ARITHMETICAL SUBWORD COMPLEXITY OF AUTOMATIC SEQUENCES

Jakub Konieczny
Department of Computer Science
University of Oxford

One World Combinatorics on Words Seminar 23 Jan 2024

How complex is a sequence?

Setup: Let $a: \mathbb{N} \rightarrow \Omega$ be a sequence.
$\Omega=$ finite alphabet, e.g. $\Omega=\{0,1\}$.

General question: How complex is a ?
\longrightarrow hopelessly vague...

- Computational complexity of finding $a(n)$.
- Subword complexity $=$ number of length- ℓ subwords that appear in a :

$$
p_{a}(\ell)=\#\left\{w \in \Omega^{\ell}:(\exists n) a(n+i)=w(i) \text { for } 0 \leq i<\ell\right\}
$$

- Arithmetical subword complexity complexity $=$ number of length- ℓ subwords that appear in a along an arithmetic progression:

$$
p_{a}^{\mathrm{AP}}(\ell)=\#\left\{w \in \Omega^{\ell}:(\exists n, m) a(n+i m)=w(i) \text { for } 0 \leq i<\ell\right\} .
$$

- polynomial subword complexity, d-complexity, (maximal) pattern complexity, asymptotic subword complexity, etc., etc... \longrightarrow we will not discuss those

How complex is a sequence?

Setup: Let $a: \mathbb{N} \rightarrow \Omega$ be a sequence.
$\Omega=$ finite alphabet, e.g. $\Omega=\{0,1\}$.

General question: How complex is a ?
\longrightarrow hopelessly vague...

- Computational complexity of finding $a(n)$.
- Subword complexity $=$ number of length- ℓ subwords that appear in a :

$$
p_{a}(\ell)=\#\left\{w \in \Omega^{\ell}:(\exists n) a(n+i)=w(i) \text { for } 0 \leq i<\ell\right\}
$$

- Arithmetical subword complexity complexity $=$ number of length ℓ subwords that appear in a along an arithmetic progression:

$$
p_{a}^{\mathrm{AP}}(\ell)=\#\left\{w \in \Omega^{\ell}:(\exists n, m) a(n+i m)=w(i) \text { for } 0 \leq i<\ell\right\}
$$

- polynomial subword complexity, d-complexity, (maximal) pattern complexity, asymptotic subword complexity, etc., etc... \longrightarrow we will not discuss those

How complex is a sequence?

Setup: Let $a: \mathbb{N} \rightarrow \Omega$ be a sequence.
$\Omega=$ finite alphabet, e.g. $\Omega=\{0,1\}$.

General question: How complex is a ?
\longrightarrow hopelessly vague...

- Computational complexity of finding $a(n)$.
- Subword complexity $=$ number of length- ℓ subwords that appear in a :

$$
p_{a}(\ell)=\#\left\{w \in \Omega^{\ell}:(\exists n) a(n+i)=w(i) \text { for } 0 \leq i<\ell\right\} .
$$

- Arithmetical subword complexity complexity $=$ number of length ℓ subwords that appear in a along an arithmetic progression:

- polynomial subword complexity, d-complexity, (maximal) pattern complexity, asymptotic subword complexity, etc., etc... \longrightarrow we will not discuss those

How complex is a sequence?
Setup: Let $a: \mathbb{N} \rightarrow \Omega$ be a sequence.
$\Omega=$ finite alphabet, e.g. $\Omega=\{0,1\}$.
General question: How complex is a ?
\longrightarrow hopelessly vague...

- Computational complexity of finding $a(n)$.
- Subword complexity $=$ number of length- ℓ subwords that appear in a :

$$
p_{a}(\ell)=\#\left\{w \in \Omega^{\ell}:(\exists n) a(n+i)=w(i) \text { for } 0 \leq i<\ell\right\}
$$

- Arithmetical subword complexity complexity $=$ number of length ℓ subwords that appear in a along an arithmetic progression:

- polynomial subword complexity, d-complexity, (maximal) pattern complexity, asymptotic subword complexity, etc., etc... $\quad \rightarrow$ we will not discuss those

How complex is a sequence?

Setup: Let $a: \mathbb{N} \rightarrow \Omega$ be a sequence.
$\Omega=$ finite alphabet, e.g. $\Omega=\{0,1\}$.
General question: How complex is a ?

- Computational complexity of finding $a(n)$.
- Subword complexity $=$ number of length- ℓ subwords that appear in a :

$$
p_{a}(\ell)=\#\left\{w \in \Omega^{\ell}:(\exists n) a(n+i)=w(i) \text { for } 0 \leq i<\ell\right\}
$$

- Arithmetical subword complexity complexity $=$ number of length ℓ subwords that appear in a along an arithmetic progression:

$$
p_{a}^{\mathrm{AP}}(\ell)=\#\left\{w \in \Omega^{\ell}:(\exists n, m) a(n+i m)=w(i) \text { for } 0 \leq i<\ell\right\}
$$

- polynomial subword complexity, d-complexity, (maximal) pattern complexity, asymptotic subword complexity, etc., etc... \longrightarrow we will not discuss those

How complex is a sequence?

Setup: Let $a: \mathbb{N} \rightarrow \Omega$ be a sequence.
$\Omega=$ finite alphabet, e.g. $\Omega=\{0,1\}$.
General question: How complex is a ?

- Computational complexity of finding $a(n)$.
- Subword complexity $=$ number of length- ℓ subwords that appear in a :

$$
p_{a}(\ell)=\#\left\{w \in \Omega^{\ell}:(\exists n) a(n+i)=w(i) \text { for } 0 \leq i<\ell\right\}
$$

- Arithmetical subword complexity complexity $=$ number of length ℓ subwords that appear in a along an arithmetic progression:

$$
p_{a}^{\mathrm{AP}}(\ell)=\#\left\{w \in \Omega^{\ell}:(\exists n, m) a(n+i m)=w(i) \text { for } 0 \leq i<\ell\right\}
$$

- polynomial subword complexity, d-complexity, (maximal) pattern complexity, asymptotic subword complexity, etc., etc.. ..
\longrightarrow we will not discuss those

Subword complexity
Trivial bound: If $a: \mathbb{N} \rightarrow \Omega$ then $1 \leq p_{a}(\ell) \leq \# \Omega^{\ell}$.

```
Fact (bounded complexity \(\Leftrightarrow\) eventual periodicity)
If \(a\) is eventually periodic then \(p_{a}\) is bounded. Conversely, if \(p_{a}(\ell) \leq \ell\) for at least one \(\ell\) then \(a\) is eventually periodic.
```

```
Fact (minimal complexity }\Leftrightarrow\mathrm{ Sturmian)
If a:\mathbb{N}->{0,1} and pa}(\ell)=\ell+1\mathrm{ for all }\ell\mathrm{ then }a\mathrm{ is a Sturmian sequence:
a(n)=\lfloor\alpha(n+1)+\beta\rfloor-\lfloor\alphan+\beta\rfloor}\quadn\in\mathbb{N}
```

where $\alpha \in[0,1) \backslash \mathbb{Q}, \beta \in[0,1)$. Conversely, if a is Sturmian then $p_{a}(\ell)=\ell+1$.

Fact (linear complexity for automatic sequences)
\square

Subword complexity
Trivial bound: If $a: \mathbb{N} \rightarrow \Omega$ then $1 \leq p_{a}(\ell) \leq \# \Omega^{\ell}$.

Fact (bounded complexity \Leftrightarrow eventual periodicity)
If a is eventually periodic then p_{a} is bounded. Conversely, if $p_{a}(\ell) \leq \ell$ for at least one ℓ then a is eventually periodic.

Subword complexity
Trivial bound: If $a: \mathbb{N} \rightarrow \Omega$ then $1 \leq p_{a}(\ell) \leq \# \Omega^{\ell}$.

Fact (bounded complexity \Leftrightarrow eventual periodicity)

If a is eventually periodic then p_{a} is bounded. Conversely, if $p_{a}(\ell) \leq \ell$ for at least one ℓ then a is eventually periodic.

Fact (minimal complexity \Leftrightarrow Sturmian)

If $a: \mathbb{N} \rightarrow\{0,1\}$ and $p_{a}(\ell)=\ell+1$ for all ℓ then a is a Sturmian sequence:

$$
a(n)=\lfloor\alpha(n+1)+\beta\rfloor-\lfloor\alpha n+\beta\rfloor \quad n \in \mathbb{N},
$$

where $\alpha \in[0,1) \backslash \mathbb{Q}, \beta \in[0,1)$. Conversely, if a is Sturmian then $p_{a}(\ell)=\ell+1$.

Subword complexity
Trivial bound: If $a: \mathbb{N} \rightarrow \Omega$ then $1 \leq p_{a}(\ell) \leq \# \Omega^{\ell}$.

Fact (bounded complexity \Leftrightarrow eventual periodicity)

If a is eventually periodic then p_{a} is bounded. Conversely, if $p_{a}(\ell) \leq \ell$ for at least one ℓ then a is eventually periodic.

Fact (minimal complexity \Leftrightarrow Sturmian)

If $a: \mathbb{N} \rightarrow\{0,1\}$ and $p_{a}(\ell)=\ell+1$ for all ℓ then a is a Sturmian sequence:

$$
a(n)=\lfloor\alpha(n+1)+\beta\rfloor-\lfloor\alpha n+\beta\rfloor \quad n \in \mathbb{N},
$$

where $\alpha \in[0,1) \backslash \mathbb{Q}, \beta \in[0,1)$. Conversely, if a is Sturmian then $p_{a}(\ell)=\ell+1$.

Fact (linear complexity for automatic sequences)

If a is an automatic sequence then $p_{a}(\ell)=O(\ell)$, i.e., $p_{a}(\ell) \leq C \ell$ for a constant C.

The Thue-Morse(-Prouhet) sequence

$$
+1,-1,-1,+1,-1,+1,+1,-1,-1,+1,+1,-1,+1,-1,-1,+1, \ldots
$$

The Thue-Morse sequence (discovered by Prouhet) $t: \mathbb{N} \rightarrow\{+1,-1\}$ is the paradigmatic example of an automatic sequence. It can be defined in several ways:
(1) Explicit formula: $t(n)= \begin{cases}+1 & \text { if } n \text { is evil (i.e., sum of binary digits is even) } \\ -1 & \text { if } n \text { is odrous (i.e., sum of binary digits is odd). }\end{cases}$
(2) Automatic sequence:

(3) Recurrence: $t(0)=+1, \quad t(2 n)=t(n), \quad t(2 n+1)=-t(n)$.
a Fixed point of a substitution: $+1 \mapsto+1,-1 ; \quad-1 \mapsto-1,+1$.
(8) Strongly 2-multiplicative sequence: $t(1)=-1$, and if $m<2^{\alpha}$ then

$$
t\left(2^{\alpha} n+m\right)=t(n) t(m)
$$

The Thue-Morse(-Prouhet) sequence

$$
+1,-1,-1,+1,-1,+1,+1,-1,-1,+1,+1,-1,+1,-1,-1,+1, \ldots
$$

The Thue-Morse sequence (discovered by Prouhet) $t: \mathbb{N} \rightarrow\{+1,-1\}$ is the paradigmatic example of an automatic sequence. It can be defined in several ways:
(1) Explicit formula: $t(n)=\{$
if n is evil (i.e., sum of binary digits is even), if n is odious (i.e., sum of binary digits is odd).
(2) Automatic sequence:

(3) Recurrence: $t(0)=+1, \quad t(2 n)=t(n), \quad t(2 n+1)=-t(n)$.
a Fixed point of a substitution: $+1 \mapsto+1,-1 ; \quad-1 \mapsto-1,+1$
(8) Strongly 2-multiplicative sequence: $t(1)=-1$, and if $m<2^{\alpha}$ then

$$
t\left(2^{\alpha} n+m\right)=t(n) t(m)
$$

The Thue-Morse(-Prouhet) sequence

$$
+1,-1,-1,+1,-1,+1,+1,-1,-1,+1,+1,-1,+1,-1,-1,+1, \ldots
$$

The Thue-Morse sequence (discovered by Prouhet) $t: \mathbb{N} \rightarrow\{+1,-1\}$ is the paradigmatic example of an automatic sequence. It can be defined in several ways:
(1) Explicit formula: $t(n)= \begin{cases}+1 & \text { if } n \text { is evil (i.e., sum of binary digits is even), } \\ -1 & \text { if } n \text { is odious (i.e., sum of binary digits is odd). }\end{cases}$
(2) Automatic sequence:

(3) Recurrence: $t(0)=+1, \quad t(2 n)=t(n), \quad t(2 n+1)=-t(n)$.
(4) Fixed point of a substitution:
(8) Strongly 2-multiplicative sequence: $t(1)=-1$, and if $m<2^{\alpha}$ then
$t\left(2^{\alpha} n+m\right)=t(n) t(m)$.

