ︸
=η(a(0))

, . . . a(nk), a(nk + 1), . . . , a((n+ 1)k − 1)︸ ︷︷ ︸
=η(a(n))

, . . .

De�nition

The height h of η is given by

h = max {m : m ⊥ k, m | d for all d ≥ 0 such that a(d) = a(0)}
= max {m : m ⊥ k, m | d for all d ≥ 0 such that a(n+ d) = a(n)}

Example: The Thue�Morse sequence has height 1.

20 / 23

Height of a substitution

Let a : N → Ω be k-automatic, produced by automaton A = (S, s0,Σk, δ,Ω, τ).

Simplifying assumption: A is primitive (strongly connected, gcd of loop lengths = 1).

Recall: k-automatic ⇔ coding of a k-uniform substitution.

Suppose η : Ω → Ωk be a substitution with η(a) = a, i.e.:

(a(n))∞n=0 = a(0), a(1), . . . , a(k − 1)︸ ︷︷ ︸
=η(a(0))

, . . . a(nk), a(nk + 1), . . . , a((n+ 1)k − 1)︸ ︷︷ ︸
=η(a(n))

, . . .

De�nition

The height h of η is given by

h = max {m : m ⊥ k, m | d for all d ≥ 0 such that a(d) = a(0)}
= max {m : m ⊥ k, m | d for all d ≥ 0 such that a(n+ d) = a(n)}

Example: The Thue�Morse sequence has height 1.

20 / 23

Height and periodicity

Let Cj := {a(n) : n ≡ j mod h}.
1 For each i, j either Cj = Ci or Ci ∩ Cj = ∅.
2 The sequence C0, C1, C2, . . . is periodic.

3 The height is the largest integer h ⊥ k such that the above hold.

The sequence C0, C1, C2, . . . contains all information about periodic behaviour of
a(n) that we would need in the argument.

Simplifying assumption: h = 1 (no periodic component).

21 / 23

Height and periodicity

Let Cj := {a(n) : n ≡ j mod h}.
1 For each i, j either Cj = Ci or Ci ∩ Cj = ∅.
2 The sequence C0, C1, C2, . . . is periodic.

3 The height is the largest integer h ⊥ k such that the above hold.

The sequence C0, C1, C2, . . . contains all information about periodic behaviour of
a(n) that we would need in the argument.

Simplifying assumption: h = 1 (no periodic component).

21 / 23

Height and periodicity

Let Cj := {a(n) : n ≡ j mod h}.
1 For each i, j either Cj = Ci or Ci ∩ Cj = ∅.
2 The sequence C0, C1, C2, . . . is periodic.

3 The height is the largest integer h ⊥ k such that the above hold.

The sequence C0, C1, C2, . . . contains all information about periodic behaviour of
a(n) that we would need in the argument.

Simplifying assumption: h = 1 (no periodic component).

21 / 23

Group extensions of automata

Let c = min {#δ(S,w) : w ∈ Σ∗
k}, where δ(S,w) = {δ(s, w) : s ∈ S}.

Let M = {M0,M1, . . . ,Mp−1} = {δ(S,w) : w ∈ Σ∗
k, #δ(S,w) = c}.

Without loss of generality: s0 ∈ M0.

Fact: For each M ∈ M and u ∈ Σ∗
k we have δ(M,u) ∈ M.

Let s(n) = δ(s0, (n)k) ∈ S where n ∈ N.
Let i(n) ∈ {0, 1, . . . , p− 1} be such that δ(M0, (n)k) = Mi(n).

Fact: For each n ∈ N we have s(n) ∈ Mi(n).

Proposition

The e�ective alphabet size is alternatively given by:

ra = max
0≤i<p

#τ(Mi).

