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General question: How complex is a? — hopelessly vague...

Computational complexity of finding a(n).

Subword complexity = number of length-¢ subwords that appear in a:

pa(f):#{weﬁé :(3n)aln+i) =w(i) f0r0§i<f}.

o Arithmetical subword complexity complexity = number of length-¢ subwords
that appear in a along an arithmetic progression:

paAP(é):#{wEQe : (3 n,m) a(n+im) = w(i) for0§i<€}.

polynomial subword complexity, d-complexity, (maximal) pattern complexity,
asymptotic subword complexity, etc., etc.. .. — we will not discuss those
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{ then a is eventually periodic.
v

Fact (minimal complexity < Sturmian)
Ifa: N — {0,1} and pa(¢) = £+ 1 for all £ then a is a Sturmian sequence:

a(n) = la(n+1) + 8] — [an + f] n €N,

where o € [0,1)\ Q, B € [0,1). Conversely, if a is Sturmian then pa(¢) =€ + 1.

Fact (linear complexity for automatic sequences)
If a is an automatic sequence then po(€) = O(¢), i.e., pa(¢) < CY for a constant C. J
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The Thue-Morse(—Prouhet) sequence

+1, -1, =1, 41, —1,4+1,+1, -1, =1, +1,+1, =1, +1, —1, -1, +1, ...
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o Explicit formula: £(n) +1 ?f n ?s evi.l (i.e.., sum of bina.ry digit.s 'is e.ven)7
—1 if nis odious (i.e., sum of binary digits is odd).

® Automatic sequence:

start —

® Recurrence: t(0) = +1, ¢(2n) =t(n), t(2n+1) = —t(n).
@ Fixed point of a substitution: +1 — +1,—1; —1+— —1,+1.
® Strongly 2-multiplicative sequence: ¢(1) = —1, and if m < 2 then

t(2%n + m) = t(n)t(m).
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Automatic sequences via finite automata

Some notation: We let k denote the base in which we work. —eg. k=10or k=2
e ¥, ={0,1,...,k — 1}, the set of digits in base k;
e X7 is the set of words over ¥j, monoid with concatenation;
e for n € N, (n)i € X, is the base-k expansion of n; — no leading zeros
e for w € ¥j, [w]r € N is the integer encoded by w.
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distinguished initial state so; 0 1 0 1
@ a tramsition function 0: S X X — S;
e an output function 7: § — Q. start — 0 0

Computing the sequence:
o Extend § to a map S x X} with (s, uv) = §(d(s,u),v) or 6(d(s,v),u);
o The sequence computed by the automaton is given by a(n) = 7 (6(so, (n)x)).
o The automaton above computes the Rudin-Shapiro sequence (—1)# °f 11 in (n)2,

Intuition: Automatic <= Computable by a finite device.
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Subword complexity of automatic sequences

Proposition

The subword complexity of the Thue—Morse sequence is given by:

3.2 4 4(r—1) if£=2F 47 with1 <r <2F71,
pe(l) = k e ok ST GfE=11 k
4-2%4+2(r—1) if £ =24 r with 2" <r < 2%
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Subword complexity of automatic sequences

Proposition

The subword complexity of the Thue—Morse sequence is given by:

0 = 3.2 4 4(r—1) if£=2F 47 with1 <r <2F71,
PR =4 25 £ 2(r — 1) if£=2% 47 with 25 < < 2%,

Proposition
If a is automatic then p,(£) = O(L).

Sketch of proof:
e Pick any a,n € N. For 0 <4 < k%, a(k“n + i) is determined by d(so, (n)2).

o If w e {0,1}*" then w appears in a between k“n 4 r and k®(n 4 1) 4 r for some
n,r € N, r < k% Thus, w is determined by (so, (n)x), d(so, (n + 1)) and r, and

pa(k®) < #S X #5 x k°.
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e maximal subword complexity: ps(£) = 2°.

Theorem (Drmota, Mauduit & Rivat) J

The sequence t(n?) is normal (in particular, it has mazimal subword complexity).

Theorem (Miillner & Spiegelhofer)
The sequence t(|n°]) is normal for 1 < ¢ < 3/2. J

Fact: The restriction ¢(An + B) of the Thue-Morse sequence to a given arithmetic
progression is automatic (and hence very non-random).