The Thue-Morse(-Prouhet) sequence

$$
+1,-1,-1,+1,-1,+1,+1,-1,-1,+1,+1,-1,+1,-1,-1,+1, \ldots
$$

The Thue-Morse sequence (discovered by Prouhet) $t: \mathbb{N} \rightarrow\{+1,-1\}$ is the paradigmatic example of an automatic sequence. It can be defined in several ways:
(1) Explicit formula: $t(n)= \begin{cases}+1 & \text { if } n \text { is evil (i.e., sum of binary digits is even), } \\ -1 & \text { if } n \text { is odious (i.e., sum of binary digits is odd). }\end{cases}$
(2) Automatic sequence:

(3) Recurrence: $t(0)=+1, \quad t(2 n)=t(n), \quad t(2 n+1)=-t(n)$.
(4) Fixed point of a substitution:
(3) Strongly 2-multinlicative sequence: $t(1)=-1$, and if $m<2^{\alpha}$ then
$t\left(2^{\alpha} n+m\right)=t(n) t(m)$.

The Thue-Morse(-Prouhet) sequence

$$
+1,-1,-1,+1,-1,+1,+1,-1,-1,+1,+1,-1,+1,-1,-1,+1, \ldots
$$

The Thue-Morse sequence (discovered by Prouhet) $t: \mathbb{N} \rightarrow\{+1,-1\}$ is the paradigmatic example of an automatic sequence. It can be defined in several ways:
(1) Explicit formula: $t(n)= \begin{cases}+1 & \text { if } n \text { is evil (i.e., sum of binary digits is even), } \\ -1 & \text { if } n \text { is odious (i.e., sum of binary digits is odd). }\end{cases}$
(2) Automatic sequence:

(3) Recurrence: $t(0)=+1, \quad t(2 n)=t(n), \quad t(2 n+1)=-t(n)$.
(1) Fixed point of a substitution:
(2) Strongly 2-multiplicative sequence: $t(1)=-1$, and if $m<2^{\alpha}$ then
$t\left(2^{\alpha} n+m\right)=t(n) t(m)$

The Thue-Morse(-Prouhet) sequence

$$
+1,-1,-1,+1,-1,+1,+1,-1,-1,+1,+1,-1,+1,-1,-1,+1, \ldots
$$

The Thue-Morse sequence (discovered by Prouhet) $t: \mathbb{N} \rightarrow\{+1,-1\}$ is the paradigmatic example of an automatic sequence. It can be defined in several ways:
(1) Explicit formula: $t(n)= \begin{cases}+1 & \text { if } n \text { is evil (i.e., sum of binary digits is even), } \\ -1 & \text { if } n \text { is odious (i.e., sum of binary digits is odd). }\end{cases}$
(2) Automatic sequence:

(3) Recurrence: $t(0)=+1, \quad t(2 n)=t(n), \quad t(2 n+1)=-t(n)$.
(4) Fixed point of a substitution: $+1 \mapsto+1,-1 ; \quad-1 \mapsto-1,+1$.
(2) Strongly 2 -multiplicative sequence: $t(1)=-1$, and if $m<2^{\alpha}$ then
$t\left(2^{\alpha} n+m\right)=t(n) t(m)$

The Thue-Morse(-Prouhet) sequence

$$
+1,-1,-1,+1,-1,+1,+1,-1,-1,+1,+1,-1,+1,-1,-1,+1, \ldots
$$

The Thue-Morse sequence (discovered by Prouhet) $t: \mathbb{N} \rightarrow\{+1,-1\}$ is the paradigmatic example of an automatic sequence. It can be defined in several ways:
(1) Explicit formula: $t(n)= \begin{cases}+1 & \text { if } n \text { is evil (i.e., sum of binary digits is even), } \\ -1 & \text { if } n \text { is odious (i.e., sum of binary digits is odd). }\end{cases}$
(2) Automatic sequence:

(3) Recurrence: $t(0)=+1, \quad t(2 n)=t(n), \quad t(2 n+1)=-t(n)$.
(4) Fixed point of a substitution: $+1 \mapsto+1,-1 ; \quad-1 \mapsto-1,+1$.
(5) Strongly 2-multiplicative sequence: $t(1)=-1$, and if $m<2^{\alpha}$ then

$$
t\left(2^{\alpha} n+m\right)=t(n) t(m)
$$

Automatic sequences via finite automata
Some notation: We let k denote the base in which we work. \longrightarrow e.g. $k=10$ or $k=2$

- $\Sigma_{k}=\{0,1, \ldots, k-1\}$, the set of digits in base k;
- Σ_{k}^{*} is the set of words over Σ_{k}, monoid with concatenation;
- for $n \in \mathbb{N},(n)_{k} \in \Sigma_{k}^{*}$ is the base- k expansion of n;
\longrightarrow no leading zeros
- for $w \in \Sigma_{k}^{*},[w]_{k} \in \mathbb{N}$ is the integer encoded by w. finite k-automaton consists of:
- a finite set of states S with a distinguished initial state s_{0};
- a transition function $\delta: S \times \Sigma_{k} \rightarrow S$;
- an output function $\tau: S \rightarrow \Omega$.

Computing the sequence:

- Fxtend δ to a man $S \times \sum_{*}^{*}$ with $\delta(s, u v)=\delta(\delta(s, u), v)$ or $\delta(\delta(s, v), u)$;
- The sequence computed by the automaton is given by $a(n)=\tau\left(\delta\left(s_{0},(n)_{k}\right)\right)$.
- The automaton above computes the Rudin-Shapiro sequence $(-1)^{\#}$ of 11 in $(n)_{2}$. Intuition: Automatic \Longleftrightarrow Computable by a finite device.

Automatic sequences via finite automata
Some notation: We let k denote the base in which we work. \longrightarrow e.g. $k=10$ or $k=2$

- $\Sigma_{k}=\{0,1, \ldots, k-1\}$, the set of digits in base k;
- Σ_{k}^{*} is the set of words over Σ_{k}, monoid with concatenation;
- for $n \in \mathbb{N},(n)_{k} \in \Sigma_{k}^{*}$ is the base- k expansion of n;
\longrightarrow no leading zeros
- for $w \in \Sigma_{k}^{*},[w]_{k} \in \mathbb{N}$ is the integer encoded by w.

A finite k-automaton consists of:

- a finite set of states S with a distinguished initial state s_{0};
- a transition function $\delta: S \times \Sigma_{k} \rightarrow S$;
- an output function $\tau: S \rightarrow \Omega$.

Computing the sequence:

- Extend δ to a map
- The sequence computed by the automaton is given by $a(n)=\tau\left(\delta\left(s_{0},(n)_{k}\right)\right)$.
- The automaton above computes the Rudin-Shapiro sequence $(-1)^{\#}$ of 11 in $(n)_{2}$. Intuition: Automatic \Longleftrightarrow Computable by a finite device.

Automatic sequences via finite automata

Some notation: We let k denote the base in which we work. $\quad \longrightarrow$ e.g. $k=10$ or $k=2$

- $\Sigma_{k}=\{0,1, \ldots, k-1\}$, the set of digits in base k;
- Σ_{k}^{*} is the set of words over Σ_{k}, monoid with concatenation;
- for $n \in \mathbb{N},(n)_{k} \in \Sigma_{k}^{*}$ is the base- k expansion of n;
\longrightarrow no leading zeros
- for $w \in \Sigma_{k}^{*},[w]_{k} \in \mathbb{N}$ is the integer encoded by w.

A finite k-automaton consists of:

- a finite set of states S with a distinguished initial state s_{0};
- a transition function $\delta: S \times \Sigma_{k} \rightarrow S$;

Computing the sequence:

- Fxtend δ to a man
- The sequence computed by the automaton is given by $a(n)=\tau\left(\delta\left(s_{0},(n)_{k}\right)\right)$.
- The automaton above computes the Rudin-Shapiro sequence $(-1)^{\#}$ of 11 in $(n)_{2}$.

Automatic sequences via finite automata

Some notation: We let k denote the base in which we work. $\quad \longrightarrow$ e.g. $k=10$ or $k=2$

- $\Sigma_{k}=\{0,1, \ldots, k-1\}$, the set of digits in base k;
- Σ_{k}^{*} is the set of words over Σ_{k}, monoid with concatenation;
- for $n \in \mathbb{N},(n)_{k} \in \Sigma_{k}^{*}$ is the base- k expansion of n;
\longrightarrow no leading zeros
- for $w \in \Sigma_{k}^{*},[w]_{k} \in \mathbb{N}$ is the integer encoded by w.

A finite k-automaton consists of:

- a finite set of states S with a distinguished initial state s_{0};
- a transition function $\delta: S \times \Sigma_{k} \rightarrow S$;

Computing the sequence:

- Extend δ to a map
- The sequence computed by the automaton is given by $a(n)=\tau\left(\delta\left(s_{0},(n)_{k}\right)\right)$
- The automaton above computes the Rudin-Shapiro sequence $(-1)^{\#}$ of 11 in $(n)_{2}$.

Automatic sequences via finite automata

Some notation: We let k denote the base in which we work. $\quad \longrightarrow$ e.g. $k=10$ or $k=2$

- $\Sigma_{k}=\{0,1, \ldots, k-1\}$, the set of digits in base k;
- Σ_{k}^{*} is the set of words over Σ_{k}, monoid with concatenation;
- for $n \in \mathbb{N},(n)_{k} \in \Sigma_{k}^{*}$ is the base- k expansion of n;
\longrightarrow no leading zeros
- for $w \in \Sigma_{k}^{*},[w]_{k} \in \mathbb{N}$ is the integer encoded by w.

A finite k-automaton consists of:

- a finite set of states S with a distinguished initial state s_{0};
- a transition function $\delta: S \times \Sigma_{k} \rightarrow S$;
- an output function $\tau: S \rightarrow \Omega$.

Computing the sequence:

- Extend δ to a map $S \times \Sigma_{k}^{*}$ with $\delta(s, u v)=\delta(\delta(s, u), v)$ or $\delta(\delta(s, v), u)$;
- The sequence computed by the automaton is given by $a(n)=\tau\left(\delta\left(s_{0},(n) k\right)\right)$
- The automaton above computes the Rudin-Shapiro sequence $(-1)^{\#}$ of 11 in $(n)_{2}$.

Intuition: Automatic \Longleftrightarrow Computable by a finite device.

Automatic sequences via finite automata

Some notation: We let k denote the base in which we work. $\quad \longrightarrow$ e.g. $k=10$ or $k=2$

- $\Sigma_{k}=\{0,1, \ldots, k-1\}$, the set of digits in base k;
- Σ_{k}^{*} is the set of words over Σ_{k}, monoid with concatenation;
- for $n \in \mathbb{N},(n)_{k} \in \Sigma_{k}^{*}$ is the base- k expansion of n;
- for $w \in \Sigma_{k}^{*},[w]_{k} \in \mathbb{N}$ is the integer encoded by w.

A finite k-automaton consists of:

- a finite set of states S with a distinguished initial state s_{0};
- a transition function $\delta: S \times \Sigma_{k} \rightarrow S$;
- an output function $\tau: S \rightarrow \Omega$.

Computing the sequence:

- Extend δ to a map $S \times \Sigma_{k}^{*}$ with $\delta(s, u v)=\delta(\delta(s, u), v)$ or $\delta(\delta(s, v), u)$;
- The sequence computed by the automaton is given by $a(n)=\tau\left(\delta\left(s_{0},(n)_{k}\right)\right)$.
- The automaton above computes the Rudin-Shapiro sequence $(-1)^{\#}$ of 11 in $(n)_{2}$.

Automatic sequences via finite automata

Some notation: We let k denote the base in which we work. $\quad \longrightarrow$ e.g. $k=10$ or $k=2$

- $\Sigma_{k}=\{0,1, \ldots, k-1\}$, the set of digits in base k;
- Σ_{k}^{*} is the set of words over Σ_{k}, monoid with concatenation;
- for $n \in \mathbb{N},(n)_{k} \in \Sigma_{k}^{*}$ is the base- k expansion of n;
- for $w \in \Sigma_{k}^{*},[w]_{k} \in \mathbb{N}$ is the integer encoded by w.

A finite k-automaton consists of:

- a finite set of states S with a distinguished initial state s_{0};
- a transition function $\delta: S \times \Sigma_{k} \rightarrow S$;
- an output function $\tau: S \rightarrow \Omega$.

Computing the sequence:

- Extend δ to a map $S \times \Sigma_{k}^{*}$ with $\delta(s, u v)=\delta(\delta(s, u), v)$ or $\delta(\delta(s, v), u)$;
- The sequence computed by the automaton is given by $a(n)=\tau\left(\delta\left(s_{0},(n)_{k}\right)\right)$.
- The automaton above computes the Rudin-Shapiro sequence $(-1)^{\#}$ of 11 in $(n)_{2}$.

Intuition: Automatic \Longleftrightarrow Computable by a finite device.