Sketch of proof:

ra ≤ maxi #τ(Mi): If P ∈ APk then there are Q ∈ APk, Q ⊂ P and M ∈ M,
such that {a(n) : n ∈ Q} ⊆ {τ(s) : s ∈ M}.
ra ≥ maxi #τ(Mi): Given i, we can �nd P ∈ APk with i(n) = i for all n ∈ P .
Remains to show: for each Q ∈ APk, Q ⊂ P we have {s(n) : n ∈ Q} = Mi.

22 / 23

Group extensions of automata

Let c = min {#δ(S,w) : w ∈ Σ∗
k}, where δ(S,w) = {δ(s, w) : s ∈ S}.

Let M = {M0,M1, . . . ,Mp−1} = {δ(S,w) : w ∈ Σ∗
k, #δ(S,w) = c}.

Without loss of generality: s0 ∈ M0.

Fact: For each M ∈ M and u ∈ Σ∗
k we have δ(M,u) ∈ M.

Let s(n) = δ(s0, (n)k) ∈ S where n ∈ N.
Let i(n) ∈ {0, 1, . . . , p− 1} be such that δ(M0, (n)k) = Mi(n).

Fact: For each n ∈ N we have s(n) ∈ Mi(n).

Proposition

The e�ective alphabet size is alternatively given by:

ra = max
0≤i<p

#τ(Mi).

Sketch of proof:

ra ≤ maxi #τ(Mi): If P ∈ APk then there are Q ∈ APk, Q ⊂ P and M ∈ M,
such that {a(n) : n ∈ Q} ⊆ {τ(s) : s ∈ M}.
ra ≥ maxi #τ(Mi): Given i, we can �nd P ∈ APk with i(n) = i for all n ∈ P .
Remains to show: for each Q ∈ APk, Q ⊂ P we have {s(n) : n ∈ Q} = Mi.

22 / 23

Group extensions of automata

Let c = min {#δ(S,w) : w ∈ Σ∗
k}, where δ(S,w) = {δ(s, w) : s ∈ S}.

Let M = {M0,M1, . . . ,Mp−1} = {δ(S,w) : w ∈ Σ∗
k, #δ(S,w) = c}.

Without loss of generality: s0 ∈ M0.

Fact: For each M ∈ M and u ∈ Σ∗
k we have δ(M,u) ∈ M.

Let s(n) = δ(s0, (n)k) ∈ S where n ∈ N.
Let i(n) ∈ {0, 1, . . . , p− 1} be such that δ(M0, (n)k) = Mi(n).

Fact: For each n ∈ N we have s(n) ∈ Mi(n).

Proposition

The e�ective alphabet size is alternatively given by:

ra = max
0≤i<p

#τ(Mi).

Sketch of proof:

ra ≤ maxi #τ(Mi): If P ∈ APk then there are Q ∈ APk, Q ⊂ P and M ∈ M,
such that {a(n) : n ∈ Q} ⊆ {τ(s) : s ∈ M}.
ra ≥ maxi #τ(Mi): Given i, we can �nd P ∈ APk with i(n) = i for all n ∈ P .
Remains to show: for each Q ∈ APk, Q ⊂ P we have {s(n) : n ∈ Q} = Mi.

22 / 23

Group extensions of automata

Let c = min {#δ(S,w) : w ∈ Σ∗
k}, where δ(S,w) = {δ(s, w) : s ∈ S}.

Let M = {M0,M1, . . . ,Mp−1} = {δ(S,w) : w ∈ Σ∗
k, #δ(S,w) = c}.

Without loss of generality: s0 ∈ M0.

Fact: For each M ∈ M and u ∈ Σ∗
k we have δ(M,u) ∈ M.

Let s(n) = δ(s0, (n)k) ∈ S where n ∈ N.
Let i(n) ∈ {0, 1, . . . , p− 1} be such that δ(M0, (n)k) = Mi(n).

Fact: For each n ∈ N we have s(n) ∈ Mi(n).

Proposition

The e�ective alphabet size is alternatively given by:

ra = max
0≤i<p

#τ(Mi).

