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What do combinatorial sequences look like modulo p*?

Example
Catalan numbers count plane trees with n edges:

LA A AT
m{\x\/wwwm

C(Np>0 =1,1,2,5,14,42,132,429, ...
Modulo 2: 1,1,0,1,0,0,0,1,0,0,0,0,0,0,0,1,. ..

C(n) is odd if and only if n+ 1 is a power of 2.
(follows from Kummer 1852)
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Modulo 4: 1,1,2,1,2,2,0,1,2,2,0,2,0,0,0,1,...
Theorem (Eu-Liu—Yeh 2008)

Foralln> 0,
1 ifn+1=22forsomea>0
C(n)mod4 =<2 ifn+1=2°+22forsomeb>a>0
0 otherwise.

In particular, C(n) # 3 mod 4.
Modulo 8: 1,1,2,5,6,2,4,5,6,6,4,2,4,4,0,5,...

Theorem 4.2. Let C,, be the nth Catalan number. First of all, C, g 3 and C,, %3 7 for any n. As
for other congruences, we have

1 ifn=0orl;

2 ifn=2%+2" — 1 for some a > 0;
C. = 4 ifn=2%+2"42°—1forsomec>b>a>0;
"=815 if n=2%—1 for some a > 2;
6 ifn:2“—|—2b—lforsomeb—ZzaZO;
0 otherwise.
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Liu and Yeh (2010) determined C(n) mod 16:

Theorem 5.5. Let ¢, be the n-th Catalan number. First of all, ¢, #16 3,7,9,11,15 for any
n. As for the other congruences, we have
1 B<1,
5 if d(a) =0 and B=2,
13 B =3,
2 . - . B=0o0rp>2,
10 if dla)=1,a=1 and =1
Cn =16 6 . _ (QIZ,ﬁ22) 07‘(()1237['371)7
[ Ay =tazzemd o5 5<1)or(a>3,8>2)
4 ) zr(a) =2 0,
12 if d(a) =2 and { 2r(a) = 1,
8 if d(a) =
0 if d(a) > 4
where a = (CFy(n+1) —1)/2 and B = wa(n+ 1) (or f = min{i | n; = 0}).

They also determined C(n) mod 64.

Better framework: automatic sequences.
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Automatic sequences

s(n)y>0 is p-automatic if there is an automaton that outputs s(n)
when fed the base-p digits of n (least significant digit first).

C(n) mod 4:

=
0/1 <1 2)< 1 < 0 <
@ @ @@

C(9) =7 mod 4.
Since 9 = 10015, C(9) =|2| mod 4.

(C(n) mod 4),50=1,1,2,1,2,2,0,1,2,2, ... is 2-automatic.
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The sequence of Catalan numbers is algebraic:

F =Y C(nx" satisfies x(F+1)?—F=0.
n>1

Omit C(0) = 1 # 0.

Convert to the diagonal of a rational series (Furstenberg 1967):
P=x(y+1)?2-y,so

F dia Y%(XY,Y) 4 y —2xy? — 2xy°
~ O\ POyy)y ) TR X2y —x2)

Theorem (Denef-Lipshitz 1987)

Leta > 1. Let S(x), Q(X) € Zp[x] such that Q(0,...,0) #0 mod p.

Then the coefficient sequence of (diag %) mod p® is p-automatic.

Zp is the set of p-adic integers.
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Automaton size

How big is the (unminimized) automaton for (C(n) mod 2%),>17?

a1 2 3 4 5 6 7 8 9
size | 4 6 15 37 83 194 445 1034 2403
14x23*|32 74 17.0 39.2 90.1 2073 476.7 1096.4 2521.6

height h = deg, P
degree d = deg, P
Upper bound from the construction: pP** "ahd

C(nymod2% P=x(y+12-y h=1 d=2
size < 2182 _ 51179648

Why is the bound so large?
Simpler setting: finite fields.
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Finite fields

Theorem (Christol 1979/1980)

A sequence s(n),>q of elements inF is algebraic if and only if it is
g-automatic.

Two representations: polynomials and automata.

Theorem (Bridy 2017)

If the minimal polynomial P has height h and degree d,
then the minimal automaton has size at most

(1+0(1))g™

where o(1) tends to 0 as any of q, h, d gets large.