Subword complexity of automatic sequences

Proposition

The subword complexity of the Thue-Morse sequence is given by:

$$
p_{t}(\ell)= \begin{cases}3 \cdot 2^{k}+4(r-1) & \text { if } \ell=2^{k}+r \text { with } 1 \leq r \leq 2^{k-1} \\ 4 \cdot 2^{k}+2(r-1) & \text { if } \ell=2^{k}+r \text { with } 2^{k-1}<r \leq 2^{k}\end{cases}
$$

Sketch of proof:

- Pick any $\alpha, n \in \mathbb{N}$. For $0 \leq i<k^{\alpha}, a\left(k^{\alpha} n+i\right)$ is determined by $\delta\left(s_{0},(n)_{2}\right)$.
- If $w \in\{0,1\}^{k^{\alpha}}$ then w appears in a between $k^{\alpha} n+r$ and $k^{\alpha}(n+1)+r$ for some $n, r \in \mathbb{N}, r<k^{\alpha}$. Thus, w is determined by $\delta\left(s_{0},(n)_{k}\right), \delta\left(s_{0},(n+1)_{k}\right)$ and r, and

Subword complexity of automatic sequences

Proposition

The subword complexity of the Thue-Morse sequence is given by:

$$
p_{t}(\ell)= \begin{cases}3 \cdot 2^{k}+4(r-1) & \text { if } \ell=2^{k}+r \text { with } 1 \leq r \leq 2^{k-1}, \\ 4 \cdot 2^{k}+2(r-1) & \text { if } \ell=2^{k}+r \text { with } 2^{k-1}<r \leq 2^{k} .\end{cases}
$$

Proposition

If a is automatic then $p_{a}(\ell)=O(\ell)$.
Sketch of proof:

- If $w \in\{0,1\}^{k^{\alpha}}$ then w appears in a between $k^{\alpha} n+r$ and $k^{\alpha}(n+1)+r$ for some $n, r \in \mathbb{N}, r<k^{\alpha}$. Thus, w is determined by $\delta\left(s_{0},(n)_{k}\right), \delta\left(s_{0},(n+1)_{k}\right)$ and r, and

Subword complexity of automatic sequences

Proposition

The subword complexity of the Thue-Morse sequence is given by:

$$
p_{t}(\ell)= \begin{cases}3 \cdot 2^{k}+4(r-1) & \text { if } \ell=2^{k}+r \text { with } 1 \leq r \leq 2^{k-1}, \\ 4 \cdot 2^{k}+2(r-1) & \text { if } \ell=2^{k}+r \text { with } 2^{k-1}<r \leq 2^{k} .\end{cases}
$$

Proposition

If a is automatic then $p_{a}(\ell)=O(\ell)$.
Sketch of proof:

- Pick any $\alpha, n \in \mathbb{N}$. For $0 \leq i<k^{\alpha}, a\left(k^{\alpha} n+i\right)$ is determined by $\delta\left(s_{0},(n)_{2}\right)$.
- If $w \in\{0,1\}^{k^{\alpha}}$ then w appears in a between $k^{\alpha} n+r$ and $k^{\alpha}(n+1)+r$ for some $n, r \in \mathbb{N}, r<k^{\alpha}$. Thus, w is determined by $\delta\left(s_{0},(n)_{k}\right), \delta\left(s_{0},(n+1)_{k}\right)$ and r, and

$$
p_{a}\left(k^{\alpha}\right) \leq \# S \times \# S \times k^{\alpha} .
$$

Thue-Morse along subsequences

Intuition: If $(m(n))_{n=0}^{\infty}$ is a sequence that "does not know" about binary expansions then $s(n)=t(m(n))$ looks "random". In particular, we expect that:

- s is normal: for $h_{1}<h_{2}<$
- maximal subword complexity: $p_{s}(\ell)=2^{\ell}$

Theorem (Drmota, Mauduit \& Rivat) The sequence $t\left(n^{2}\right)$ is normal (in particula, it has maximal subword complexity)
\square
The sequence $t\left(\left|n^{c}\right|\right)$ is normal for 1

Fact: The restriction $t(A n+B)$ of the Thue-Morse sequence to a given arithmetic progression is automatic (and hence very non-random).

Hope: The restriction of $t(n)$ to a random arithmetic progression looks random.

Thue-Morse along subsequences

Intuition: If $(m(n))_{n=0}^{\infty}$ is a sequence that "does not know" about binary expansions then $s(n)=t(m(n))$ looks "random". In particular, we expect that:

- $s(n)=+1$ for half of $n: \frac{1}{N} \sum_{n<N} s(n) \rightarrow 0$ as $N \rightarrow \infty$;

- maximal subword complexity: $p_{s}(\ell)=2^{\ell}$.
\square The sequence $t\left(n^{2}\right)$ is normal (in particular, it has maximal subword complexity)

Fact: The restriction $t(A n+B)$ of the Thue-Morse sequence to a given arithmetic progression is automatic (and hence very non-random).
Hope: The restriction of $t(n)$ to a random arithmetic progression looks random.

Thue-Morse along subsequences

Intuition: If $(m(n))_{n=0}^{\infty}$ is a sequence that "does not know" about binary expansions then $s(n)=t(m(n))$ looks "random". In particular, we expect that:

- $s(n)=+1$ for half of $n: \frac{1}{N} \sum_{n<N} s(n) \rightarrow 0$ as $N \rightarrow \infty ;$
- s is normal: for $h_{1}<h_{2}<\cdots<h_{r}, \frac{1}{N} \sum_{n<N} \prod_{i=1}^{r} s\left(n+h_{i}\right) \rightarrow 0$ as $N \rightarrow \infty$;
- maximal subword complexity: $p_{s}(\ell)=2^{\ell}$
\square
The seauence $t\left(n^{2}\right)$ is normal (in particular, it has maximal subword complexity)

Fact: The restriction $t(A n+B)$ of the Thue-Morse sequence to a given arithmetic progression is automatic (and hence very non-random).
Hope: The restriction of $t(n)$ to a random arithmetic progression looks random.

Thue-Morse along subsequences

Intuition: If $(m(n))_{n=0}^{\infty}$ is a sequence that "does not know" about binary expansions then $s(n)=t(m(n))$ looks "random". In particular, we expect that:

- $s(n)=+1$ for half of $n: \frac{1}{N} \sum_{n<N} s(n) \rightarrow 0$ as $N \rightarrow \infty$;
- s is normal: for $h_{1}<h_{2}<\cdots<h_{r}, \frac{1}{N} \sum_{n<N} \prod_{i=1}^{r} s\left(n+h_{i}\right) \rightarrow 0$ as $N \rightarrow \infty$;
- maximal subword complexity: $p_{s}(\ell)=2^{\ell}$.

Thue-Morse along subsequences

Intuition: If $(m(n))_{n=0}^{\infty}$ is a sequence that "does not know" about binary expansions then $s(n)=t(m(n))$ looks "random". In particular, we expect that:

- $s(n)=+1$ for half of $n: \frac{1}{N} \sum_{n<N} s(n) \rightarrow 0$ as $N \rightarrow \infty ;$
- s is normal: for $h_{1}<h_{2}<\cdots<h_{r}, \frac{1}{N} \sum_{n<N} \prod_{i=1}^{r} s\left(n+h_{i}\right) \rightarrow 0$ as $N \rightarrow \infty$;
- maximal subword complexity: $p_{s}(\ell)=2^{\ell}$.

Theorem (Drmota, Mauduit \& Rivat)

The sequence $t\left(n^{2}\right)$ is normal (in particular, it has maximal subword complexity).

$$
\text { Fact: The restriction } t(A n+B) \text { of the Thue-Morse sequence to a given arithmetic }
$$

progression is automatic (and hence very non-random).
Hope: The restriction of $t(n)$ to a random arithmetic progression looks random.

Thue-Morse along subsequences

Intuition: If $(m(n))_{n=0}^{\infty}$ is a sequence that "does not know" about binary expansions then $s(n)=t(m(n))$ looks "random". In particular, we expect that:

- $s(n)=+1$ for half of $n: \frac{1}{N} \sum_{n<N} s(n) \rightarrow 0$ as $N \rightarrow \infty ;$
- s is normal: for $h_{1}<h_{2}<\cdots<h_{r}, \frac{1}{N} \sum_{n<N} \prod_{i=1}^{r} s\left(n+h_{i}\right) \rightarrow 0$ as $N \rightarrow \infty$;
- maximal subword complexity: $p_{s}(\ell)=2^{\ell}$.

Theorem (Drmota, Mauduit \& Rivat)

The sequence $t\left(n^{2}\right)$ is normal (in particular, it has maximal subword complexity).

Theorem (Müllner \& Spiegelhofer)

The sequence $t\left(\left\lfloor n^{c}\right\rfloor\right)$ is normal for $1<c<3 / 2$.
Fact: The restriction $t(A n+B)$ of the Thue-Morse sequence to a given arithmetic
progression is automatic (and hence very non-random).
Hope: The restriction of $t(n)$ to a random arithmetic progression looks random.

Thue-Morse along subsequences

Intuition: If $(m(n))_{n=0}^{\infty}$ is a sequence that "does not know" about binary expansions then $s(n)=t(m(n))$ looks "random". In particular, we expect that:

- $s(n)=+1$ for half of $n: \frac{1}{N} \sum_{n<N} s(n) \rightarrow 0$ as $N \rightarrow \infty ;$
- s is normal: for $h_{1}<h_{2}<\cdots<h_{r}, \frac{1}{N} \sum_{n<N} \prod_{i=1}^{r} s\left(n+h_{i}\right) \rightarrow 0$ as $N \rightarrow \infty$;
- maximal subword complexity: $p_{s}(\ell)=2^{\ell}$.

Theorem (Drmota, Mauduit \& Rivat)

The sequence $t\left(n^{2}\right)$ is normal (in particular, it has maximal subword complexity).

Theorem (Müllner \& Spiegelhofer)

The sequence $t\left(\left\lfloor n^{c}\right\rfloor\right)$ is normal for $1<c<3 / 2$.
Fact: The restriction $t(A n+B)$ of the Thue-Morse sequence to a given arithmetic progression is automatic (and hence very non-random).

Thue-Morse along subsequences

Intuition: If $(m(n))_{n=0}^{\infty}$ is a sequence that "does not know" about binary expansions then $s(n)=t(m(n))$ looks "random". In particular, we expect that:

- $s(n)=+1$ for half of $n: \frac{1}{N} \sum_{n<N} s(n) \rightarrow 0$ as $N \rightarrow \infty ;$
- s is normal: for $h_{1}<h_{2}<\cdots<h_{r}, \frac{1}{N} \sum_{n<N} \prod_{i=1}^{r} s\left(n+h_{i}\right) \rightarrow 0$ as $N \rightarrow \infty$;
- maximal subword complexity: $p_{s}(\ell)=2^{\ell}$.

Theorem (Drmota, Mauduit \& Rivat)

The sequence $t\left(n^{2}\right)$ is normal (in particular, it has maximal subword complexity).

Theorem (Müllner \& Spiegelhofer)

The sequence $t\left(\left\lfloor n^{c}\right\rfloor\right)$ is normal for $1<c<3 / 2$.

Fact: The restriction $t(A n+B)$ of the Thue-Morse sequence to a given arithmetic progression is automatic (and hence very non-random).
Hope: The restriction of $t(n)$ to a random arithmetic progression looks random.

Higher order Fourier analysis: first glance

Definition (Gowers norm)

Fix $d \geq 2$. Let $f:[N]:=\{0,1, \ldots, N-1\} \rightarrow \mathbb{C}$. Then $\|f\|_{U^{d}[N]} \geq 0$ is defined by:

$$
\|f\|_{U^{d}[N]}^{2^{d}}=\underset{\mathbf{n}}{\mathbb{E}} \prod_{\omega \in\{0,1\}^{d}} C^{|\omega|} f\left(n_{0}+\omega_{1} n_{1}+\ldots \omega_{d} n_{d}\right),
$$

where the average is taken over all parallelepipeds in [N], i.e., over all $\mathbf{n}=\left(n_{0}, \ldots, n_{d}\right) \in \mathbb{Z}^{d+1}$ such that $n_{0}+\omega_{1} n_{1}+\ldots \omega_{d} n_{d} \in[N]$ for all $\omega \in\{0,1\}^{d}$.

Higher order Fourier analysis: first glance

Definition (Gowers norm)

Fix $d \geq 2$. Let $f:[N]:=\{0,1, \ldots, N-1\} \rightarrow \mathbb{C}$. Then $\|f\|_{U^{d}[N]} \geq 0$ is defined by:

$$
\|f\|_{U^{d}[N]}^{2^{d}}=\underset{\mathbf{n}}{\mathbb{E}} \prod_{\omega \in\{0,1\}^{d}} C^{|\omega|} f\left(n_{0}+\omega_{1} n_{1}+\ldots \omega_{d} n_{d}\right),
$$

where the average is taken over all parallelepipeds in [N], i.e., over all $\mathbf{n}=\left(n_{0}, \ldots, n_{d}\right) \in \mathbb{Z}^{d+1}$ such that $n_{0}+\omega_{1} n_{1}+\ldots \omega_{d} n_{d} \in[N]$ for all $\omega \in\{0,1\}^{d}$.

