On the evaluation of infinite products involving automatic sequences

John M. Campbell
Dalhousie University

April 22024

Infinite products and automatic sequences

J.O. Shallit, On infinite products associated with sums of digits, J. Number Theory 21 (1985) 128-134.

$$
u_{0}=0 \quad u_{i+1}= \begin{cases}0 & \text { if } \prod_{0 \leq j \leq i}\left(\frac{2 j+1}{2 j+2}\right)^{(-1)^{u_{j}}}>\frac{1}{\sqrt{2}} \\ 1 & \text { otherwise }\end{cases}
$$

Shallit conjectured that u_{i} equals the $i^{\text {th }}$ entry t_{i} of the Thue-Morse sequence.
$t_{i}=\#$ of ones in the binary expansion of $i \bmod 2$.

Infinite products and automatic sequences

$$
\begin{gathered}
u_{0}=0 \\
0.5=\prod_{0 \leq j \leq 0}\left(\frac{2 j+1}{2 j+2}\right)^{(-1)^{u_{j}}}<\frac{1}{\sqrt{2}} \\
\therefore u_{1}=1 \\
0.666 \ldots=\prod_{0 \leq j \leq 1}\left(\frac{2 j+1}{2 j+2}\right)^{(-1)^{u_{j}}}<\frac{1}{\sqrt{2}} \\
\therefore u_{2}=1 \\
0.8=\prod_{0 \leq j \leq 2}\left(\frac{2 j+1}{2 j+2}\right)^{(-1)^{u_{j}}}>\frac{1}{\sqrt{2}}
\end{gathered}
$$

Infinite products and automatic sequences

J.-P. Allouche, H. Cohen, Dirichlet series and curious infinite products, Bull. London Math. Soc. 17 (1985) 531-538.
$q \in \mathbb{N}_{\geq 2}$
ζ : an $r^{\text {th }}$ root of unity such that $\zeta \neq 1$ and $r \mid q$
$s_{q}(n)$: the sum of the digits of n in the q-ary expansion

$$
\begin{array}{r}
f(\mathcal{S})=\sum_{n=0}^{\infty} \frac{\zeta^{s_{q}(n)}}{(n+1)^{\mathcal{S}}} \\
g(\mathcal{S})=\sum_{n=1}^{\infty} \frac{\zeta^{s_{q}(n)}}{n^{\mathcal{S}}}
\end{array}
$$

Infinite products and automatic sequences

J.-P. Allouche, H. Cohen, Dirichlet series and curious infinite products, Bull. London Math. Soc. 17 (1985) 531-538.

$$
\begin{aligned}
f(\mathcal{S}) & =\sum_{a=0}^{q-1} \sum_{n=0}^{\infty} \zeta^{s_{q}(q n+a)}(q n+a+1)^{-\mathcal{S}} \\
& =\sum_{a=0}^{q-1} \zeta^{a} \sum_{n=0}^{\infty} \zeta^{s_{q}(n)}(q(n+1)-(q-a-1))^{-\mathcal{S}} \\
& =\sum_{a=0}^{q-1} \zeta^{q} q^{-\mathcal{S}} \sum_{n=0}^{\infty} \zeta^{s_{q}(n)}(n+1)^{-\mathcal{S}}\left(1-\frac{q-a-1}{q(n+1)}\right)^{-\mathcal{S}} \\
& =\frac{1}{q^{\mathcal{S}}} \sum_{b=0}^{q-1} \zeta^{-b-1} \sum_{n=0}^{\infty} \zeta^{s_{q}(n)}(n+1)^{-\mathcal{S}} \sum_{k=0}^{\infty}\binom{\mathcal{S}+k-1}{k} \frac{b^{k}}{(n+1)^{k} q^{k}}
\end{aligned}
$$

where $b=q-a-1$. (The expression involving " 0^{0} " is omitted by convention).

Infinite products and automatic sequences

Observe that $\sum_{b=0}^{q-1} \zeta^{-b-1}=0$.