Is the bound sharp? We suspect yes.
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Polynomials in Fq[x, y] with maximum unminimized automaton size:

9=2 hld] P | aut.size | g™ | bound
1] 2 xy2 + (x + 1)y +x 7 4 9
2|2 XPy2 + (P x+1)y+x° 14 16 25
3|2 P+ + 1)+ + 1)y +x 68 64 94
4|2 A x+ 12+ (X + X%+ x+ 1)y +x 252 256 311
512 S+ + 1)+ +x+1)y+x 1052 1024 | 1192
6|2 xS+ )2+ (X2 +x+1)y+x 4062 4096 | 4424
7|2 X+ x+ )2+ T+ x* +B x+ Dy +x 16424 | 16384 | 17288
13 ¥+ P+ (x+ 1)y +x 1 8 18
2|3 R x+ 13+ 2+ + )y +x2+x 61 64 93
318 PHx+1)P+ Y2+ +x8+x+1)y+x3+x2 533 512 614
4|3 X Hx+ )P+ P+ )y + x5+ x5+ x 4213 4096 | 4871
1] 4 X+ 0y 4y + (x+ )y +x 20 16 33
2| 4 Cx+ 1y + 3+ P+ x+ )y +x2 +x 216 256 358
3|4 Crx+ 1A+ + 03+ )y +x% +x 3956 4096 | 4870
15 X+ D)y + (x+1)y2 +y+x 37 32 67
2|5 P +x+1)YS +y + P+ X3P +y+x% +x 889 1024 | 1510
35| P+ +0y° +y*+x32 + (x+1)y+x3+x%+x | 43913 | 32768 | 48134
7=3% h [ d [ P [ aut. size [ qhd [ bound

1] 2 X+ 1)y2+y+x 9 9 14

2|2 (XP+x+2)y2+y+x° 79 81 91

32| P+ +2x+1)y2+y+x3+x 727 729 788

4|2 P+ +2)y2 +y+xt +x 6533 | 6561 | 6729
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Can we get Bridy’s bound without algebraic geometry? Yes.

Theorem (Rowland-Stipulanti—Yassawi 2023)

The minimal automaton has size at most

q" + gL (h,d, d) + |logg h| + [loggmax(h,d —1)] + 8.

P e Fqg[x,y], h=deg, P, d=deg, P

Corollary (Bridy)
The minimal automaton has size at most (1 + o(1))g".
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size < q(M+19 41,

op opP
F= diag(W) = [y°]<{,%> sheared Let §y = yg—’;, Q=P/y.
One Cartier operator for each digit 0,1,...,g— 1. Ex. If g = 3, then

M(ao+aix+ax?+---) =a; +ax +ax®+ -

MI(8) = Do (8) = Mo 53) = b (2455

Represent states by polynomials: A, (S) := Ao (SQI1).

Proposition

If S € Fq[x, y] with deg, S < h and deg, S < d, then
@ deg, Mo o(S) < handdegy A\ o(S) <h—1forre{1,...,q—-1}.
@ deg, \ro(S) <d—1forre{0,1,...,9—-1}.
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Goal:

g + C](hq)(dq)ﬁ(h, d,d)+ Llogq hJ + {Iogq max(h, d — 1)} +3

size < @ + |orbp, (F)|-

FF4-vector space of polynomials with size g

W= (xlyl:0<i<h-tand0<j<d-1)

Proposition
Aro(W) C W foreachr e {0,1,...,q—1}.

Therefore every state outside orby,(F) isin W.
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Goal:

q" + g1 c(h d, d) + Llogq h| + [Iogq max(h,d —1)] + 3

lorba, (F)| < P19~ (h,d,d) + |logg h| + [loggmax(h,d —1)] + 3.

L(l, m, n) is related to the Landau function g(n):
9(5) = max(lem(5), lcm(4,1),lecm(3,2),lcm(3,1,1),
lem(2,2,1),lcm(2,1,1,1),lecm(1,1,1,1,1)) =6
We’ll have 3 univariate polynomials R, with degrees < h,d, d.