Theorem (Generalised von Neumann Theorem)

Fix $d \geq 2$ and let $f_{0}, f_{1}, \ldots, f_{d}:[N] \rightarrow \mathbb{C}$ be 1 -bounded. Then

$$
\left|\underset{n, m}{\mathbb{E}} f_{0}(n) f_{1}(n+m) f_{2}(n+2 m) \ldots f_{d}(n+d m)\right| \ll \min _{0 \leq i \leq d}\left\|f_{i}\right\|_{U^{d}[N]}
$$

Higher order Fourier analysis and arithmetical subword complexity
Corollary 1: If $f:[N] \rightarrow\{-1,+1\}$ and $\|f\|_{U^{d}[N]} \leq \varepsilon$ then f looks random along random $(d+1)$-term APs in $[N]$, meaning that for $w \in\{-1,+1\}^{d+1}$ we have:

$$
\frac{\#\{(n, m): n+i m \in[N] \text { and } f(n+i m)=w(i) \text { for } 0 \leq i \leq d\}}{\#\{(n, m): n+i m \in[N] \text { for } 0 \leq i \leq d\}}=\frac{1}{2^{d+1}}+O(\varepsilon)
$$

 each $d \geq 2$ then f has maximal arithmetical subword complexity, $p_{f}^{\mathrm{AP}}(\ell)=2^{\ell}$.
\square
The Thue-Morse sequence is Gowers uniform of all orders. More precisely, for each $d \geq 2$ there exists $\kappa>0$ such that

In particular, $t(n)$ has maximal arithmetical subword complexity, $p_{t}^{\mathrm{AP}}(\ell)=2^{\ell}$

Higher order Fourier analysis and arithmetical subword complexity
Corollary 1: If $f:[N] \rightarrow\{-1,+1\}$ and $\|f\|_{U^{d}[N]} \leq \varepsilon$ then f looks random along random $(d+1)$-term APs in $[N]$, meaning that for $w \in\{-1,+1\}^{d+1}$ we have:

$$
\frac{\#\{(n, m): n+i m \in[N] \text { and } f(n+i m)=w(i) \text { for } 0 \leq i \leq d\}}{\#\{(n, m): n+i m \in[N] \text { for } 0 \leq i \leq d\}}=\frac{1}{2^{d+1}}+O(\varepsilon) .
$$

Corollary 2: In particular, if $f: \mathbb{N} \rightarrow\{-1,+1\}$ and $\|f\|_{U^{d}[N]} \rightarrow 0$ as $N \rightarrow \infty$ for each $d \geq 2$ then f has maximal arithmetical subword complexity, $p_{f}^{\mathrm{AP}}(\ell)=2^{\ell}$.

particalar, (n) has maximal arihntretical suoword complexiny, $p_{t}(\ell)=2$

Higher order Fourier analysis and arithmetical subword complexity
Corollary 1: If $f:[N] \rightarrow\{-1,+1\}$ and $\|f\|_{U^{d}[N]} \leq \varepsilon$ then f looks random along random $(d+1)$-term APs in $[N]$, meaning that for $w \in\{-1,+1\}^{d+1}$ we have:

$$
\frac{\#\{(n, m): n+i m \in[N] \text { and } f(n+i m)=w(i) \text { for } 0 \leq i \leq d\}}{\#\{(n, m): n+i m \in[N] \text { for } 0 \leq i \leq d\}}=\frac{1}{2^{d+1}}+O(\varepsilon) .
$$

Corollary 2: In particular, if $f: \mathbb{N} \rightarrow\{-1,+1\}$ and $\|f\|_{U^{d}[N]} \rightarrow 0$ as $N \rightarrow \infty$ for each $d \geq 2$ then f has maximal arithmetical subword complexity, $p_{f}^{\mathrm{AP}}(\ell)=2^{\ell}$.

Theorem (K.)

The Thue-Morse sequence is Gowers uniform of all orders. More precisely, for each $d \geq 2$ there exists $\kappa>0$ such that

$$
\|t\|_{U^{d}[N]} \ll N^{-\kappa} .
$$

In particular, $t(n)$ has maximal arithmetical subword complexity, $p_{t}^{\mathrm{AP}}(\ell)=2^{\ell}$.
Remark: The fact that $p_{t}^{\mathrm{AP}}(\ell)=2^{\ell}$ has been proven several times.

Uniformity of automatic sequences
Question: Which automatic sequences are Gowers uniform?

```
Theorem (Byszewski, K., Müllner)
For an autom.atic sequence a:\mathbb{N}->\mathbb{C}\mathrm{ , the following are equivalent:}
    - |a|| |\mp@subsup{U}{}{d}[N]
    - |a||}\mp@subsup{U}{}{2}[N] \0 as N->\infty
    - }\frac{1}{N}\mp@subsup{\sum}{n=0}{N-1}a(An+B)->0\mathrm{ a.s }N->\infty\mathrm{ for each }A\geq1,B\geq0\mathrm{ .
```

Rationale: Only linear obstructions to uniformity, no quadratic structure possible.
Proposition
Let $a: \mathbb{N} \rightarrow\{0,1\}$ be an automatic sequence. Suppose for some $\alpha \in(0,1)$ we have:

for each $A \geq 1, B \geq 0$.
Then a has maximal arithmetical subword complexity: $p_{a}^{\mathrm{AP}}(\ell)=2^{\ell}$

Uniformity of automatic sequences
Question: Which automatic sequences are Gowers uniform?

Theorem (Byszewski, K., Müllner)

For an automatic sequence $a: \mathbb{N} \rightarrow \mathbb{C}$, the following are equivalent:

- $\|a\|_{U^{d}[N]} \rightarrow 0$ as $N \rightarrow \infty$ for each $d \geq 2$;
- $\|a\|_{U^{2}[N]} \rightarrow 0$ as $N \rightarrow \infty$;
- $\frac{1}{N} \sum_{n=0}^{N-1} a(A n+B) \rightarrow 0$ as $N \rightarrow \infty$ for each $A \geq 1, B \geq 0$.

Rationale: Only linear obstructions to uniformity, no quadratic structure possible.
\square
Then a has maximal arithmetical subword complexity: $p_{a}^{\mathrm{AP}}(\ell)=2^{\ell}$

Uniformity of automatic sequences

Question: Which automatic sequences are Gowers uniform?

Theorem (Byszewski, K., Müllner)

For an automatic sequence $a: \mathbb{N} \rightarrow \mathbb{C}$, the following are equivalent:

- $\|a\|_{U^{d}[N]} \rightarrow 0$ as $N \rightarrow \infty$ for each $d \geq 2$;
- $\|a\|_{U^{2}[N]} \rightarrow 0$ as $N \rightarrow \infty$;
- $\frac{1}{N} \sum_{n=0}^{N-1} a(A n+B) \rightarrow 0$ as $N \rightarrow \infty$ for each $A \geq 1, B \geq 0$.

Rationale: Only linear obstructions to uniformity, no quadratic structure possible.

Proposition

Let $a: \mathbb{N} \rightarrow\{0,1\}$ be an automatic sequence. Suppose for some $\alpha \in(0,1)$ we have:

$$
\frac{1}{N} \sum_{n=0}^{N-1} a(A n+B) \rightarrow \alpha \quad \text { for each } A \geq 1, B \geq 0
$$

Then a has maximal arithmetical subword complexity: $p_{a}^{\mathrm{AP}}(\ell)=2^{\ell}$.
Rationale: $a-\alpha 1_{\mathbb{N}}$ is Gowers uniform of all orders.

Non-uniform automatic sequences
If $a=$ [constant] + [uniform], we can apply generalised von Neumann. Question: Which automatic sequences do not have this form?

Basic classes of non-uniform sequences:
(1) periodic, such as $(-1)^{n}$;
(2) forwards synchronising, such as $(-1)^{\nu_{2}(n)}$
(3) backwards synchronising, such as (-1$)^{\left\lfloor\log _{2}(n)\right\rfloor}$

Definition (Synchronisation)

- An automatori $\mathcal{A}=\left(S, S_{0}, \Sigma_{k}, \delta, \Omega, \tau\right)$ is synchronising if there exists a word $w \in \Sigma_{k}^{*}$ which synchronises \mathcal{A} to a state $s \in S$, meaning that:
- A sequence $a: \mathbb{N} \rightarrow \Omega$ is forwards synchronising if it is computed by a synchronising automaton reading input starting with the most significan digit.
- A sequence $a: \mathbb{N} \rightarrow \Omega$ is backwards synchronising if it is computed by a synchronising automaton reading input starting with the least significant digit.

Non-uniform automatic sequences

If $a=[$ constant $]+[$ uniform $]$, we can apply generalised von Neumann. Question: Which automatic sequences do not have this form?

Basic classes of non-uniform sequences:

(1) periodic, such as $(-1)^{n}$;
(2) forwards synchronising, such as $(-1)^{\nu_{2}(n)}$; $\longrightarrow 2^{\nu_{2}(n)} \| n$;
(3) backwards synchronising, such as $(-1)^{\left\lfloor\log _{2}(n)\right\rfloor}$.

- An automaton $\mathcal{A}=\left(S, s_{0}, \Sigma_{k}, \delta, \Omega, \tau\right)$ is synchronising if there exists a word $w \in \Sigma_{k}^{*}$ which synchronises \mathcal{A} to a state $s \in S$, meaning that:
- A sequence $a: \mathbb{N} \rightarrow \Omega$ is forwards synchronising if it is computed by a synchronising automaton reading input starting with the most significan digit.
- A sequence $a: \mathbb{N} \rightarrow \Omega$ is backwards synchronising if it is computed by a synchronising automaton reading input starting with the least significant digit.

Non-uniform automatic sequences

If $a=$ [constant] + [uniform], we can apply generalised von Neumann. Question: Which automatic sequences do not have this form?

Basic classes of non-uniform sequences:

(1) periodic, such as $(-1)^{n}$;
(2) forwards synchronising, such as $(-1)^{\nu_{2}(n)}$;
(3) backwards synchronising, such as $(-1)^{\left\lfloor\log _{2}(n)\right\rfloor}$.

Definition (Synchronisation)

- An automaton $\mathcal{A}=\left(S, s_{0}, \Sigma_{k}, \delta, \Omega, \tau\right)$ is synchronising if there exists a word $w \in \Sigma_{k}^{*}$ which synchronises \mathcal{A} to a state $s \in S$, meaning that:

$$
\delta\left(s^{\prime}, w\right)=s \quad \text { for all } s^{\prime} \in S
$$

- A sequence $a: \mathbb{N} \rightarrow \Omega$ is forwards synchronising if it is computed by a synchronising automaton reading input starting with the most significant digit.
- A sequence $a: \mathbb{N} \rightarrow \Omega$ is backwards synchronising if it is computed by a synchronising automaton reading input starting with the least significant digit.

Non-uniform automatic sequences

Theorem (Deshouillers, Drmota, Müllner, Shubin \& Spiegelhofer)

If $a: \mathbb{N} \rightarrow \Omega$ is a forwards synchronising automatic sequence then

$$
p_{a}^{\mathrm{AP}}(\ell)=\exp (o(\ell))
$$

In fact, same estimate holds for polynomial subword complexity.
Remark: Similar estimates can be proved for backwards synchronising.

> Synchronizing automatic sequences along
> Piatetski-Shapiro sequences
> Arithmetic subword complexity of automatic sequences - part I

Clemens Müllner
TU Wien
Tuesday, January 9, 2024

Non-uniform automatic sequences

Theorem (Deshouillers, Drmota, Müllner, Shubin \& Spiegelhofer)

If $a: \mathbb{N} \rightarrow \Omega$ is a forwards synchronising automatic sequence then

$$
p_{a}^{\mathrm{AP}}(\ell)=\exp (o(\ell))
$$

In fact, same estimate holds for polynomial subword complexity.
Remark: Similar estimates can be proved for backwards synchronising.

> Synchronizing automatic sequences along
> Piatetski-Shapiro sequences
> Arithmetic subword complexity of automatic sequences - part I

Clemens Müllner
TU Wien
Tuesday, January 9, 2024

Example: Uniform \times Non-uniform

Let $a: \mathbb{N} \rightarrow\{ \pm 1, \pm 2\}$ be defined by

$$
a(n)= \begin{cases}t\left(n^{\prime}\right) & \text { if } n=2 n^{\prime} \\ 2 t\left(n^{\prime}\right) & \text { if } n=2 n^{\prime}+1\end{cases}
$$

$$
\begin{aligned}
(a(n))_{n=0}^{\infty}= & (+1,+2,-1,-2,-1,-2,+1,+2,-1,-2,+1,+2,+1,+2,-1,-2 \\
& -1,-2,+1,+2,+1,+2,-1,-2,+1,+2,-1,-2,-1,-2,+1,+2, \ldots)
\end{aligned}
$$

There are three types of factors that appear in $a(n)$ along arithmetic progressions:

- factors (along arithmetic progressions) of $t(n)$;
- factors (along arithmetic progressions) of $2 t(n)$;
- shuffles of factors of $t(n)$ and factors of $2 t(n)$ (two ways to combine).

We can estimate arithmetical subword complexity of $a^{\prime}(n)$:

Takeaway: Passing to arithmetic progressions, we reduced alphabet size to 2 .