Hope: The restriction of ¢(n) to a random arithmetic progression looks random.
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Higher order Fourier analysis: first glance

Definition (Gowers norm)
Fix d > 2. Let f: [N]:={0,1,...,N — 1} = C. Then ||f||;a;y, > 0 is defined by:
d
Iflamg =B T C“'f (no+wini + ... wana),
" we{0,1}4

where the average is taken over all parallelepipeds in [N], i.e., over all
n = (no,...,nq) € Z¥*?! such that no +winy +...weng € [N] for all w € {0,1}¢.
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d
”f”?]d[N] ZE H C‘wlf(no—i—wlnl +...wdnd),
" we{0,1}4

where the average is taken over all parallelepipeds in [N], i.e., over all
n = (no,...,nq) € Z¥*?! such that no +winy +...weng € [N] for all w € {0,1}¢.

Theorem (Generalised von Neumann Theorem)
Fiz d > 2 and let fo, f1,..., fa: [N] = C be 1-bounded. Then

n]E;n fo(n)fi(n+m)fa(n+2m)... fa(n+dm)| < e | fillragny -

s
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Higher order Fourier analysis and arithmetical subword complexity
Corollary 1: If f: [N] — {—1,+1} and [|f|[ ;4 < € then f looks random along
random (d + 1)-term APs in [N], meaning that for w € {—1,+1}%"" we have:

#{(n,m) : n+im € [N] and f(n+im) =w(i) for 0<i<d} 1
#{(n,m) : n+im € [N] for 0 <14 < d} = 9d+1

+ O(e).
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Higher order Fourier analysis and arithmetical subword complexity
Corollary 1: If f: [N] — {—1,+1} and [|f|[ ;4 < € then f looks random along
random (d + 1)-term APs in [N], meaning that for w € {—1,+1}%"" we have:

#{(n,m) : n+im € [N] and f(n+im) =w() for 0 <i<d} 1
#{(n,m) : n+im € [N] for 0 <4 <d} o 2dHl

+O(e).

Corollary 2: In particular, if f: N — {—1,+1} and || f||ya;y) — 0 as N — oo for

each d > 2 then f has maximal arithmetical subword complexity, pfAP ) = 2f.

Theorem (K.)

The Thue—Morse sequence is Gowers uniform of all orders. More precisely, for each
d > 2 there exists k > 0 such that

||t||Ud[N] < N7F

In particular, t(n) has mazimal arithmetical subword complezity, pF (£) = 2°.

Remark: The fact that p2*F (£) = 2¢ has been proven several times.
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Uniformity of automatic sequences

Question: Which automatic sequences are Gowers uniform?
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Theorem (Byszewski, K., Miillner)

For an automatic sequence a: N — C, the following are equivalent:
o |lallyay; — 0 as N — oo for each d > 2;

° ||a||U2[N — 0 as N — oo;

En 0a(An—|—B)—>0 as N — oo for each A >1, B > 0.

Rationale: Only linear obstructions to uniformity, no quadratic structure possible.
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Theorem (Byszewski, K., Miillner)

For an automatic sequence a: N — C, the following are equivalent:
o |lallyay; — 0 as N — oo for each d > 2;
° ||aHU2[N — 0 as N — oo;

En S a(An+ B) = 0 as N — oo for each A> 1, B > 0.

Rationale: Only linear obstructions to uniformity, no quadratic structure possible.

Proposition

Let a: N — {0,1} be an automatic sequence. Suppose for some a € (0,1) we have:

2

=il
%Z a(An+ B) = « for each A >1, B > 0.
n=0

Then @ has maximal arithmetical subword complexity: pAF (¢) = 2¢.

Rationale: a — aly is Gowers uniform of all orders.
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Non-uniform automatic sequences

If @ = [constant] + [uniform], we can apply generalised von Neumann.
Question: Which automatic sequences do not have this form?
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Non-uniform automatic sequences

If @ = [constant] + [uniform], we can apply generalised von Neumann.
Question: Which automatic sequences do not have this form?
Basic classes of non-uniform sequences:
® periodic, such as (—1)";
® forwards synchronising, such as (—1)2("); — 2v2(") | n

® backwards synchronising, such as (—l)UogQ(")J.