Sketch of proof:

ra ≤ maxi #τ(Mi): If P ∈ APk then there are Q ∈ APk, Q ⊂ P and M ∈ M,
such that {a(n) : n ∈ Q} ⊆ {τ(s) : s ∈ M}.
ra ≥ maxi #τ(Mi): Given i, we can �nd P ∈ APk with i(n) = i for all n ∈ P .
Remains to show: for each Q ∈ APk, Q ⊂ P we have {s(n) : n ∈ Q} = Mi.

22 / 23

Group extensions of automata

Let c = min {#δ(S,w) : w ∈ Σ∗
k}, where δ(S,w) = {δ(s, w) : s ∈ S}.

Let M = {M0,M1, . . . ,Mp−1} = {δ(S,w) : w ∈ Σ∗
k, #δ(S,w) = c}.

Without loss of generality: s0 ∈ M0.

Fact: For each M ∈ M and u ∈ Σ∗
k we have δ(M,u) ∈ M.

Let s(n) = δ(s0, (n)k) ∈ S where n ∈ N.
Let i(n) ∈ {0, 1, . . . , p− 1} be such that δ(M0, (n)k) = Mi(n).

Fact: For each n ∈ N we have s(n) ∈ Mi(n).

Proposition

The e�ective alphabet size is alternatively given by:

ra = max
0≤i<p

#τ(Mi).

Sketch of proof:

ra ≤ maxi #τ(Mi): If P ∈ APk then there are Q ∈ APk, Q ⊂ P and M ∈ M,
such that {a(n) : n ∈ Q} ⊆ {τ(s) : s ∈ M}.
ra ≥ maxi #τ(Mi): Given i, we can �nd P ∈ APk with i(n) = i for all n ∈ P .
Remains to show: for each Q ∈ APk, Q ⊂ P we have {s(n) : n ∈ Q} = Mi.

22 / 23

Group extensions of automata

Let c = min {#δ(S,w) : w ∈ Σ∗
k}, where δ(S,w) = {δ(s, w) : s ∈ S}.

Let M = {M0,M1, . . . ,Mp−1} = {δ(S,w) : w ∈ Σ∗
k, #δ(S,w) = c}.

Without loss of generality: s0 ∈ M0.

Fact: For each M ∈ M and u ∈ Σ∗
k we have δ(M,u) ∈ M.

Let s(n) = δ(s0, (n)k) ∈ S where n ∈ N.
Let i(n) ∈ {0, 1, . . . , p− 1} be such that δ(M0, (n)k) = Mi(n).

Fact: For each n ∈ N we have s(n) ∈ Mi(n).

Proposition

The e�ective alphabet size is alternatively given by:

ra = max
0≤i<p

#τ(Mi).

Sketch of proof:

ra ≤ maxi #τ(Mi): If P ∈ APk then there are Q ∈ APk, Q ⊂ P and M ∈ M,
such that {a(n) : n ∈ Q} ⊆ {τ(s) : s ∈ M}.
ra ≥ maxi #τ(Mi): Given i, we can �nd P ∈ APk with i(n) = i for all n ∈ P .
Remains to show: for each Q ∈ APk, Q ⊂ P we have {s(n) : n ∈ Q} = Mi.

22 / 23

Proof of upper bound

We are now ready to show that pAP
a (ℓ) ≤ rℓa exp(o(ℓ)) for all ℓ ≥ 1.

Since s(n) ∈ Mi(n) and #τ(Mi) ≤ ra, we have

pAP
a (ℓ) ≤ rℓa × pAP

i (ℓ). (1)

Since i : N → {0, 1, . . . , p− 1} is k-automatic and synchronising, we have

pAP
i (ℓ) = exp(o(ℓ)) (2)

by the Deshouillers, Drmota, Müllner, Shubin & Spiegelhofer.

Combining (1) and (2) yields the claim.