Theorem (Allouche \& Cohen, 1985)
The Dirichlet series $f(\mathcal{S})$ can be analytically continued to an entire function which vanishes at all non-positive integers and satisfies

$$
f(\mathcal{S})=\sum_{k=1}^{\infty}\binom{\mathcal{S}+k-1}{k} \frac{f(\mathcal{S}+k)}{q^{\mathcal{S}}+k}\left(\sum_{b=0}^{q-1} \zeta^{-b-1} b^{k}\right) .
$$

This can be applied to obtain

$$
\begin{gathered}
\zeta f(\mathcal{S})\left(1-\zeta^{q-1} q^{-\mathcal{S}}\right)=g(\mathcal{S})\left(1-q^{-\mathcal{S}}\right) \\
f^{\prime}(0)=-\log q /(\zeta-1)
\end{gathered}
$$

Infinite products and automatic sequences

J.-P. Allouche, H. Cohen, Dirichlet series and curious infinite products, Bull. London Math. Soc. 17 (1985) 531-538.

$$
\begin{aligned}
f^{\prime}(0) & =\sum_{k=1}^{\infty} q^{-k} f(k) \lim _{\mathcal{S} \rightarrow 0} \frac{1}{\mathcal{S}}\binom{\mathcal{S}+k-1}{k}\left(\sum_{b=0}^{q-1} \zeta^{-b-1} b^{k}\right) \\
& =\sum_{k=1}^{\infty} q^{-k} f(k) k^{-1}\left(\sum_{b=0}^{q-1} \zeta^{-b-1} b^{k}\right) \\
& =\sum_{b=0}^{q-1} \zeta^{-b-1} \sum_{n=0}^{\infty} \zeta^{s_{q}(n)} \sum_{k=1}^{\infty} k^{-1} b^{k} q^{-k}(n+1)^{-k} \\
& =-\sum_{m=0}^{\infty} \zeta^{s_{q}(m)} \log \left(\frac{m+1}{q(\lfloor m / q\rfloor+1)}\right) .
\end{aligned}
$$

Infinite products and automatic sequences

Theorem (Allouche \& Cohen, 1985)
The following equality holds for q and ζ as specified:

$$
\sum_{m=0}^{\infty} \zeta^{s_{q}(m)} \log \left(\frac{m+1}{q(\lfloor m / q\rfloor+1)}\right)=(\log q) /(\zeta-1) .
$$

```
ln[522]:= q = 8; \zeta= i;
    N[ [ < m=0 2000000}\mp@subsup{\zeta}{}{5[q,m] }\operatorname{Log}[\frac{m+1}{q(Floor[m/q] +1)}]
    N[Log[q] / (\zeta-1)]
Out[[523]= -1.03972-1.03972 i
Out[524]= -1.03972-1.03972 i
```


Future research

$s_{q}(n)$: the sum of the digits of n in the q-ary expansion
$b(n)$: the $n^{\text {th }}$ evil number (i.e., with an even number of ones in its base-2 expansion)

$$
2^{-\frac{\pi}{2 \sqrt{3}}}=\prod_{n=1}^{\infty}\left(\frac{1+b(n)}{2 n}\right)^{\frac{\left(-\frac{1}{3}\right)^{\frac{s_{2}(b(n))}{2}}}{1+s_{2}(b(n))}}
$$

This recalls a number of product identities due to Gosper, including:

$$
2^{\frac{2}{\pi}}=\lim _{n \rightarrow \infty} \prod_{m=n}^{2 n} \frac{\pi}{2 \tan ^{-1} m}
$$

Infinite products and the period-doubling sequence

J.M. Campbell, Infinite products involving the period-doubling sequence, Monatsh. Math. 203 (2024) 765-778.

Allouche and Cohen's approach:
Dirichlet series (involving the sum-of-digits function) \longrightarrow summation "tricks" \longrightarrow analytic continuation \longrightarrow
a closed form for the derivative at zero

A different but related approach:
Start with recursive properties of an automatic sequence \longrightarrow "translate" these properties into an infinite product identity \longrightarrow search for a reduction to an elementary function \longrightarrow apply integral operators to an equivalent series identity

Infinite products and automatic sequences

J.-P. Allouche, S. Riasat, J. Shallit, More infinite products:

Thue-Morse and the gamma function, Ramanujan J. 49 (2019) 115-128.