Definition (Synchronisation)
o An automaton A = (S, so, Xk, 0, Q, 7) is synchronising if there exists a word
w € X}, which synchronises A to a state s € S, meaning that:
5(s',w) =s for all s" € S.
o A sequence a: N — Q is forwards synchronising if it is computed by a
synchronising automaton reading input starting with the most significant digit.

o A sequence a: N — Q is backwards synchronising if it is computed by a
synchronising automaton reading input starting with the least significant digit.

v
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Non-uniform automatic sequences

Theorem (Deshouillers, Drmota, Miillner, Shubin & Spiegelhofer)

If a: N — Q is a forwards synchronising automatic sequence then
A
Pa’ (£) = exp(o(£)).

In fact, same estimate holds for polynomial subword complexity.

Remark: Similar estimates can be proved for backwards synchronising.

Synchronizing automatic sequences along

Piatetski-Shapiro sequences

Arithmetic subword complexity of automatic sequences - part |

Clemens Miillner
TU Wien

Tuesday, January 9, 2024
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Remark: Similar estimates can be proved for backwards synchronising.

Synchronizing automatic sequences along

Piatetski-Shapiro sequences
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Example: Uniform x Non-uniform

Let a: N — {41, +2} be defined by

t(n') ifn=2n,
a(n) = N )
2t(n") ifn=2n"41.

(a(n))zo:o = (+17 +27 717 727 717 727 +17 +27 717 727 +17 +27 +17 +27 717 727
—1,-2, 41,42, 41,42, -1, -2, +1,+2, —1, -2, —1, —2, +1,+2,...)
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Example: Uniform x Non-uniform

Let a: N — {£1,£2} be defined by

t(n') ifn=2n,
a(n) = N )
2t(n") ifn=2n"41.

(a(n))zo:o = (+17 +27 717 727 717 727 +17 +27 717 727 +17 +27 +17 +27 717 727
—1,-2, 41,42, 41,42, -1, -2, +1,+2, —1, -2, —1, —2, +1,+2,...)

There are three types of factors that appear in a(n) along arithmetic progressions:
o factors (along arithmetic progressions) of t(n);
o factors (along arithmetic progressions) of 2t(n);

o shuffles of factors of ¢(n) and factors of 2t(n) (two ways to combine).
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Example: Uniform x Non-uniform

Let a: N — {£1,£2} be defined by

t(n') ifn=2n,
a(n) = N )
2t(n") ifn=2n"41.

(a(n))zo:o = (+17 +27 717 727 717 727 +17 +27 717 727 +17 +27 +17 +27 717 727
—1,-2, 41,42, 41,42, -1, -2, +1,+2, —1, -2, —1, —2, +1,+2,...)

There are three types of factors that appear in a(n) along arithmetic progressions:
o factors (along arithmetic progressions) of t(n);
o factors (along arithmetic progressions) of 2t(n);

o shuffles of factors of ¢(n) and factors of 2t(n) (two ways to combine).

We can estimate arithmetical subword complexity of a(n):
Pa’ (0) < pi¥ () +p2i (0) +2 x P (£/2) + o (£/2) < 4 x 2°.

Takeaway: Passing to arithmetic progressions, we reduced alphabet size to 2.
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Effective alphabet size

Let APy denote the family of all sets P of the form

n = r mod gq,

u is a prefix of (n)g,

v is a suffix of (n),
length of (n)x = ¢ mod ¢

P=¢(neN:

Intuition: Like a residue class, plus base-k information.
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Effective alphabet size

Let APy denote the family of all sets P of the form

n = r mod gq,

u is a prefix of (n)g,

v is a suffix of (n)y,
length of (n); = ¢ mod £

P=<(neN:

Intuition: Like a residue class, plus base-k information.

Definition (Effective alphabet size)

The effective alphabet size of a k-automatic sequence a: N — () is the largest integer
ro such that there exists P € AP) such that for each Q € APy with Q C P we have

#{a(n) : n €@} = ra.

Remark: In fact, above we have # {a(n) : n € Q} =r.
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Effective alphabet size

Example

If a is periodic, forwards synchronising, or backwards synchronising then the effective

alphabet size of a is r, = 1.
v
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Example

The effective alphabet size of the Thue—Morse sequence is r; = 2.