Example: Uniform \times Non-uniform

Let $a: \mathbb{N} \rightarrow\{ \pm 1, \pm 2\}$ be defined by

$$
\begin{gathered}
a(n)= \begin{cases}t\left(n^{\prime}\right) & \text { if } n=2 n^{\prime}, \\
2 t\left(n^{\prime}\right) & \text { if } n=2 n^{\prime}+1 .\end{cases} \\
(a(n))_{n=0}^{\infty}=(+1,+2,-1,-2,-1,-2,+1,+2,-1,-2,+1,+2,+1,+2,-1,-2, \\
\quad-1,-2,+1,+2,+1,+2,-1,-2,+1,+2,-1,-2,-1,-2,+1,+2, \ldots)
\end{gathered}
$$

There are three types of factors that appear in $a(n)$ along arithmetic progressions:

- factors (along arithmetic progressions) of $t(n)$;
- factors (along arithmetic progressions) of $2 t(n)$;
- shuffles of factors of $t(n)$ and factors of $2 t(n)$ (two ways to combine).

We can estimate arithmetical subword complexity of $a(n)$:

Takeaway: Passing to arithmetic progressions, we reduced alphabet size to 2 .

Example: Uniform \times Non-uniform

Let $a: \mathbb{N} \rightarrow\{ \pm 1, \pm 2\}$ be defined by

$$
\begin{gathered}
a(n)= \begin{cases}t\left(n^{\prime}\right) & \text { if } n=2 n^{\prime}, \\
2 t\left(n^{\prime}\right) & \text { if } n=2 n^{\prime}+1 .\end{cases} \\
(a(n))_{n=0}^{\infty}=(+1,+2,-1,-2,-1,-2,+1,+2,-1,-2,+1,+2,+1,+2,-1,-2 \\
-1,-2,+1,+2,+1,+2,-1,-2,+1,+2,-1,-2,-1,-2,+1,+2, \ldots)
\end{gathered}
$$

There are three types of factors that appear in $a(n)$ along arithmetic progressions:

- factors (along arithmetic progressions) of $t(n)$;
- factors (along arithmetic progressions) of $2 t(n)$;
- shuffles of factors of $t(n)$ and factors of $2 t(n)$ (two ways to combine).

We can estimate arithmetical subword complexity of $a(n)$:

$$
p_{a}^{\mathrm{AP}}(\ell) \leq p_{t}^{\mathrm{AP}}(\ell)+p_{2 t}^{\mathrm{AP}}(\ell)+2 \times p_{t}^{\mathrm{AP}}(\ell / 2)+p_{2 t}^{\mathrm{AP}}(\ell / 2) \leq 4 \times 2^{\ell} .
$$

Takeaway: Passing to arithmetic progressions, we reduced alphabet size to 2 .

Effective alphabet size

Let $\mathcal{A P}_{k}$ denote the family of all sets P of the form

Intuition: Like a residue class, plus base- k information.

Definition (Effective alphabet size)
The effective alphabet size of a k-automatic sequence $a: \mathbb{N} \rightarrow \Omega$ is the largest integer r_{a} such that there exists $P \in \mathcal{A P}_{k}$ such that for each $Q \in \mathcal{A P}_{k}$ with $Q \subset P$ we have

Effective alphabet size

Let $\mathcal{A} \mathcal{P}_{k}$ denote the family of all sets P of the form

Intuition: Like a residue class, plus base- k information.

Definition (Effective alphabet size)

The effective alphabet size of a k-automatic sequence $a: \mathbb{N} \rightarrow \Omega$ is the largest integer r_{a} such that there exists $P \in \mathcal{A} \mathcal{P}_{k}$ such that for each $Q \in \mathcal{A} \mathcal{P}_{k}$ with $Q \subset P$ we have

$$
\#\{a(n): n \in Q\} \geq r_{a}
$$

Remark: In fact, above we have $\#\{a(n): n \in Q\}=r$.

Effective alphabet size

Example

If a is periodic, forwards synchronising, or backwards synchronising then the effective alphabet size of a is $r_{a}=1$.

```
The effective alphabet size of the Thue-Morse sequence is r}\mp@subsup{r}{t}{}=2\mathrm{ .
```


Basic properties:

- For $a: \mathbb{N} \rightarrow \Omega, b: \mathbb{N} \rightarrow \Lambda$ we have $r_{a \times b} \leq r_{a} \times r_{b}$.
- For $a: \mathbb{N} \rightarrow \Omega, \phi: \Omega \rightarrow \Lambda$ we have $r_{\phi o a} \leq r_{a}$.

Thus, if a is constructed out of periodic and synchronising sequences then $r_{a}=1$.
Fact: For each $\varepsilon>0$ we can find a finite cover
$\mathbb{N}=P_{1} \cup P_{2} \cup$

Effective alphabet size

Example

If a is periodic, forwards synchronising, or backwards synchronising then the effective alphabet size of a is $r_{a}=1$.

Example

The effective alphabet size of the Thue-Morse sequence is $r_{t}=2$.

Basic properties:

Thus, if a is constructed out of periodic and synchronising sequences then $r_{a}=1$.
Fact: For each $\varepsilon>0$ we can find a finite cover

by $P_{i}, Q_{j} \in \mathcal{A} \mathcal{P}_{k}$ such that $\#\{a(n)$

Effective alphabet size

Example

If a is periodic, forwards synchronising, or backwards synchronising then the effective alphabet size of a is $r_{a}=1$.

Example

The effective alphabet size of the Thue-Morse sequence is $r_{t}=2$.

Basic properties:

- For $a: \mathbb{N} \rightarrow \Omega, b: \mathbb{N} \rightarrow \Lambda$ we have $r_{a \times b} \leq r_{a} \times r_{b}$.
- For $a: \mathbb{N} \rightarrow \Omega, \phi: \Omega \rightarrow \Lambda$ we have $r_{\phi \circ a} \leq r_{a}$.

Thus, if a is constructed out of periodic and synchronising sequences then $r_{a}=1$.
Fact: For each $\varepsilon>0$ we can find a finite cover

Effective alphabet size

Example

If a is periodic, forwards synchronising, or backwards synchronising then the effective alphabet size of a is $r_{a}=1$.

Example

The effective alphabet size of the Thue-Morse sequence is $r_{t}=2$.

Basic properties:

- For $a: \mathbb{N} \rightarrow \Omega, b: \mathbb{N} \rightarrow \Lambda$ we have $r_{a \times b} \leq r_{a} \times r_{b}$.
- For $a: \mathbb{N} \rightarrow \Omega, \phi: \Omega \rightarrow \Lambda$ we have $r_{\phi \circ a} \leq r_{a}$.

Thus, if a is constructed out of periodic and synchronising sequences then $r_{a}=1$.
Fact: For each $\varepsilon>0$ we can find a finite cover

$$
\mathbb{N}=P_{1} \cup P_{2} \cup \cdots \cup P_{N} \cup Q_{1} \cup Q_{2} \cup \cdots \cup Q_{M}
$$

by $P_{i}, Q_{j} \in \mathcal{A} \mathcal{P}_{k}$ such that $\#\left\{a(n): n \in P_{i}\right\} \leq r_{a}$ and $\bar{d}\left(Q_{1} \cup Q_{2} \cup \cdots \cup Q_{M}\right)<\varepsilon$.

Main result

Theorem (K., Müllner)

Let $a: \mathbb{N} \rightarrow \Omega$ be an automatic sequence with effective alphabet size r_{a}. Then

$$
p_{a}^{\mathrm{AP}}(\ell)=\left(r_{a}+o(1)\right)^{\ell} .
$$

Remarks:

- In fact, in one direction we have exact inequality $p_{a}^{\mathrm{AP}}(\ell) \geq r_{a}^{\ell}$.
- We can find $\Lambda \subset \Omega$ with $\# \Lambda=r_{a}$ such that all words over Λ appear in a along an arithmetic progression.
- Same estimate for polynomial subword complexity.
- The value of r_{a} is computable, given a representation of a.

$\liminf \#\{(n, m): n+i m \in[N]$ and $a(n+i m)=w(i)$ for $0 \leq i<\ell\} / N^{2}>0$
$N \rightarrow \infty$

Main result

Theorem (K., Müllner)

Let $a: \mathbb{N} \rightarrow \Omega$ be an automatic sequence with effective alphabet size r_{a}. Then

$$
p_{a}^{\mathrm{AP}}(\ell)=\left(r_{a}+o(1)\right)^{\ell} .
$$

Remarks:

- In fact, in one direction we have exact inequality $p_{a}^{\mathrm{AP}}(\ell) \geq r_{a}^{\ell}$.
- We can find $\Lambda \subset \Omega$ with $\# \Lambda=r_{a}$ such that all words over Λ appear in a along an arithmetic progression.
- Same estimate for polynomial subword complexity.
- The value of r_{a} is computable, given a representation of a.

Main result

Theorem (K., Müllner)

Let $a: \mathbb{N} \rightarrow \Omega$ be an automatic sequence with effective alphabet size r_{a}. Then

$$
p_{a}^{\mathrm{AP}}(\ell)=\left(r_{a}+o(1)\right)^{\ell} .
$$

Remarks:

- In fact, in one direction we have exact inequality $p_{a}^{\mathrm{AP}}(\ell) \geq r_{a}^{\ell}$.
- We can find $\Lambda \subset \Omega$ with $\# \Lambda=r_{a}$ such that all words over Λ appear in a along an arithmetic progression.
- Same estimate for polynomial subword complexity.
- The value of r_{a} is computable, given a representation of a.

Corollary

Let $a: \mathbb{N} \rightarrow \Omega$ be an automatic sequence with maximal arithmetical subword complexity, i.e. $p_{a}^{\mathrm{AP}}(\ell)=\# \Omega^{\ell}$. Then for each $\ell \in \mathbb{N}$ and $w \in \Omega^{\ell}$ we have:

$$
\liminf _{N \rightarrow \infty} \#\{(n, m): n+i m \in[N] \text { and } a(n+i m)=w(i) \text { for } 0 \leq i<\ell\} / N^{2}>0
$$

Arithmetic regularity lemma for automatic sequences

Definition (Structured sequences)

A k-automatic sequence $a: \mathbb{N} \rightarrow \Omega$ is structured if there exist automatic sequences $a_{\text {per }}, a_{\mathrm{fs}}, a_{\mathrm{bs}}: \mathbb{N}_{0} \rightarrow \Omega_{\mathrm{per}}, \Omega_{\mathrm{fs}}, \Omega_{\mathrm{bs}}$ which are periodic, forward synchronising and backward synchronising respectively and a map $F: \Omega_{\mathrm{per}} \times \Omega_{\mathrm{fs}} \times \Omega_{\mathrm{bs}} \rightarrow \mathbb{C}$ such that

$$
a(n)=F\left(a_{\mathrm{per}}(n), a_{\mathrm{fs}}(n), a_{\mathrm{bs}}(n)\right) .
$$

Each automatic sequence $a: \mathbb{N} \rightarrow \mathbb{C}$ has a decomposition $a=a_{\mathrm{str}}+a_{\mathrm{uni}}$, where

- $a_{\text {str }}$ is structured in the sense defined ahnve.
- $a_{\text {uni }}$ is uniform in the sense that for each $d \geq 2$ there exists $\kappa>0$ such that

Arithmetic regularity lemma for automatic sequences

Definition (Structured sequences)

A k-automatic sequence $a: \mathbb{N} \rightarrow \Omega$ is structured if there exist automatic sequences $a_{\text {per }}, a_{\mathrm{fs}}, a_{\mathrm{bs}}: \mathbb{N}_{0} \rightarrow \Omega_{\mathrm{per}}, \Omega_{\mathrm{fs}}, \Omega_{\mathrm{bs}}$ which are periodic, forward synchronising and backward synchronising respectively and a map $F: \Omega_{\mathrm{per}} \times \Omega_{\mathrm{fs}} \times \Omega_{\mathrm{bs}} \rightarrow \mathbb{C}$ such that

$$
a(n)=F\left(a_{\mathrm{per}}(n), a_{\mathrm{fs}}(n), a_{\mathrm{bs}}(n)\right) .
$$

Theorem (Byszewski, K. \& Müllner)

Each automatic sequence $a: \mathbb{N} \rightarrow \mathbb{C}$ has a decomposition $a=a_{\mathrm{str}}+a_{\mathrm{uni}}$, where

- $a_{\text {str }}$ is structured in the sense defined above;
- $a_{\text {uni }}$ is uniform in the sense that for each $d \geq 2$ there exists $\kappa>0$ such that

$$
\left\|a_{\mathrm{uni}}\right\|_{U^{d}[N]} \ll N^{-\kappa}
$$

Arithmetic regularity lemma

Theorem (Green \& Tao (2010))
Fix $s \geq 1, \varepsilon>0$ and a growth function $\mathcal{F}: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$. Each sequence $a:[N] \rightarrow[0,1]$ has a decomposition $a=a_{\text {nil }}+a_{\mathrm{sml}}+a_{\mathrm{uni}}$, where $M=O(1)$ and
(1) $a_{\text {uni }}$ is uniform in the sense that $\left\|a_{\text {uni }}\right\|_{U^{s+1}[N]} \leq 1 / \mathcal{F}(M)$.
(2) a_{sml} is small in the sense that $\left\|a_{\mathrm{sml}}\right\|_{L^{2}[N]} \leq \varepsilon$.
(3) $a_{\text {nil }}$ is a $(\mathcal{F}(M), N)$-irrational virtual degree s nilsequence of complexity $\leq M$.
\square
Recall: If a is automatic, then $a_{\mathrm{str}}(n)=F\left(a_{\mathrm{per}}(n), a_{\mathrm{fs}}(n), a_{\mathrm{bs}}(n)\right)$, where

- a_{per} is neriodic;
- a_{fs} is essentially periodic;
- a_{bs} is constant on long intervals.