The Woods-Robbins product identity:

$$
\prod_{n=0}^{\infty}\left(\frac{2 n+1}{2 n+2}\right)^{(-1)^{t_{n}}}=\frac{1}{\sqrt{2}}
$$

Related evaluations due to Allouche, Riasat, and Shallit:

$$
\begin{aligned}
& \prod_{n=0}^{\infty}\left(\frac{4 n+1}{4 n+3}\right)^{(-1)^{t_{n}}}=\frac{1}{2} \\
& \prod_{n=0}^{\infty}\left(\frac{(4 n+1)(4 n+4)}{(4 n+2)(4 n+3)}\right)^{t_{n}}=\frac{\pi^{3 / 4} \sqrt{2}}{\Gamma\left(\frac{1}{4}\right)}
\end{aligned}
$$

Infinite products and automatic sequences

J.-P. Allouche, S. Riasat, J. Shallit, More infinite products:

Thue-Morse and the gamma function, Ramanujan J. 49 (2019) 115-128.

$$
\begin{gathered}
f(a, b):=\prod_{n=1}^{\infty}\left(\frac{n+a}{n+b}\right)^{(-1)^{t_{n}}} \\
g(x):=\frac{f\left(\frac{x}{2}, \frac{x+1}{2}\right)}{x+1} \\
f(a, b)=\frac{g(a)}{g(b)}
\end{gathered}
$$

"Translate" the recursive properties of t_{n} into an infinite product identity

$$
(-1)^{t_{2 n}}=(-1)^{t_{n}} \quad(-1)^{t_{2 n+1}}=-(-1)^{t_{n}}
$$

The period-doubling sequence

$d_{n}=$ the highest power of 2 dividing $n+1$, modulo 2 .

The fixed point of the morphism on $\{0,1\}^{*}$ s.t. $0 \mapsto 01$ and $1 \mapsto 00$

$$
\left(d_{n}: n \in \mathbb{N}_{0}\right)=(0,1,0,0,0,1,0,1,0,1,0,0,0,1,0,0,0,1,0,0, \ldots)
$$

A motivating result

Catalan's constant: $G=\frac{1}{1^{2}}-\frac{1}{3^{2}}+\cdots$

$$
\prod_{n=1}^{\infty}\left(\left(\frac{n+2}{n}\right)^{n+1}\left(\frac{4 n+3}{4 n+5}\right)^{4 n+4}\right)^{d_{n}}=\frac{e^{\frac{2 G}{\pi}}}{\sqrt{2}}
$$

Observe that this is not of the form

$$
\prod_{n} R(n)^{a(n)}
$$

for a rational function $R(n)$ and an automatic sequence $a(n)$.
Observe the combination of fundamental constants, which recalls

$$
e^{\pi i}+1=0
$$

The recursivity of the period-doubling sequence

0,1

$$
d_{2 n}=0 \quad d_{4 n+1}=1 \quad d_{4 n+3}=d_{n}
$$

$$
\prod_{n=1}^{\infty}\left(\frac{R(n)}{R(4 n+3)}\right)^{d_{n}}=\prod_{n=0}^{\infty} R(4 n+1)
$$

A similar approach was applied by Allouche, Riasat, and Shallit to evaluate products of the forms

$$
\prod_{n=1}^{\infty} S(n)^{(-1)^{t_{n}}} \quad \text { and } \quad \prod_{n=1}^{\infty} S(n)^{t_{n}}
$$

The period-doubling sequence and the Г-function

$$
\prod_{n=1}^{\infty}\left(\frac{R(n)}{R(4 n+3)}\right)^{d_{n}}=\prod_{n=0}^{\infty} R(4 n+1)
$$