Basic properties:
o For a: N— Q, b: N — A we have roxp < 1q X 7.
o Fora: N— Q, ¢: Q@ — A we have rgoq < 7q-

Thus, if a is constructed out of periodic and synchronising sequences then r, = 1.
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Effective alphabet size

Example

If a is periodic, forwards synchronising, or backwards synchronising then the effective

alphabet size of a is r, = 1.
v

Example

The effective alphabet size of the Thue—Morse sequence is r; = 2.

Basic properties:
o For a: N— Q, b: N — A we have roxp < 1q X 7.
o Fora: N— Q, ¢: Q@ — A we have rgoq < 7q-

Thus, if a is constructed out of periodic and synchronising sequences then r, = 1.

Fact: For each € > 0 we can find a finite cover
N:P1UPQU"'UPNUQlUQQU"'UQM

by Pi,Q; € AP}, such that # {a(n) : n € P} <ry,and d(Q1 UQ2U---UQn) < &.
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Main result

Theorem (K., Miillner)

Let a: N — Q be an automatic sequence with effective alphabet size ro. Then

Pa® (6) = (ra +o(1))".
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Main result

Theorem (K., Miillner)

Let a: N — Q be an automatic sequence with effective alphabet size ro. Then

Pa® (6) = (ra +o(1))".

Remarks:
o In fact, in one direction we have exact inequality ps* (¢£) > 5.

o We can find A C Q with #A = r, such that all words over A appear in a along
an arithmetic progression.

e Same estimate for polynomial subword complexity.

o The value of r, is computable, given a representation of a.
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Main result

Theorem (K., Miillner)

Let a: N — Q be an automatic sequence with effective alphabet size ro. Then

Pa® (6) = (ra +o(1))".

Remarks:
e In fact, in one direction we have exact inequality p5T (¢) > rt.

o We can find A C Q with #A = r, such that all words over A appear in a along
an arithmetic progression.

e Same estimate for polynomial subword complexity.

o The value of r, is computable, given a representation of a.

Corollary

Let a: N — Q be an automatic sequence with mazimal arithmetical subword
complezity, i.e. pat (£) = #Q°. Then for each £ € N and w € Q° we have:

lgninf#{(n,m) : n+im € [N] and a(n +im) = w(i) for 0<i <€} /N> >0
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Arithmetic regularity lemma for automatic sequences

Definition (Structured sequences)

A k-automatic sequence a: N — Q is structured if there exist automatic sequences
Gper, Afs, Abs : No —> Qper, s, Qs which are periodic, forward synchronising and
backward synchronising respectively and a map F': Qper X Q¢ X Qps — C such that

a(n) = F (aper(n), ass(n), avs(n)) -
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Arithmetic regularity lemma for automatic sequences

Definition (Structured sequences)

A k-automatic sequence a: N — Q is structured if there exist automatic sequences
Gper, Afs, Abs : No —> Qper, s, Qs which are periodic, forward synchronising and
backward synchronising respectively and a map F': Qper X Q¢ X Qps — C such that

a(n) = F (aper(n), ass(n), avs(n)) -

Theorem (Byszewski, K. & Miillner)

Each automatic sequence a: N — C has a decomposition a = astr + Quni, where
@ astr 4 structured in the sense defined above;

@ auni s uniform in the sense that for each d > 2 there exists kK > 0 such that

||auni||Ud[N] < Nﬁﬁ-
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Arithmetic regularity lemma

Theorem (Green & Tao (2010))

Fiz s > 1, e > 0 and a growth function F: Ry — Ry. Fach sequence a: [N] — [0, 1]

has a decomposition a = ani + Gsm1 + Guni, where M = O(1) and
@ auni 1S uniform in the sense that ||a““i||U5+1[N] <1/F(M).

® sl 45 small in the sense that ||asm1||L2[N] <e.

® anil is a (F(M), N)-irrational virtual degree s nilsequence of complezrity < M.
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Theorem (Green & Tao (2010))

Fiz s > 1, e > 0 and a growth function F: Ry — Ry. Fach sequence a: [N] — [0, 1]
has a decomposition a = ani + Gsm1 + Guni, where M = O(1) and

@ auni 1S uniform in the sense that ||a““i||U5+1[N] <1/F(M).
® sl 45 small in the sense that ”asrnl”LZ[N] <e.

® anil is a (F(M), N)-irrational virtual degree s nilsequence of complezrity < M.

