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Hats and anti-Hats

Smith, Myers, Kaplan and Goodman-Strauss, arXiv:2303.10798

Hats and anti-Hats together can tile the plane, but only aperiodically

Ratio of Hats to anti-Hats is τ4, with τ = 1
2(1 +

√
5 ), so two classes
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Predecessors
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Why care ?

Lots of fun ... for everyone !

First purely geometric monotile

Dense sphere packings and beyond

The ‘crystallisation problem’

Unique ground states ?

Dynamics and topology

Links to harmonic analysis

Do we understand Euclidean space ?

...
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The Hat family of tilings

There are many hat-like tilings:

Hats inevitably combine into clusters, forming meta-tiles

A combinatorial inflation induces a hierarchical structure

Many deformations are possible without changing the (local)

combinatorial structure: Hats, Turtles, ... and the like

Questions:

What is the overall structure of such tilings ?

Is there Bragg diffraction ? Only Bragg diffraction ?

Are they projection tilings ? Are they quasiperiodic ?
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Hats and meta-tiles
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Shape changes in R
2

The Hat deformations can be understood as shape changes (SC):

A shape change is a map f from (classes) of edges to R
2

SC functions must be closed:
∑

e∈∂T f(e) = 0 for any tile T

Some SC functions induce MLD transformations

We care about SC modulo MLD transformations

Clark & Sadun: SC / MLD ≃ Ȟ1(X,R2)

X = {t+ T : t ∈ R2} is the tiling space of a tiling T

Ȟ1(X,R2) is a (computable !) cohomology group of X
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More shape changes

Types of SCs / cohomology classes:

Linear maps — essential change, but well understood

Asymptotically negligible SCs — no effect on long-range order

Other SCs — essential, but absent for the Hat family of tilings !

Theorem (BGS ‘23)

The Hat tiling possesses no non-trivial, asymptotically relevant SCs.

The asymptotically negligible SCs lead to topologically conjugate

dynamical systems.

All members of the Hat family of tilings thus share their essential

topological and spectral features.
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Self-similar meta-tiles: CAP tiling

One particular choice of (deformed) meta-tiles leads to a self-similar

tiling, thus with a geometric inflation, not only a combinatorial one
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Inflation for CAP meta-tiles

Not a stone inflation, but each tile belongs to a unique super-tile
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Spectrum of CAP

Theorem (BGS ‘23)

The dynamical system of the CAP tiling, under the translation

action of R2, is strictly ergodic, and the spectrum is pure point, with

continuous eigenfunctions (topological pure point spectrum).

The same applies to all tilings from the topological conjugacy class.

Proof

Solomyak’s overlap algorithm can be applied, and gives: YES !

Strict ergodicity of the system and continuity of eigenfunctions

follows from the inflation process. �

Done ... but no real insight ...
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Model set approach

Alternative: Construct MLD Delone set of control points, lift to

R
4, and prove that they form a one-component regular model set ...
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Pure point spectra

CPS

R
d π

←−−− R
d × R

m
π
int−−−−→ R

m

∪ ∪ ∪ dense

π(L)
1−1
←−−−− L −−−−→ π

int
(L)

‖ ‖

L
⋆

−−−−−−−−−−−−−−−−−−−−→ L
⋆

(Meyer 1972)

(Moody 1997)

Model set Λ = {x ∈ L : x⋆ ∈ W } (assumed regular)

with W ⊂ R
m compact, λL(∂W ) = 0

Diffraction γ̂ =
∑

k∈L⊛ |A(k)|2 δk pure point !! (ω = δ
Λ

)

with L⊛ = π(L∗) (Fourier module of Λ)

and amplitude A(k) = dens(Λ)
vol(W ) 1̂W (−k⋆)
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Diffraction and spectra

L A S E R

Wiener’s diagram obstacle f(x), with f̃(x) := f(−x)

f
∗−−−→ f ∗ f̃

F

y
yF

f̂
|.|2−−−→ |f̂ |2
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Example: Ammann–Beenker tiling

Tiling and point set Diffraction
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The CAP window
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The model set structure

Inflation Delone set Λ is a subset of a regular model set Λ′, where

the latter defines a system with topological pure point spectrum.

Inflation determines ρ = dens(Λ) via relative tile frequencies (from

PF theory) and tile areas (from geometry), giving ρ = 2
3τ

2
√
3.

Projection gives ρ′ = dens(Λ′) as window area times density of

embedding lattice, ρ′ = 2
3τ

2
√
3, hence ρ′ = ρ.

=⇒ Λ has pure point diffraction

=⇒ (XΛ,R
2) has pure point dynamical spectrum

=⇒ Topological pure point spectrum
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Example: Fibonacci shape change

Shape changes Change of relative interval lengths

Projection Shear of window gives shape change

Meaning Shape change is re-projection
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Back to the Hat
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Diffraction spectra

CAP Hat
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Spectres and shadow Spectres

Smith, Myers, Kaplan and Goodman-Strauss, arXiv:2303.17743

https://cs.uwaterloo.ca/∼csk/spectre/

Frequency ratio of Spectres to shadow-Spectres is 4 +
√
15

Modification of a lattice polygon to a real monotile
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Same old story ...

– p. 23



Same old story ... only even more so
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Control points and window
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Outlook

Calculate eigenfunctions !

Harmonic analysis of Rauzy fractals

Interesting Markov partitions

FB coefficients via matrix cocycles

Other monotiles ?

Monotiles for d > 3 ?

Role of almost periodicity ?

Do we understand Euclidean space ?

This is only the beginning ...
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