Hence, $a_{\text {str }}=[1$-sten nilsequence $]+\lceil$ small error $]$.
Key differences:

- For automatic sequences, 1-step nilsequences are enough.
- Quantitative bounds in the decomposition are reasonable.

Arithmetic regularity lemma

Theorem (Green \& Tao (2010))

Fix $s \geq 1, \varepsilon>0$ and a growth function $\mathcal{F}: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$. Each sequence $a:[N] \rightarrow[0,1]$ has a decomposition $a=a_{\text {nil }}+a_{\mathrm{sml}}+a_{\mathrm{uni}}$, where $M=O(1)$ and
(1) $a_{\text {uni }}$ is uniform in the sense that $\left\|a_{\text {uni }}\right\|_{U^{s+1}[N]} \leq 1 / \mathcal{F}(M)$.
(2) a_{sml} is small in the sense that $\left\|a_{\mathrm{sml}}\right\|_{L^{2}[N]} \leq \varepsilon$.
(3) $a_{\text {nil }}$ is a $(\mathcal{F}(M), N)$-irrational virtual degree s nilsequence of complexity $\leq M$.

Recall: If a is automatic, then $a_{\text {str }}(n)=F\left(a_{\text {per }}(n), a_{\mathrm{fs}}(n), a_{\mathrm{bs}}(n)\right)$, where

- $a_{\text {per }}$ is periodic;
- a_{fs} is essentially periodic;

$$
\longrightarrow a_{\mathrm{fs}}=\left[k^{i} \text {-periodic }\right]+O\left(1 / k^{i \eta}\right) \text { in } L^{2}[N]
$$

- $a_{\text {bs }}$ is constant on long intervals.

Hence, $a_{\text {str }}=[1$-step nilsequence $]+[$ small error $]$.
Key differences:

- For automatic sequences, 1-step nilsequences are enough.
- Quantitative bounds in the decomposition are reasonable.

Arithmetic regularity lemma

Theorem (Green \& Tao (2010))

Fix $s \geq 1, \varepsilon>0$ and a growth function $\mathcal{F}: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$. Each sequence $a:[N] \rightarrow[0,1]$ has a decomposition $a=a_{\text {nil }}+a_{\mathrm{sml}}+a_{\mathrm{uni}}$, where $M=O(1)$ and
(1) $a_{\text {uni }}$ is uniform in the sense that $\left\|a_{\text {uni }}\right\|_{U^{s+1}[N]} \leq 1 / \mathcal{F}(M)$.
(2) a_{sml} is small in the sense that $\left\|a_{\mathrm{sml}}\right\|_{L^{2}[N]} \leq \varepsilon$.
(3) $a_{\text {nil }}$ is a $(\mathcal{F}(M), N)$-irrational virtual degree s nilsequence of complexity $\leq M$.

Recall: If a is automatic, then $a_{\text {str }}(n)=F\left(a_{\text {per }}(n), a_{\mathrm{fs}}(n), a_{\mathrm{bs}}(n)\right)$, where

- $a_{\text {per }}$ is periodic;
- a_{fs} is essentially periodic;

$$
\longrightarrow a_{\mathrm{fs}}=\left[k^{i} \text {-periodic }\right]+O\left(1 / k^{i \eta}\right) \text { in } L^{2}[N]
$$

- $a_{\text {bs }}$ is constant on long intervals.

Hence, $a_{\text {str }}=[1$-step nilsequence $]+[$ small error $]$.
Key differences:

- For automatic sequences, 1-step nilsequences are enough.
- Quantitative bounds in the decomposition are reasonable.

Arithmetic regularity lemma and effective alphabet size
Observation: If $b: \mathbb{N} \rightarrow \Omega$ is a structured k-automatic sequence and $P \in \mathcal{A} \mathcal{P}_{k}$ then there exists $Q \in \mathcal{A P}_{k}$ with $Q \subset P$ on which b is constant.

Let $a: \mathbb{N} \rightarrow \Omega$ be a k-automatic sequence. For $x \in \Omega$, let $a^{(x)}(n)= \begin{cases}1 & \text { if } a(n)=x, \\ 0 & \text { otherwise. }\end{cases}$

Proof: Apply the previous lemma repeatedly.

Arithmetic regularity lemma and effective alphabet size
Observation: If $b: \mathbb{N} \rightarrow \Omega$ is a structured k-automatic sequence and $P \in \mathcal{A} \mathcal{P}_{k}$ then there exists $Q \in \mathcal{A P}_{k}$ with $Q \subset P$ on which b is constant.

Lemma

Let $a: \mathbb{N} \rightarrow[0,1]$ be a k-automatic sequence and $P \in \mathcal{A} \mathcal{P}_{k}$. Suppose that for all $Q \in \mathcal{A P}_{k}$ with $Q \subset P$ there exists $n \in Q$ with $a(n)>0$. Then there exists $Q \in \mathcal{A P}_{k}$ with $Q \subset P$ such that $a_{\text {str }}$ is constant and positive on Q.

Arithmetic regularity lemma and effective alphabet size

Observation: If $b: \mathbb{N} \rightarrow \Omega$ is a structured k-automatic sequence and $P \in \mathcal{A} \mathcal{P}_{k}$ then there exists $Q \in \mathcal{A P}_{k}$ with $Q \subset P$ on which b is constant.

Lemma

Let $a: \mathbb{N} \rightarrow[0,1]$ be a k-automatic sequence and $P \in \mathcal{A} \mathcal{P}_{k}$. Suppose that for all $Q \in \mathcal{A P}_{k}$ with $Q \subset P$ there exists $n \in Q$ with $a(n)>0$. Then there exists $Q \in \mathcal{A P}_{k}$ with $Q \subset P$ such that $a_{\text {str }}$ is constant and positive on Q.

Let $a: \mathbb{N} \rightarrow \Omega$ be a k-automatic sequence. For $x \in \Omega$, let $a^{(x)}(n)= \begin{cases}1 & \text { if } a(n)=x, \\ 0 & \text { otherwise } .\end{cases}$

Lemma

Let $a: \mathbb{N} \rightarrow \Omega$ be a k-automatic sequence with effective alphabet size r_{a}. Then there exist $\Lambda \subset \Omega$ with $\# \Lambda=r_{a}$ and $P \in \mathcal{A} \mathcal{P}_{k}$ such that $a_{\mathrm{str}}^{(x)}$ is constant and positive on P for all $x \in \Lambda$.

Proof: Apply the previous lemma repeatedly.

Proof of the lower bound

We are now ready to show that $p_{a}^{\mathrm{AP}}(\ell) \geq r_{a}^{\ell}$ for all $\ell \geq 1$.

- Let $\Lambda \subset \Omega$ and $P \in \mathcal{A} \mathcal{P}_{k}$ be like on the previous slide. Pick any $w \in \Lambda^{\ell}$. We claim that w appears in a along an arithmetic progression contained in P.
- Let N be a large integer. We will estimate the count of ℓ-term arithmetic progressions in $P \cap[N]$ where w appears in a :

$$
C=\sum_{n, m=0}^{N-1} \prod_{i=0}^{\ell-1} 1_{P \cap[N]}(n+i m) a^{(w(i))}(n+i m) .
$$

- By generalised von Neumann theorem:

$$
C \simeq \sum_{n, m=0}^{N-1} \prod_{i=0}^{\ell-1} 1_{P \cap[N]}(n+i m) a_{\mathrm{str}}^{(w(i))}(n+i m)
$$

- Recall that $a_{\mathrm{str}}^{(w(i))}$ has constant value on P, say $\alpha_{w(i)}>0$, so

$$
C \simeq \prod_{i=0}^{\ell-1} \alpha_{w(i)} \cdot \#\{(n, m): n+i m \in P \cap[N] \text { for } 0 \leq i<\ell\} \gg N^{2}
$$

Proof of the lower bound
We are now ready to show that $p_{a}^{\mathrm{AP}}(\ell) \geq r_{a}^{\ell}$ for all $\ell \geq 1$.

- Let $\Lambda \subset \Omega$ and $P \in \mathcal{A P}_{k}$ be like on the previous slide. Pick any $w \in \Lambda^{\ell}$. We claim that w appears in a along an arithmetic progression contained in P.
- Let N be a large integer. We will estimate the count of ℓ-term arithmetic progressions in $P \cap[N]$ where w appears in a :

$$
C=\sum_{n, m=0}^{N-1} \prod_{i=0}^{\ell-1} 1_{P \cap[N]}(n+i m) a^{(w(i))}(n+i m) .
$$

- By generalised von Neumann theorem:

$$
C \simeq \sum_{n, m=0}^{N-1} \prod_{i=0}^{\ell-1} 1_{P \cap[N]}(n+i m) a_{\operatorname{str}}^{(w(i))}(n+i m)
$$

- Recall that $a_{\mathrm{str}}^{(w(i))}$ has constant value on P, say $\alpha_{w(i)}>0$, so

Proof of the lower bound

We are now ready to show that $p_{a}^{\mathrm{AP}}(\ell) \geq r_{a}^{\ell}$ for all $\ell \geq 1$.

- Let $\Lambda \subset \Omega$ and $P \in \mathcal{A P}_{k}$ be like on the previous slide. Pick any $w \in \Lambda^{\ell}$. We claim that w appears in a along an arithmetic progression contained in P.
- Let N be a large integer. We will estimate the count of ℓ-term arithmetic progressions in $P \cap[N]$ where w appears in a :

$$
C=\sum_{n, m=0}^{N-1} \prod_{i=0}^{\ell-1} 1_{P \cap[N]}(n+i m) a^{(w(i))}(n+i m)
$$

- By generalised von Neumann theorem:

$$
C \simeq \sum_{n, m=0}^{N-1} \prod_{i=0}^{\ell-1} 1_{P \cap[N]}(n+i m) a_{\mathrm{str}}^{(w(i))}(n+i m) .
$$

- Recall that $a_{\mathrm{str}}^{(w(i))}$ has constant value on P, say $\alpha_{w(i)}>0$, so

Proof of the lower bound

We are now ready to show that $p_{a}^{\mathrm{AP}}(\ell) \geq r_{a}^{\ell}$ for all $\ell \geq 1$.

- Let $\Lambda \subset \Omega$ and $P \in \mathcal{A P}_{k}$ be like on the previous slide. Pick any $w \in \Lambda^{\ell}$. We claim that w appears in a along an arithmetic progression contained in P.
- Let N be a large integer. We will estimate the count of ℓ-term arithmetic progressions in $P \cap[N]$ where w appears in a :

$$
C=\sum_{n, m=0}^{N-1} \prod_{i=0}^{\ell-1} 1_{P \cap[N]}(n+i m) a^{(w(i))}(n+i m)
$$

- By generalised von Neumann theorem:

$$
C \simeq \sum_{n, m=0}^{N-1} \prod_{i=0}^{\ell-1} 1_{P \cap[N]}(n+i m) a_{\mathrm{str}}^{(w(i))}(n+i m) .
$$

- Recall that $a_{\mathrm{str}}^{(w(i))}$ has constant value on P, say $\alpha_{w(i)}>0$, so

Proof of the lower bound

We are now ready to show that $p_{a}^{\mathrm{AP}}(\ell) \geq r_{a}^{\ell}$ for all $\ell \geq 1$.

- Let $\Lambda \subset \Omega$ and $P \in \mathcal{A P}_{k}$ be like on the previous slide. Pick any $w \in \Lambda^{\ell}$. We claim that w appears in a along an arithmetic progression contained in P.
- Let N be a large integer. We will estimate the count of ℓ-term arithmetic progressions in $P \cap[N]$ where w appears in a :

$$
C=\sum_{n, m=0}^{N-1} \prod_{i=0}^{\ell-1} 1_{P \cap[N]}(n+i m) a^{(w(i))}(n+i m)
$$

- By generalised von Neumann theorem:

$$
C \simeq \sum_{n, m=0}^{N-1} \prod_{i=0}^{\ell-1} 1_{P \cap[N]}(n+i m) a_{\mathrm{str}}^{(w(i))}(n+i m) .
$$

- Recall that $a_{\mathrm{str}}^{(w(i))}$ has constant value on P, say $\alpha_{w(i)}>0$, so

$$
C \simeq \prod_{i=0}^{\ell-1} \alpha_{w(i)} \cdot \#\{(n, m): n+i m \in P \cap[N] \text { for } 0 \leq i<\ell\} \gg N^{2}
$$

Height of a substitution
Let $a: \mathbb{N} \rightarrow \Omega$ be k-automatic, produced by automaton $\mathcal{A}=\left(S, s_{0}, \Sigma_{k}, \delta, \Omega, \tau\right)$.
Simplifying assumption: \mathcal{A} is primitive (strongly connected, gcd of loop lengths $=1$).
Recall: k-automatic \Leftrightarrow coding of a k-uniform substitution.
Suppose $\eta: \Omega \rightarrow \Omega^{k}$ be a substitution with $\eta(a)=a$, i.e :

Definition
The height h of η is given by

```
h=max{m:m\perpk,m}|d\mathrm{ for all }d\geq0\mathrm{ such that }a(d)=a(0)
    max {m:m\perpk,m|d for all d\geq0 such that a(n+d)=a(n)}
```

Example: The Thue-Morse sequence has height 1.