Recall: If a is automatic, then agr(n) = F (aper(n), ats(n), aps(n)) , where
@ aper is periodic;
@ ag is essentially periodic; — ags = [k-periodic] + O(1/k™) in L2[N]
@ ays is constant on long intervals.

Hence, asr = [1-step nilsequence] + [small error].
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Arithmetic regularity lemma

Theorem (Green & Tao (2010))

Fiz s > 1, e > 0 and a growth function F: Ry — Ry. Fach sequence a: [N] — [0, 1]
has a decomposition a = ani + Gsm1 + Guni, where M = O(1) and

@ auni 1S uniform in the sense that ||a““i||U5+1[N] <1/F(M).
® sl 45 small in the sense that ”asrnl”LZ[N] <e.

® anu 1s a (F(M), N)-irrational virtual degree s nilsequence of complezity < M.

Recall: If a is automatic, then ag:(n) = F (aper(n), ats(n), abs(n)) , where
@ aper is periodic;
@ ag is essentially periodic; — ags = [k-periodic] + O(1/k™) in L2[N]
@ ays is constant on long intervals.

Hence, asr = [1-step nilsequence] + [small error].

Key differences:
e For automatic sequences, 1-step nilsequences are enough.

e Quantitative bounds in the decomposition are reasonable.
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Arithmetic regularity lemma and effective alphabet size

Observation: If b: N — Q is a structured k-automatic sequence and P € AP then
there exists Q € APy with @Q C P on which b is constant.
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Arithmetic regularity lemma and effective alphabet size

Observation: If b: N — Q is a structured k-automatic sequence and P € AP then
there exists Q € APy, with Q C P on which b is constant.

Lemma

Let a: N — [0,1] be a k-automatic sequence and P € APy. Suppose that for all
Q € APy with Q C P there exists n € Q with a(n) > 0. Then there exists Q € APy
with Q C P such that asty s constant and positive on Q.
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Arithmetic regularity lemma and effective alphabet size

Observation: If b: N — Q is a structured k-automatic sequence and P € AP then
there exists Q € APy, with Q C P on which b is constant.

Lemma

Let a: N — [0,1] be a k-automatic sequence and P € APy. Suppose that for all
Q € APy with Q C P there ezists n € Q with a(n) > 0. Then there ezists Q € AP
with Q C P such that asty s constant and positive on Q.

1 ifa(n) ==z,

Let a: N — Q be a k-automatic sequence. For z € (, let a(z)(n) = .
0 otherwise.

Lemma

Let a: N — Q be a k-automatic sequence with effective alphabet size ro. Then there
ezxist A C Q with #A = r, and P € APy such that aéfr) is constant and positive on P
for all x € A.

Proof: Apply the previous lemma repeatedly.
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Proof of the lower bound
We are now ready to show that pAF (¢£) > ¢ for all £> 1.
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Proof of the lower bound
We are now ready to show that pAF (¢£) > ¢ for all £> 1.

o Let A C Q and P € APy be like on the previous slide. Pick any w € A, We
claim that w appears in a along an arithmetic progression contained in P.
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o Let A C Q and P € APy be like on the previous slide. Pick any w € A, We
claim that w appears in a along an arithmetic progression contained in P.

o Let N be a large integer. We will estimate the count of /-term arithmetic
progressions in P N [N] where w appears in a:

N—-1 ¢-1

C= Z H 1pamy(n+ im)a™ D (n + im).

n,m=01=0
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Proof of the lower bound
We are now ready to show that pAF (¢£) > ¢ for all £> 1.

o Let A C Q and P € APy be like on the previous slide. Pick any w € A, We
claim that w appears in a along an arithmetic progression contained in P.

o Let N be a large integer. We will estimate the count of /-term arithmetic
progressions in P N [N] where w appears in a:

N—-1 ¢-1
C= Z H 1pamy(n+ im)a™ D (n + im).
n,m=01=0
e By generalised von Neumann theorem:

N—-1 ¢-1

C~ Z Hlpﬁ[N](n—&—im)aéfr(i))(n—|—im).

n,m=0 :=0

o Recall that aéé‘;(i)) has constant value on P, say ;) > 0, so

-1
C’zHaw(i)-#{(n,m) :n+imée PN[N]for0<i<{}> N>
i=0
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Height of a substitution

Let a: N — Q be k-automatic, produced by automaton A = (S, so, X, d, 2, 7).
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Let a: N — Q be k-automatic, produced by automaton A = (5, so, Xk, 9,2, 7).