Remarks:

Recall that we have made simplifying assumptions. −→ more work

Same result for polynomial subword complexity.

The factor exp(o(ℓ)) can be improved to exp(O(ℓ1−κ)) with κ > 0.

23 / 23

Proof of upper bound

We are now ready to show that pAP
a (ℓ) ≤ rℓa exp(o(ℓ)) for all ℓ ≥ 1.

Since s(n) ∈ Mi(n) and #τ(Mi) ≤ ra, we have

pAP
a (ℓ) ≤ rℓa × pAP

i (ℓ). (1)

Since i : N → {0, 1, . . . , p− 1} is k-automatic and synchronising, we have

pAP
i (ℓ) = exp(o(ℓ)) (2)

by the Deshouillers, Drmota, Müllner, Shubin & Spiegelhofer.

Combining (1) and (2) yields the claim.

Remarks:

Recall that we have made simplifying assumptions. −→ more work

Same result for polynomial subword complexity.

The factor exp(o(ℓ)) can be improved to exp(O(ℓ1−κ)) with κ > 0.

23 / 23

Proof of upper bound

We are now ready to show that pAP
a (ℓ) ≤ rℓa exp(o(ℓ)) for all ℓ ≥ 1.

Since s(n) ∈ Mi(n) and #τ(Mi) ≤ ra, we have

pAP
a (ℓ) ≤ rℓa × pAP

i (ℓ). (1)

Since i : N → {0, 1, . . . , p− 1} is k-automatic and synchronising, we have

pAP
i (ℓ) = exp(o(ℓ)) (2)

by the Deshouillers, Drmota, Müllner, Shubin & Spiegelhofer.

Combining (1) and (2) yields the claim.

Remarks:

Recall that we have made simplifying assumptions. −→ more work

Same result for polynomial subword complexity.

The factor exp(o(ℓ)) can be improved to exp(O(ℓ1−κ)) with κ > 0.

23 / 23

Proof of upper bound

We are now ready to show that pAP
a (ℓ) ≤ rℓa exp(o(ℓ)) for all ℓ ≥ 1.

Since s(n) ∈ Mi(n) and #τ(Mi) ≤ ra, we have

pAP
a (ℓ) ≤ rℓa × pAP

i (ℓ). (1)

Since i : N → {0, 1, . . . , p− 1} is k-automatic and synchronising, we have

pAP
i (ℓ) = exp(o(ℓ)) (2)

by the Deshouillers, Drmota, Müllner, Shubin & Spiegelhofer.

Combining (1) and (2) yields the claim.

Remarks:

Recall that we have made simplifying assumptions. −→ more work

Same result for polynomial subword complexity.

The factor exp(o(ℓ)) can be improved to exp(O(ℓ1−κ)) with κ > 0.

23 / 23

Proof of upper bound

We are now ready to show that pAP
a (ℓ) ≤ rℓa exp(o(ℓ)) for all ℓ ≥ 1.

Since s(n) ∈ Mi(n) and #τ(Mi) ≤ ra, we have

pAP
a (ℓ) ≤ rℓa × pAP

i (ℓ). (1)

Since i : N → {0, 1, . . . , p− 1} is k-automatic and synchronising, we have

pAP
i (ℓ) = exp(o(ℓ)) (2)

by the Deshouillers, Drmota, Müllner, Shubin & Spiegelhofer.

Combining (1) and (2) yields the claim.

Remarks:

Recall that we have made simplifying assumptions. −→ more work

Same result for polynomial subword complexity.

The factor exp(o(ℓ)) can be improved to exp(O(ℓ1−κ)) with κ > 0.

23 / 23

Thank you for your attention!

Bonus: Quantitative Cobham's theorem

Theorem (Cobham (1969))

Let k, ℓ ≥ 2 and let a : N → Ω be a sequence that is both k- and ℓ-automatic. Then

k and ℓ are multiplicatively dependent, i.e., logk(ℓ) ∈ Q; or
a is eventually periodic (and hence automatic in every base).