Factor each R = R{" - Rgk. — period length lcm(deg Ry, . .., deg Ry)
and transient length log, max(ey, . . ., &)

L(h,d,d) = max max lecm(lem(ov), lem(o2), lem(og))
1<i<h oq€Epartitions(i)
1<j<d op€epartitions())
1<k<d ogcpartitions(k)
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Basis of V O W: Information flow under A\go:

I I — — ~.
XOyd—TixTyd=1 .. xh=1,d=lixhd—1 \/ N ( N \(// )
I I S - ~
,,,,,,,,,,,,,,, o 0,d—1 o h,d—1
| : @y W (@)
XOyd-2ix1yd-2 .. yh-1,d-2xh,d-2 o =
| | .
! ! R 2 Ny v +
| [ 2 8 ; A
| P ( Ve > VO < A ‘
| | S N P s -/
I I Y
| |
X0yt | Xty Xh=Tyt ! xhyt
| I 0,0
e | (2%°)
0,0 | 41,0 h-1,0 | yh 0 5
XyT Xy XTym Xy N Va
| |

Xo(S) = No(SRI1) emulates \g o on each border.

Write P = "7 X Ai(y) = 3L Bi(x)y/.
The 3 polynomials R are By, Ay, Ap, which have degrees < h, d, d.

How do we get period length ¢ = Icm(deg Ry, .. ., deg Rx)?
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Let R € Fq4[z] be a square-free polynomial with R(0) # 0 anddeg R > 1.
Factor R = cRy - - - Ry into irreducibles. Let ¢ = Icm(deg Ry, ..., deg Rk).
Then \y(S) = S for all S € Fq[z] with deg S < deg R.

Proposition
The product of all monic irreducible polynomials in F4[z] with degree
dividing ¢ is z9° — z.

F 4 is the splitting field of 29" — z over Fg.

Each element in F . has a minimal polynomial over [y,

so multiplying all those minimal polynomials together gives z9 — z.
Rdivides 1 — z9~1, say RT = 1 — z9°~1.

Therefore the period length of % = 1_2% divides g — 1.

This can be used to show A\j(S) = S.

Can we use the same approach modulo p*?
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Modulo p:

Theorem (slight strengthening of Engstrom 1931)

Let R € Fp[z] with R(0) # 0 and deg R > 1.

Factor R = cR{" - - - R into irreducibles.

Then %, is periodic with period length dividing p''°¢®! L
where e = maxXq<j<k €j and L = Icm1§i§k (pdeg Ri _ 1)

Modulo p®:

Theorem (Engstrom 1931)

LetR € Z/(p*Z)|z] with r := deg R > 1 such that

the coefficients of z° and z" in R are nonzero modulo p.
Then lR is periodic with period length dividing p®~'m
where m is the period length of % mod p.

Improved bound: (1 -+ o(1))p*N where N = p?@=" (hd — %) + tpo~1.
Singly exponential bound?
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mod 8: . mod 16:

These automata project to each other.
So there is an inverse limit profinite automaton. Can we describe it?
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(C(n) mod 2)>0: Q= (P/ymod2)=xy+1+%

So = 2x%y°% + <2x2 +X>y2+ <2x2+ 1>y+2x2 +3x
M00(So) = 2x°y? + (2x2 + 2x>y +2x2 4+ 2x + 22
Mo(So) = xy2 + (x +3)y + 3x + 1 +37x

Modulo 2, these are divisible by Q.
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(C(n) mod 2)5>0: Q= (P/ymod2)=xy+1+%

So=yQ+2(x2y + x2y% + (X4 x+1 )y + X2 +x)
Ao0,0(So) = OQ+2<x2y2 + (x2 +x>y+x2 + X+ X72>
>\1,o(30):(y+1)0+2(xy+1 +§)

Modulo 2, these are divisible by Q.
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Let D= {0,1,...,p—1}.

Every state in the automaton is of the form

a—1_1

(To + T 5+ T2(5)%+ - + Tact (%)OH)Q’)

where T; € D[x,y,y '] foreachic {0,1,...,a —1}.

We can bound deg, T, deg, Tj, and mindeg,, T;.
Singly exponential upper bound:

P + lorbay (F)| = (1 + o(1))p"
where N = ta(a+1)((2hd — 1)a + hd +1).

When o = 1, we recover Bridy’s (1 + o(1))p" for Fp,.
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