Simplifying assumption: A is primitive (strongly connected, ged of loop lengths = 1).
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Height of a substitution
Let a: N — Q be k-automatic, produced by automaton A = (5, so, Xk, 9,2, 7).

Simplifying assumption: A is primitive (strongly connected, ged of loop lengths = 1).

Recall: k-automatic < coding of a k-uniform substitution.
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Height of a substitution

Let a: N — Q be k-automatic, produced by automaton A = (5, so, Xk, 9,2, 7).
Simplifying assumption: A is primitive (strongly connected, ged of loop lengths = 1).
Recall: k-automatic < coding of a k-uniform substitution.

Suppose n: Q — QF be a substitution with n(a) = a, i.e.:

(a(n))n=o = a(0),a(l),...,a(k —1),...a(nk),a(nk +1),...,a((n + 1)k — 1),...

=n(a(0)) =n(a(n))
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Height of a substitution

Let a: N — Q be k-automatic, produced by automaton A = (5, so, Xk, 9,2, 7).
Simplifying assumption: A is primitive (strongly connected, ged of loop lengths = 1).

Recall: k-automatic < coding of a k-uniform substitution.
Suppose n: Q — QF be a substitution with n(a) = a, i.e.:

(a(n))n=o = a(0),a(l),...,a(k —1),...a(nk),a(nk +1),...,a((n + 1)k — 1),...

=n(a(0)) =n(a(n))

Definition

The height h of 7 is given by

h=max{m : m Lk, m|d for all d > 0 such that a(d) = a(0)}
=max{m : m L k, m|d for all d > 0 such that a(n + d) = a(n)}
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Height of a substitution

Let a: N — Q be k-automatic, produced by automaton A = (5, so, Xk, 9,2, 7).
Simplifying assumption: A is primitive (strongly connected, ged of loop lengths = 1).

Recall: k-automatic < coding of a k-uniform substitution.
Suppose n: Q — QF be a substitution with n(a) = a, i.e.:

(a(n))n=o = a(0),a(l),...,a(k —1),...a(nk),a(nk +1),...,a((n + 1)k — 1),...

=n(a(0)) =n(a(n))

Definition

The height h of 7 is given by

h=max{m : m Lk, m|d for all d > 0 such that a(d) = a(0)}
=max{m : m L k, m|d for all d > 0 such that a(n + d) = a(n)}

Example: The Thue-Morse sequence has height 1.
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Height and periodicity

Let C; :={a(n) : n =j mod h}.
©® For each i, j either C; = C; or C; N C; = 0.
® The sequence Cp,C1,Cs, ... is periodic.
® The height is the largest integer i L k such that the above hold.
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Height and periodicity

Let C; :={a(n) : n =j mod h}.
©® For each i, j either C; = C; or C; N C; = 0.
® The sequence Cp,C1,Cs, ... is periodic.
® The height is the largest integer i L k such that the above hold.

The sequence Co, C1,Co, ... contains all information about periodic behaviour of
a(n) that we would need in the argument.
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Height and periodicity

Let C; :={a(n) : n =j mod h}.
©® For each i, j either C; = C; or C; N C; = 0.
® The sequence Cp,C1,Cs, ... is periodic.
® The height is the largest integer i L k such that the above hold.

The sequence Co, C1,Co, ... contains all information about periodic behaviour of
a(n) that we would need in the argument.

Simplifying assumption: h = 1 (no periodic component).
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Group extensions of automata

o Let ¢ = min {#4(S,w) : w € i}, where 6(S,w) = {0(s,w) : s € S}.

o Let M = {Mo, My,...,Mp_1} ={6(S,w) : we g, #5(S,w) =c}.
Without loss of generality: so € Mo.
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o Let i(n) € {0,1,...,p — 1} be such that §(Mo, (n)r) = M;n)-
Fact: For each n € N we have s(n) € M.

Proposition
The effective alphabet size is alternatively given by:

ro = max #7(M;).

0<i<p
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Group extensions of automata

o Let ¢ = min {#4(S,w) : w € i}, where 6(S,w) = {0(s,w) : s € S}.

o Let M = {Mo,My,...,Mp_1} ={6(S,w) : we XL, #6(S,w) = c}.
Without loss of generality: so € Mo.