It was known to Euler that convergent infinite products of rational functions admit evaluations in terms of $\Gamma(x)=\int_{0}^{\infty} u^{x-1} e^{-u} d u$ The reflection formula: $\Gamma(x) \Gamma(1-x)=\frac{\pi}{\sin (\pi x)}$

$$
\begin{aligned}
\prod_{n=1}^{\infty}\left(\frac{R(n)}{R(4 n+3)}\right)^{d_{n}} & =e(n) \\
\sum_{n=1}^{\infty} d_{n} \ln \left(\frac{R(n)}{R(4 n+3)}\right) & =\ln (e(n))
\end{aligned}
$$

An experimental approach

Set

$$
R(n)=1-\frac{1}{a n^{2}+b n+c},
$$

where a, b, and c are real parameters such that $a \neq 0$ and $a+b+c \neq 0$. Then $\prod_{n=1}^{\infty}\left(\frac{R(n)}{R(4 n+3)}\right)^{d_{n}}=\prod_{n=0}^{\infty} R(4 n+1)$ reduces to

$$
\frac{a+b+c-1}{a+b+c} \Gamma\left[\begin{array}{r}
\frac{-\sqrt{b^{2}-4 a c}+10 a+b}{8 a}, \\
\frac{-\sqrt{b^{2}-4 a c}+10 a+b}{8 a} \\
\frac{-4 a c+4 a+b^{2}}{}+10 a+b \\
8 a
\end{array}, \frac{\sqrt{-4 a c+4 a+b^{2}}+10 a+b}{8 a}\right] .
$$

Systematically search for combinations of input parameters that yield a reduction to an elementary function.

A family of products involving d_{n}

Lemma

Let $a \neq 0$ be a real parameter. The equality

$$
\prod_{n=1}^{\infty}\left(\frac{16\left(a+2 a n+a n^{2}-1\right)}{16 a+32 a n+16 a n^{2}-1}\right)^{d_{n}}=\cos \left(\frac{\pi}{4 \sqrt{a}}\right)
$$

then holds.
$b=2 a$ and $c=a$

$$
\prod_{n=1}^{\infty}\left(\frac{16(2 n+1)(2 n+3)}{(8 n+7)(8 n+9)}\right)^{d_{n}}=\frac{\sqrt{2+\sqrt{2}}}{2}
$$

An integration-based approach

Theorem

The following product evaluation holds:

$$
\prod_{n=1}^{\infty}\left(\frac{16(n+2)^{n+2}}{n^{n}} \frac{(4 n+3)^{4 n+3}}{(4 n+5)^{4 n+5}}\right)^{d_{n}}=\frac{1}{2} e^{\frac{2 G}{\pi}}
$$

Set $a=\frac{1}{\alpha^{2}}>0$

$$
\sum_{n=1}^{\infty} d_{n} \ln \left(\frac{16(1+n-\alpha)(1+n+\alpha)}{(4+4 n-\alpha)(4+4 n+\alpha)}\right)=\ln \left(\cos \left(\frac{\pi \alpha}{4}\right)\right)
$$

An antiderivative with respect to α of the right-hand side is

$$
\frac{1}{8} i \pi \alpha^{2}-\alpha \ln \left(1+e^{\frac{i \pi \alpha}{2}}\right)+\alpha \ln \left(\cos \left(\frac{\pi \alpha}{4}\right)\right)+\frac{2 i \operatorname{Li} i_{2}\left(-e^{\frac{i \pi \alpha}{2}}\right)}{\pi}
$$

An integration-based approach

Lemma

For a real parameter $b \neq 0$, the equality
$\prod_{n=1}^{\infty}\left(\frac{(4 n+3)(4 n+5)\left(b n^{2}+2 b n-2\right)}{n(n+2)\left(16 b n^{2}+32 b n+15 b-2\right)}\right)^{d_{n}}=\sqrt{2} \cos \left(\frac{\pi}{4} \sqrt{\frac{b+2}{b}}\right)$
holds.
This can be used to prove the motivating result given earlier. We set b as $\frac{2}{\beta^{2}-1}$ for $0<\beta<1$.
\longrightarrow a series expansion for $\ln \left(\sqrt{2} \cos \left(\frac{\pi \beta}{4}\right)\right)$
\longrightarrow an antiderivative of the form
$\frac{1}{8} i \pi \beta^{2}-\beta \ln \left(1+e^{\frac{i \pi \beta}{2}}\right)+\beta \ln \left(\sqrt{2} \cos \left(\frac{\pi \beta}{4}\right)\right)+\frac{2 i \operatorname{Li}_{2}\left(-e^{\frac{i \pi \beta}{2}}\right)}{\pi}$.