Height of a substitution
Let $a: \mathbb{N} \rightarrow \Omega$ be k-automatic, produced by automaton $\mathcal{A}=\left(S, s_{0}, \Sigma_{k}, \delta, \Omega, \tau\right)$.
Simplifying assumption: \mathcal{A} is primitive (strongly connected, gcd of loop lengths $=1$).

Recall: k-automatic \Leftrightarrow coding of a k-uniform substitution.
Suppose $\eta: \Omega \rightarrow \Omega^{k}$ be a substitution with $\eta(a)=a$, i.e.

Definition
The height h of η is given by
$h=\max \{m: m \perp h, m \mid d$ for all $d \geq 0$ such that $a(d)=a(0)\}$
$=\max \{m: m \perp k, m \mid d$ for all $d \geq 0$ such that $a(n+d)=a(n)\}$

Example: The Thue-Morse sequence has height 1.

Height of a substitution

Let $a: \mathbb{N} \rightarrow \Omega$ be k-automatic, produced by automaton $\mathcal{A}=\left(S, s_{0}, \Sigma_{k}, \delta, \Omega, \tau\right)$.
Simplifying assumption: \mathcal{A} is primitive (strongly connected, gcd of loop lengths $=1$).

Recall: k-automatic \Leftrightarrow coding of a k-uniform substitution.
Suppose $\eta: \Omega \rightarrow \Omega^{k}$ be a substitution with $\eta(a)=a$, i.e.:
\qquad
$=\eta(a(0))$

The height h of η is given by

Example: The Thue-Morse sequence has height 1.

Height of a substitution

Let $a: \mathbb{N} \rightarrow \Omega$ be k-automatic, produced by automaton $\mathcal{A}=\left(S, s_{0}, \Sigma_{k}, \delta, \Omega, \tau\right)$.
Simplifying assumption: \mathcal{A} is primitive (strongly connected, gcd of loop lengths $=1$).

Recall: k-automatic \Leftrightarrow coding of a k-uniform substitution.
Suppose $\eta: \Omega \rightarrow \Omega^{k}$ be a substitution with $\eta(a)=a$, i.e.:

$$
(a(n))_{n=0}^{\infty}=\underbrace{a(0), a(1), \ldots, a(k-1)}_{=\eta(a(0))}, \ldots \underbrace{a(n k), a(n k+1), \ldots, a((n+1) k-1)}_{=\eta(a(n))}, \ldots
$$

Height of a substitution

Let $a: \mathbb{N} \rightarrow \Omega$ be k-automatic, produced by automaton $\mathcal{A}=\left(S, s_{0}, \Sigma_{k}, \delta, \Omega, \tau\right)$.
Simplifying assumption: \mathcal{A} is primitive (strongly connected, gcd of loop lengths $=1$).

Recall: k-automatic \Leftrightarrow coding of a k-uniform substitution.
Suppose $\eta: \Omega \rightarrow \Omega^{k}$ be a substitution with $\eta(a)=a$, i.e.:

$$
(a(n))_{n=0}^{\infty}=\underbrace{a(0), a(1), \ldots, a(k-1)}_{=\eta(a(0))}, \ldots \underbrace{a(n k), a(n k+1), \ldots, a((n+1) k-1)}_{=\eta(a(n))}, \ldots
$$

Definition

The height h of η is given by

$$
\begin{aligned}
h & =\max \{m: m \perp k, m \mid d \text { for all } d \geq 0 \text { such that } a(d)=a(0)\} \\
& =\max \{m: m \perp k, m \mid d \text { for all } d \geq 0 \text { such that } a(n+d)=a(n)\}
\end{aligned}
$$

Example: The Thue-Morse sequence has height 1.

Height of a substitution

Let $a: \mathbb{N} \rightarrow \Omega$ be k-automatic, produced by automaton $\mathcal{A}=\left(S, s_{0}, \Sigma_{k}, \delta, \Omega, \tau\right)$.
Simplifying assumption: \mathcal{A} is primitive (strongly connected, gcd of loop lengths $=1$).

Recall: k-automatic \Leftrightarrow coding of a k-uniform substitution.
Suppose $\eta: \Omega \rightarrow \Omega^{k}$ be a substitution with $\eta(a)=a$, i.e.:

$$
(a(n))_{n=0}^{\infty}=\underbrace{a(0), a(1), \ldots, a(k-1)}_{=\eta(a(0))}, \ldots \underbrace{a(n k), a(n k+1), \ldots, a((n+1) k-1)}_{=\eta(a(n))}, \ldots
$$

Definition

The height h of η is given by

$$
\begin{aligned}
h & =\max \{m: m \perp k, m \mid d \text { for all } d \geq 0 \text { such that } a(d)=a(0)\} \\
& =\max \{m: m \perp k, m \mid d \text { for all } d \geq 0 \text { such that } a(n+d)=a(n)\}
\end{aligned}
$$

Example: The Thue-Morse sequence has height 1.

Height and periodicity

Let $C_{j}:=\{a(n): n \equiv j \bmod h\}$.
(1) For each i, j either $C_{j}=C_{i}$ or $C_{i} \cap C_{j}=\emptyset$.
(2) The sequence $C_{0}, C_{1}, C_{2}, \ldots$ is periodic.
(3) The height is the largest integer $h \perp k$ such that the above hold.

Height and periodicity

Let $C_{j}:=\{a(n): n \equiv j \bmod h\}$.
(1) For each i, j either $C_{j}=C_{i}$ or $C_{i} \cap C_{j}=\emptyset$.
(2) The sequence $C_{0}, C_{1}, C_{2}, \ldots$ is periodic.
(3) The height is the largest integer $h \perp k$ such that the above hold.

The sequence $C_{0}, C_{1}, C_{2}, \ldots$ contains all information about periodic behaviour of $a(n)$ that we would need in the argument.

Height and periodicity

Let $C_{j}:=\{a(n): n \equiv j \bmod h\}$.
(1) For each i, j either $C_{j}=C_{i}$ or $C_{i} \cap C_{j}=\emptyset$.
(2) The sequence $C_{0}, C_{1}, C_{2}, \ldots$ is periodic.
(3) The height is the largest integer $h \perp k$ such that the above hold.

The sequence $C_{0}, C_{1}, C_{2}, \ldots$ contains all information about periodic behaviour of $a(n)$ that we would need in the argument.

Simplifying assumption: $h=1$ (no periodic component).

Group extensions of automata

- Let $c=\min \left\{\# \delta(S, w): w \in \Sigma_{k}^{*}\right\}$, where $\delta(S, w)=\{\delta(s, w): s \in S\}$.
- Let $\mathcal{M}=\left\{M_{0}, M_{1}, \ldots, M_{p-1}\right\}=\left\{\delta(S, w): w \in \Sigma_{k}^{*}, \# \delta(S, w)=c\right\}$. Without loss of generality: $s_{0} \in M_{0}$.

```
Fact: For each M G\mathcal{M}\mathrm{ and }u\in\mp@subsup{\Sigma}{k}{*}\mathrm{ we have }\delta(M,u)\in\mathcal{M}\mathrm{ .}
    - Let }s(n)=\delta(\mp@subsup{s}{0}{\prime},(n\mp@subsup{)}{k}{})\inS\mathrm{ where }n\in\mathbb{N}\mathrm{ .
    - Let i(n) \in{0,1,\ldots,p-1} be such that \delta(1\mp@subsup{M}{0}{\prime},(n)k)=\mp@subsup{M}{i(n)}{}\mathrm{ .}
```

Fact: For each $n \in \mathbb{N}$ we have $s(n) \in M_{i(n)}$.
Proposition
The effective al phabet size is alternatively given by:
$r_{a}=\max _{0 \leq i<p} \# \tau\left(M_{i}\right)$.
Sketch of proof:
such that $\{a(n): n \in Q\} \subseteq\{\tau(s): s \in M\}$.
Remains to show: for each $Q \in \mathcal{A} \mathcal{P}_{k}, Q \subset P$ we have $\{s(n): n \in Q\}=M_{i}$.

Group extensions of automata

- Let $c=\min \left\{\# \delta(S, w): w \in \Sigma_{k}^{*}\right\}$, where $\delta(S, w)=\{\delta(s, w): s \in S\}$.
- Let $\mathcal{M}=\left\{M_{0}, M_{1}, \ldots, M_{p-1}\right\}=\left\{\delta(S, w): w \in \Sigma_{k}^{*}, \# \delta(S, w)=c\right\}$. Without loss of generality: $s_{0} \in M_{0}$.
Fact: For each $M \in \mathcal{M}$ and $u \in \Sigma_{k}^{*}$ we have $\delta(M, u) \in \mathcal{M}$.
- Let $i(n) \in\{0,1, \ldots, p-1\}$ be such that $\delta\left(M_{0},(n)_{k}\right)=M_{i(n)}$.

Fact: For each $n \in \mathbb{N}$ we have $s(n) \in M_{i(n)}$.
Proposition
The effective alphabet size is alternatively given by: $r_{a}=\max _{0 \leq i<p} \# \tau\left(M_{i}\right)$.

Sketch of proof:

- $r_{a} \leq \max _{i} \# \tau\left(M_{i}\right):$ If $P \in \mathcal{A} \mathcal{P}_{k}$ then there are $Q \in \mathcal{A} \mathcal{P}_{k}, Q \subset P$ and $M \in \mathcal{M}$, such that $\{a(n): n \in Q\} \subseteq\{\tau(s): s \in M\}$.
- $r_{a} \geq \max _{i} \# \tau\left(M_{i}\right):$ Given i, we can find $P \in \mathcal{A} \mathcal{P}_{k}$ with $i(n)=i$ for all $n \in P$. Remains to show: for each $Q \in \mathcal{A P}_{k}, Q \subset P$ we have $\{s(n): n \in Q\}=M_{i}$.

Group extensions of automata

- Let $c=\min \left\{\# \delta(S, w): w \in \Sigma_{k}^{*}\right\}$, where $\delta(S, w)=\{\delta(s, w): s \in S\}$.
- Let $\mathcal{M}=\left\{M_{0}, M_{1}, \ldots, M_{p-1}\right\}=\left\{\delta(S, w): w \in \Sigma_{k}^{*}, \# \delta(S, w)=c\right\}$. Without loss of generality: $s_{0} \in M_{0}$.

Fact: For each $M \in \mathcal{M}$ and $u \in \Sigma_{k}^{*}$ we have $\delta(M, u) \in \mathcal{M}$.

- Let $s(n)=\delta\left(s_{0},(n)_{k}\right) \in S$ where $n \in \mathbb{N}$.
- Let $i(n) \in\{0,1, \ldots, p-1\}$ be such that $\delta\left(M_{0},(n)_{k}\right)=M_{i(n)}$.

Group extensions of automata

- Let $c=\min \left\{\# \delta(S, w): w \in \Sigma_{k}^{*}\right\}$, where $\delta(S, w)=\{\delta(s, w): s \in S\}$.
- Let $\mathcal{M}=\left\{M_{0}, M_{1}, \ldots, M_{p-1}\right\}=\left\{\delta(S, w): w \in \Sigma_{k}^{*}, \# \delta(S, w)=c\right\}$. Without loss of generality: $s_{0} \in M_{0}$.

Fact: For each $M \in \mathcal{M}$ and $u \in \Sigma_{k}^{*}$ we have $\delta(M, u) \in \mathcal{M}$.

- Let $s(n)=\delta\left(s_{0},(n)_{k}\right) \in S$ where $n \in \mathbb{N}$.
- Let $i(n) \in\{0,1, \ldots, p-1\}$ be such that $\delta\left(M_{0},(n)_{k}\right)=M_{i(n)}$.

Fact: For each $n \in \mathbb{N}$ we have $s(n) \in M_{i(n)}$.

The effective alphabet size is alternatively given by:

Group extensions of automata

- Let $c=\min \left\{\# \delta(S, w): w \in \Sigma_{k}^{*}\right\}$, where $\delta(S, w)=\{\delta(s, w): s \in S\}$.
- Let $\mathcal{M}=\left\{M_{0}, M_{1}, \ldots, M_{p-1}\right\}=\left\{\delta(S, w): w \in \Sigma_{k}^{*}, \# \delta(S, w)=c\right\}$. Without loss of generality: $s_{0} \in M_{0}$.