Fact: For each M € M and u € X} we have §(M,u) € M.

e Let s(n) = d(so, (n)r) € S where n € N.

o Let i(n) € {0,1,...,p — 1} be such that §(Mo, (n)r) = M;n)-
Fact: For each n € N we have s(n) € M.

Proposition
The effective alphabet size is alternatively given by:

ro = max #7(M;).

0<i<p

Sketch of proof:

o 7o < max; #7(M;): If P € APy, then there are Q € APy, Q C P and M € M,
such that {a(n) : n€ Q} C {r(s) : s € M}.

e 1y > max; #7(M;): Given i, we can find P € APy, with i(n) =i for all n € P.
Remains to show: for each Q € APy, Q C P we have {s(n) : n € Q} = M.
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Proof of upper bound

We are now ready to show that p;* (£) < 7% exp(o(£)) for all £> 1.
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Proof of upper bound
We are now ready to show that p;* (£) < 7% exp(o(£)) for all £> 1.

e Since s(n) € M,(,) and #7(M;) < o, we have

pa’ (0) <o x pir(0). (1)
e Since i: N — {0,1,...,p — 1} is k-automatic and synchronising, we have
pi¥ (£) = exp(o(£)) (2)

by the Deshouillers, Drmota, Miillner, Shubin & Spiegelhofer.
o Combining (1) and (2) yields the claim.

Remarks:
o Recall that we have made simplifying assumptions. — more work
@ Same result for polynomial subword complexity.

o The factor exp(o(£)) can be improved to exp(O(£' %)) with x > 0.
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THANK YOU FOR YOUR ATTENTION!




Bonus: Quantitative Cobham’s theorem

Theorem (Cobham (1969))
Let k, £ > 2 and let a: N — Q be a sequence that is both k- and ¢-automatic. Then
e k and ¢ are multiplicatively dependent, i.e., log,(¢) € Q; or

e a is eventually periodic (and hence automatic in every base).

23 /23



Bonus: Quantitative Cobham’s theorem
Theorem (Cobham (1969))

Let k, £ > 2 and let a: N — Q be a sequence that is both k- and ¢-automatic. Then
e k and ¢ are multiplicatively dependent, i.e., log,(¢) € Q; or

e a is eventually periodic (and hence automatic in every base).

Question: How similar can a k-automatic sequence be to an ¢-automatic sequence?
e We already know that they cannot be equal, or even asymptotically equal.
o We need to account for possible correlations with periodic sequences.

23 /23



Bonus: Quantitative Cobham’s theorem

Theorem (Cobham (1969))
Let k, £ > 2 and let a: N — Q be a sequence that is both k- and ¢-automatic. Then
e k and ¢ are multiplicatively dependent, i.e., log,(¢) € Q; or

e a is eventually periodic (and hence automatic in every base).

Question: How similar can a k-automatic sequence be to an ¢-automatic sequence?
e We already know that they cannot be equal, or even asymptotically equal.
o We need to account for possible correlations with periodic sequences.

Theorem (Adamczewski, K., Miillner)

Let k, £ > 2 be multiplicatively independent integers and let a,b: N — C be k- and
{-automatic, respectively. Then

S am)b(n) = 37 auer(n)bat(n) + O(N'7°).

n<N n<N
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Bonus: Quantitative Cobham’s theorem

Theorem (Cobham (1969))

Let k, £ > 2 and let a: N — Q be a sequence that is both k- and ¢-automatic. Then
e k and ¢ are multiplicatively dependent, i.e., log,(¢) € Q; or

e a is eventually periodic (and hence automatic in every base).

Question: How similar can a k-automatic sequence be to an ¢-automatic sequence?
e We already know that they cannot be equal, or even asymptotically equal.
o We need to account for possible correlations with periodic sequences.

Theorem (Adamczewski, K., Miillner)

Let k, £ > 2 be multiplicatively independent integers and let a,b: N — C be k- and
{-automatic, respectively. Then

S am)b(n) = 37 auer(n)bat(n) + O(N'7°).

n<N n<N

Corollary: Each Gowers uniform k-automatic sequence a is a orthogonal to each
{-automatic sequence b,

> a(n)b(n) = O(N'~).

n<N
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