Apéry's constant

Apéry's constant: $\zeta(3)=1+\frac{1}{2^{3}}+\frac{1}{3^{3}}+\cdots$
Theorem
The evaluation

$$
\prod_{n=1}^{\infty}\left(\frac{(4 n+3)^{16}(4 n+5)^{16}}{2^{64} n(n+1)^{30}(n+2)}\right)^{\frac{d_{n}(n+1)^{2}}{2}}=\frac{e^{\frac{2 G}{\pi}-\frac{21 \zeta(3)}{8 \pi^{2}}}}{\sqrt[4]{2}}
$$

holds.
We follow a similar approach as before, but with the use of $\beta \int \cdot d \beta$ instead of $\int \cdot d \beta$.

Further results

Theorem
The evaluation

$$
\prod_{n=1}^{\infty}\left(\frac{\left(\frac{(4 n+3)(4 n+5)}{16}\right)^{(4 n+3)(4 n+5)}}{(n+1)^{30(n+1)^{2}}(n(n+2))^{n(n+2)}}\right)^{d_{n}}=\frac{1}{2} e^{\frac{4 G}{\pi}-\frac{21 \zeta(3)}{4 \pi^{2}}}
$$

holds.
There is a close connection to log-sine integrals and the Clausen function, and this can be used to obtain the following.

$$
\prod_{n=1}^{\infty}\left(\frac{16(n+3)^{4}(n+2)^{4 n+8}}{(n+1)^{3 n+3}(n+5)^{n+5}(2 n+3)^{4}}\right)^{d_{n}}=\frac{\pi^{2}}{e^{2}}
$$

Future/ongoing research

- Applications via Abel-type summation lemmas
- Mimic or build upon the given techniques concerning t_{n} and d_{n} using automatic sequences much more generally
- Develop techniques for evaluating

$$
\prod_{n}(f(n))^{a(n)}
$$

for non-rational functions $f(n)$

Future/ongoing research

Recall:

$$
\prod_{n=1}^{\infty}\left(\frac{R(n)}{R(4 n+3)}\right)^{d_{n}}=\prod_{n=0}^{\infty} R(4 n+1)
$$

Instead of restricting R to a rational function in the hope of the right-hand reducing to an elementary function, how could we instead make use of known results on integrals as in $\int \ln s(z) d z$ for a special function $s(z)$?
Gosper's integral:

$$
\begin{aligned}
& \int_{0}^{\frac{1}{2}} \ln \Gamma(z+1) d z=\frac{\gamma+3 \ln \pi}{8}-\frac{\ln 2}{6}-\frac{3 \zeta^{\prime}(2)}{4 \pi^{2}}-\frac{1}{2} \\
& \prod_{n=1}^{\infty}\left(\frac{1}{2 n+4} \frac{(2 n+2)^{14 n+16}(2 n+6)^{2 n+5}}{(2 n+1)^{4 n+3}(2 n+3)^{12 n+17}}\right)^{t(n)}=\frac{A^{12}}{2^{\frac{13}{3}}}
\end{aligned}
$$

A: The Glaisher-Kinkelin constant

Future/ongoing research

Recall the above antiderivatives involving

$$
\operatorname{Li}_{2}\left(-e^{\frac{i \pi \alpha}{2}}\right)
$$

This motivates an exploration of the relationship between automatic sequences and closed forms for:

- The Legendre χ_{2}-function,
- The inverse tangent integral Ti_{2},
- The Clausen function Cl_{2}.