Fact: For each $M \in \mathcal{M}$ and $u \in \Sigma_{k}^{*}$ we have $\delta(M, u) \in \mathcal{M}$.

- Let $s(n)=\delta\left(s_{0},(n)_{k}\right) \in S$ where $n \in \mathbb{N}$.
- Let $i(n) \in\{0,1, \ldots, p-1\}$ be such that $\delta\left(M_{0},(n)_{k}\right)=M_{i(n)}$.

Fact: For each $n \in \mathbb{N}$ we have $s(n) \in M_{i(n)}$.

Proposition

The effective alphabet size is alternatively given by:

$$
r_{a}=\max _{0 \leq i<p} \# \tau\left(M_{i}\right)
$$

Sketch of proof:

Remains to show: for each $Q \in \mathcal{A P}_{k}, Q \subset P$ we have $\{s(n): n \in Q\}=M_{i}$

Group extensions of automata

- Let $c=\min \left\{\# \delta(S, w): w \in \Sigma_{k}^{*}\right\}$, where $\delta(S, w)=\{\delta(s, w): s \in S\}$.
- Let $\mathcal{M}=\left\{M_{0}, M_{1}, \ldots, M_{p-1}\right\}=\left\{\delta(S, w): w \in \Sigma_{k}^{*}, \# \delta(S, w)=c\right\}$. Without loss of generality: $s_{0} \in M_{0}$.

Fact: For each $M \in \mathcal{M}$ and $u \in \Sigma_{k}^{*}$ we have $\delta(M, u) \in \mathcal{M}$.

- Let $s(n)=\delta\left(s_{0},(n)_{k}\right) \in S$ where $n \in \mathbb{N}$.
- Let $i(n) \in\{0,1, \ldots, p-1\}$ be such that $\delta\left(M_{0},(n)_{k}\right)=M_{i(n)}$.

Fact: For each $n \in \mathbb{N}$ we have $s(n) \in M_{i(n)}$.

Proposition

The effective alphabet size is alternatively given by:

$$
r_{a}=\max _{0 \leq i<p} \# \tau\left(M_{i}\right)
$$

Sketch of proof:

- $r_{a} \leq \max _{i} \# \tau\left(M_{i}\right)$: If $P \in \mathcal{A} \mathcal{P}_{k}$ then there are $Q \in \mathcal{A P}_{k}, Q \subset P$ and $M \in \mathcal{M}$, such that $\{a(n): n \in Q\} \subseteq\{\tau(s): s \in M\}$.
- $r_{a} \geq \max _{i} \# \tau\left(M_{i}\right)$: Given i, we can find $P \in \mathcal{A} \mathcal{P}_{k}$ with $i(n)=i$ for all $n \in P$. Remains to show: for each $Q \in \mathcal{A} \mathcal{P}_{k}, Q \subset P$ we have $\{s(n): n \in Q\}=M_{i}$.

Proof of upper bound

We are now ready to show that $p_{a}^{\mathrm{AP}}(\ell) \leq r_{a}^{\ell} \exp (o(\ell))$ for all $\ell \geq 1$.

- Since $s(n) \in M_{i(n)}$ and $\# \tau\left(M_{i}\right) \leq r_{a}$, we have

$$
p_{a}^{\mathrm{AP}}(\rho) \leq r_{a}^{\ell} \times p_{i}^{\mathrm{AP}}(\ell)
$$

- Since $i: \mathbb{N} \rightarrow\{0,1, \ldots, p-1\}$ is k-automatic and synchronising, we have

$$
\begin{equation*}
p_{i}^{\mathrm{AP}}(\rho)=\operatorname{cxp}(o(\rho)) \tag{2}
\end{equation*}
$$

by the Deshouillers, Drmota, Müllner, Shubin \& Spiegelhofer.

- Combining (1) and (2) yields the claim.

Remarks:

- Decall that we have made simplifying assumptions.
- Same result for polynomial subword complexity.
- The factor $\exp (o(\ell))$ can be improved to $\exp \left(O\left(\ell^{1-\kappa}\right)\right)$ with $\kappa>0$.

Proof of upper bound
We are now ready to show that $p_{a}^{\mathrm{AP}}(\ell) \leq r_{a}^{\ell} \exp (o(\ell))$ for all $\ell \geq 1$.

- Since $s(n) \in M_{i(n)}$ and $\# \tau\left(M_{i}\right) \leq r_{a}$, we have

$$
\begin{equation*}
p_{a}^{\mathrm{AP}}(\ell) \leq r_{a}^{\ell} \times p_{i}^{\mathrm{AP}}(\ell) \tag{1}
\end{equation*}
$$

- Since $i: \mathbb{N} \rightarrow\{0,1, \ldots, p-1\}$ is k-automatic and synchronising, we have

$$
\begin{equation*}
p_{i}^{\mathrm{AP}}(\ell)=\exp (o(\ell)) \tag{2}
\end{equation*}
$$

by the Deshouillers, Drmota, Müllner, Shubin \& Spiegelhofer.

- Combining (1) and (2) yields the claim.

Remarks:

- Decall that we have made simplifying assumptions.
- Same result for polynomial subword complexity.
- The factor $\exp (o(\ell))$ can be improved to $\exp \left(O\left(\ell^{1-\kappa}\right)\right)$ with $\kappa>0$.

Proof of upper bound

We are now ready to show that $p_{a}^{\mathrm{AP}}(\ell) \leq r_{a}^{\ell} \exp (o(\ell))$ for all $\ell \geq 1$.

- Since $s(n) \in M_{i(n)}$ and $\# \tau\left(M_{i}\right) \leq r_{a}$, we have

$$
\begin{equation*}
p_{a}^{\mathrm{AP}}(\ell) \leq r_{a}^{\ell} \times p_{i}^{\mathrm{AP}}(\ell) \tag{1}
\end{equation*}
$$

- Since $i: \mathbb{N} \rightarrow\{0,1, \ldots, p-1\}$ is k-automatic and synchronising, we have

$$
\begin{equation*}
p_{i}^{\mathrm{AP}}(\ell)=\exp (o(\ell)) \tag{2}
\end{equation*}
$$

by the Deshouillers, Drmota, Müllner, Shubin \& Spiegelhofer.

- Combining (1) and (2) yields the claim.

Remarks:

- Recall that we have made simplifying assumptions.
- Same result for polynomial subword complexity.
- The factor $\exp (o(\ell))$ can be improved to $\exp \left(O\left(\ell^{1-\kappa}\right)\right)$ with $\kappa>0$.

Proof of upper bound

We are now ready to show that $p_{a}^{\mathrm{AP}}(\ell) \leq r_{a}^{\ell} \exp (o(\ell))$ for all $\ell \geq 1$.

- Since $s(n) \in M_{i(n)}$ and $\# \tau\left(M_{i}\right) \leq r_{a}$, we have

$$
\begin{equation*}
p_{a}^{\mathrm{AP}}(\ell) \leq r_{a}^{\ell} \times p_{i}^{\mathrm{AP}}(\ell) . \tag{1}
\end{equation*}
$$

- Since $i: \mathbb{N} \rightarrow\{0,1, \ldots, p-1\}$ is k-automatic and synchronising, we have

$$
\begin{equation*}
p_{i}^{\mathrm{AP}}(\ell)=\exp (o(\ell)) \tag{2}
\end{equation*}
$$

by the Deshouillers, Drmota, Müllner, Shubin \& Spiegelhofer.

- Combining (1) and (2) yields the claim.

Remarks:

- necall that we have made simplifying assumptions.
- Same result for polynomial subword complexity.
- The factor $\exp (o(\ell))$ can be improved to $\exp \left(O\left(\ell^{1-\kappa}\right)\right)$ with $\kappa>0$.

Proof of upper bound

We are now ready to show that $p_{a}^{\mathrm{AP}}(\ell) \leq r_{a}^{\ell} \exp (o(\ell))$ for all $\ell \geq 1$.

- Since $s(n) \in M_{i(n)}$ and $\# \tau\left(M_{i}\right) \leq r_{a}$, we have

$$
\begin{equation*}
p_{a}^{\mathrm{AP}}(\ell) \leq r_{a}^{\ell} \times p_{i}^{\mathrm{AP}}(\ell) \tag{1}
\end{equation*}
$$

- Since $i: \mathbb{N} \rightarrow\{0,1, \ldots, p-1\}$ is k-automatic and synchronising, we have

$$
\begin{equation*}
p_{i}^{\mathrm{AP}}(\ell)=\exp (o(\ell)) \tag{2}
\end{equation*}
$$

by the Deshouillers, Drmota, Müllner, Shubin \& Spiegelhofer.

- Combining (1) and (2) yields the claim.

Remarks:

- Recall that we have made simplifying assumptions.
- Same result for polynomial subword complexity.
- The factor $\exp (o(\ell))$ can be improved to $\exp \left(O\left(\ell^{1-\kappa}\right)\right)$ with $\kappa>0$.

Thank you for your attention!

Bonus: Quantitative Cobham's theorem

Theorem (Cobham (1969))
Let $k, \ell \geq 2$ and let $a: \mathbb{N} \rightarrow \Omega$ be a sequence that is both k - and ℓ-automatic. Then

- k and ℓ are multiplicatively dependent, i.e., $\log _{k}(\ell) \in \mathbb{Q}$; or
- a is eventually periodic (and hence automatic in every base).

Question: How similar can a k-automatic sequence be to an ℓ-automatic sequence?

- We already know that they cannot be equal, or even asymptotically equal.
- We need to account for possible correlations with periodic sequences.

Theorem (Adamczewski, K., Müllner)
Let $k, \ell \geq 2$ be multiplicatively independent integers and let $a, b: \mathbb{N} \rightarrow \mathbb{C}$ be k - and ℓ-automatic, respectively. Then

Corollary: Each Gowers uniform k-automatic sequence a is a orthogonal to each ℓ-automatic sequence b,

Bonus: Quantitative Cobham's theorem

Theorem (Cobham (1969))

Let $k, \ell \geq 2$ and let $a: \mathbb{N} \rightarrow \Omega$ be a sequence that is both k - and ℓ-automatic. Then

- k and ℓ are multiplicatively dependent, i.e., $\log _{k}(\ell) \in \mathbb{Q}$; or
- a is eventually periodic (and hence automatic in every base).

Question: How similar can a k-automatic sequence be to an ℓ-automatic sequence?

- We already know that they cannot be equal, or even asymptotically equal.
- We need to account for possible correlations with periodic sequences.

Corollary: Each Gowers uniform k-automatic sequence a is a orthogonal to each
ℓ-automatic sequence b,

Bonus: Quantitative Cobham's theorem

Theorem (Cobham (1969))

Let $k, \ell \geq 2$ and let $a: \mathbb{N} \rightarrow \Omega$ be a sequence that is both k - and ℓ-automatic. Then

- k and ℓ are multiplicatively dependent, i.e., $\log _{k}(\ell) \in \mathbb{Q}$; or
- a is eventually periodic (and hence automatic in every base).

Question: How similar can a k-automatic sequence be to an ℓ-automatic sequence?

- We already know that they cannot be equal, or even asymptotically equal.
- We need to account for possible correlations with periodic sequences.

Theorem (Adamczewski, K., Müllner)

Let $k, \ell \geq 2$ be multiplicatively independent integers and let $a, b: \mathbb{N} \rightarrow \mathbb{C}$ be k - and ℓ-automatic, respectively. Then

$$
\sum_{n<N} a(n) b(n)=\sum_{n<N} a_{\mathrm{str}}(n) b_{\mathrm{str}}(n)+O\left(N^{1-c}\right)
$$

Corollary: Each Gowers uniform k-automatic sequence a is a orthogonal to each
ℓ-automatic sequence b,

Bonus: Quantitative Cobham's theorem

Theorem (Cobham (1969))

Let $k, \ell \geq 2$ and let $a: \mathbb{N} \rightarrow \Omega$ be a sequence that is both k - and ℓ-automatic. Then

- k and ℓ are multiplicatively dependent, i.e., $\log _{k}(\ell) \in \mathbb{Q}$; or
- a is eventually periodic (and hence automatic in every base).

Question: How similar can a k-automatic sequence be to an ℓ-automatic sequence?

- We already know that they cannot be equal, or even asymptotically equal.
- We need to account for possible correlations with periodic sequences.

Theorem (Adamczewski, K., Müllner)

Let $k, \ell \geq 2$ be multiplicatively independent integers and let $a, b: \mathbb{N} \rightarrow \mathbb{C}$ be k - and ℓ-automatic, respectively. Then

$$
\sum_{n<N} a(n) b(n)=\sum_{n<N} a_{\mathrm{str}}(n) b_{\mathrm{str}}(n)+O\left(N^{1-c}\right)
$$

Corollary: Each Gowers uniform k-automatic sequence a is a orthogonal to each ℓ-automatic sequence b,

$$
\sum_{n<N} a(n) b(n)=O\left(N^{1-c}\right)
$$