Question: How similar can a k-automatic sequence be to an ℓ-automatic sequence?

We already know that they cannot be equal, or even asymptotically equal.

We need to account for possible correlations with periodic sequences.

Theorem (Adamczewski, K., Müllner)

Let k, ℓ ≥ 2 be multiplicatively independent integers and let a, b : N → C be k- and
ℓ-automatic, respectively. Then∑

n<N

a(n)b(n) =
∑
n<N

astr(n)bstr(n) +O(N1−c).

Corollary: Each Gowers uniform k-automatic sequence a is a orthogonal to each
ℓ-automatic sequence b, ∑

n<N

a(n)b(n) = O(N1−c).

23 / 23

Bonus: Quantitative Cobham's theorem

Theorem (Cobham (1969))

Let k, ℓ ≥ 2 and let a : N → Ω be a sequence that is both k- and ℓ-automatic. Then

k and ℓ are multiplicatively dependent, i.e., logk(ℓ) ∈ Q; or
a is eventually periodic (and hence automatic in every base).

Question: How similar can a k-automatic sequence be to an ℓ-automatic sequence?

We already know that they cannot be equal, or even asymptotically equal.

We need to account for possible correlations with periodic sequences.

Theorem (Adamczewski, K., Müllner)

Let k, ℓ ≥ 2 be multiplicatively independent integers and let a, b : N → C be k- and
ℓ-automatic, respectively. Then∑

n<N

a(n)b(n) =
∑
n<N

astr(n)bstr(n) +O(N1−c).

Corollary: Each Gowers uniform k-automatic sequence a is a orthogonal to each
ℓ-automatic sequence b, ∑

n<N

a(n)b(n) = O(N1−c).

23 / 23

Bonus: Quantitative Cobham's theorem

Theorem (Cobham (1969))

Let k, ℓ ≥ 2 and let a : N → Ω be a sequence that is both k- and ℓ-automatic. Then

k and ℓ are multiplicatively dependent, i.e., logk(ℓ) ∈ Q; or
a is eventually periodic (and hence automatic in every base).

Question: How similar can a k-automatic sequence be to an ℓ-automatic sequence?

We already know that they cannot be equal, or even asymptotically equal.

We need to account for possible correlations with periodic sequences.

Theorem (Adamczewski, K., Müllner)

Let k, ℓ ≥ 2 be multiplicatively independent integers and let a, b : N → C be k- and
ℓ-automatic, respectively. Then∑

n<N

a(n)b(n) =
∑
n<N

astr(n)bstr(n) +O(N1−c).

Corollary: Each Gowers uniform k-automatic sequence a is a orthogonal to each
ℓ-automatic sequence b, ∑

n<N

a(n)b(n) = O(N1−c).

23 / 23

Bonus: Quantitative Cobham's theorem

Theorem (Cobham (1969))

Let k, ℓ ≥ 2 and let a : N → Ω be a sequence that is both k- and ℓ-automatic. Then

k and ℓ are multiplicatively dependent, i.e., logk(ℓ) ∈ Q; or
a is eventually periodic (and hence automatic in every base).

Question: How similar can a k-automatic sequence be to an ℓ-automatic sequence?

We already know that they cannot be equal, or even asymptotically equal.

We need to account for possible correlations with periodic sequences.

Theorem (Adamczewski, K., Müllner)

Let k, ℓ ≥ 2 be multiplicatively independent integers and let a, b : N → C be k- and
ℓ-automatic, respectively. Then∑

n<N

a(n)b(n) =
∑
n<N

astr(n)bstr(n) +O(N1−c).

Corollary: Each Gowers uniform k-automatic sequence a is a orthogonal to each
ℓ-automatic sequence b, ∑

n<N

a(n)b(n) = O(N1−c).

23 / 23

