Restivo Salemi property for α-power free languages with $\alpha \geq 5$ and $k \geq 3$ letters

Josef Rukavicka

Department of Mathematics, Faculty of Nuclear Sciences and Physical Engineering,

Czech Technical University in Prague

May 2024

Finite and Infinite Words, Powers

A - alphabet with q letters, where q is finite.

Finite and Infinite Words, Powers

A - alphabet with q letters, where q is finite.

A finite word of length n is a sequence $u_{1} u_{2} \cdots u_{n}$ with $u_{i} \in \mathcal{A}$.

Finite and Infinite Words, Powers

A - alphabet with q letters, where q is finite.

A finite word of length n is a sequence $u_{1} u_{2} \cdots u_{n}$ with $u_{i} \in \mathcal{A}$.

A right infinite word is a sequence $u_{1} u_{2} \cdots$ with $u_{i} \in A$.

Finite and Infinite Words, Powers

A - alphabet with q letters, where q is finite.

A finite word of length n is a sequence $u_{1} u_{2} \cdots u_{n}$ with $u_{i} \in \mathcal{A}$.

A right infinite word is a sequence $u_{1} u_{2} \cdots$ with $u_{i} \in A$.

A left infinite word is a sequence $\cdots u_{2} u_{1}$ with $u_{i} \in A$.

Finite and Infinite Words, Powers

A - alphabet with q letters, where q is finite.

A finite word of length n is a sequence $u_{1} u_{2} \cdots u_{n}$ with $u_{i} \in \mathcal{A}$.

A right infinite word is a sequence $u_{1} u_{2} \cdots$ with $u_{i} \in A$.

A left infinite word is a sequence $\cdots u_{2} u_{1}$ with $u_{i} \in A$.

A bi-infinite word is a sequence $\cdots u_{-2} u_{-1} u_{0} u_{1} u_{2} \cdots$ with $u_{i} \in A$.

Finite and Infinite Words, Powers

An α-power of a nonempty word r is the word $r^{\alpha}=r r \cdots r t$ such that $\frac{\left|r^{\alpha}\right|}{|r|}=\alpha$ and t is a prefix of r, where $\alpha>0$ is a rational number.

Finite and Infinite Words, Powers

An α-power of a nonempty word r is the word $r^{\alpha}=r r \cdots r t$ such that $\frac{\left|r^{\alpha}\right|}{|r|}=\alpha$ and t is a prefix of r, where $\alpha>0$ is a rational number.

[^0]Powers with "+"

Let w be a finite or infinite word.

Powers with "+"

Let w be a finite or infinite word.
Let
$\Theta(w)=\left\{(r, \alpha) \mid r^{\alpha}\right.$ is a factor of w and r is a nonempty word and α is a positive rational number $\}$.

Powers with "+"

Let w be a finite or infinite word.
Let

$$
\begin{array}{r}
\Theta(w)=\left\{(r, \alpha) \mid r^{\alpha} \text { is a factor of } w \text { and } r\right. \text { is a nonempty word and } \\
\qquad \alpha \text { is a positive rational number }\} .
\end{array}
$$

We say that w is α-power free if

$$
\{(r, \beta) \in \Theta(w) \mid \beta \geq \alpha\}=\emptyset
$$

and we say that w is α^{+}-power free if

$$
\{(r, \beta) \in \Theta(w) \mid \beta>\alpha\}=\emptyset
$$

Powers with "+"

Let w be a finite or infinite word.
Let

$$
\begin{array}{r}
\Theta(w)=\left\{(r, \alpha) \mid r^{\alpha} \text { is a factor of } w \text { and } r\right. \text { is a nonempty word and } \\
\alpha \text { is a positive rational number }\} .
\end{array}
$$

We say that w is α-power free if

$$
\{(r, \beta) \in \Theta(w) \mid \beta \geq \alpha\}=\emptyset
$$

and we say that w is α^{+}-power free if

$$
\{(r, \beta) \in \Theta(w) \mid \beta>\alpha\}=\emptyset
$$

It is a used convention to define that if the word w is " α-power-free" then α denotes a number or a "number with + ".

Powers

The power free words include well known square free (2-power free), overlap free (2^{+}-power free), and cube free words (3-power free).

Powers

The power free words include well known square free (2-power free), overlap free (2^{+}-power free), and cube free words (3-power free).

It is easy to see that α-power free words form a factorial language; it means that all factors of a α-power free word are also α-power free words.

Powers

The power free words include well known square free (2-power free), overlap free (2^{+}-power free), and cube free words (3-power free).

It is easy to see that α-power free words form a factorial language; it means that all factors of a α-power free word are also α-power free words.

It is also easy to see that the reverse function preserves the power-freeness.

Square free infinite word

[A. Thue,Über unendliche Zeichenreihen, Skrifter udgivne af
Videnskabsselskabet i Christiania: Mathematisk-naturvidenskabelig Klasse, (1906).]

Square free infinite word

[A. Thue,Über unendliche Zeichenreihen, Skrifter udgivne af
Videnskabsselskabet i Christiania: Mathematisk-naturvidenskabelig Klasse, (1906).]

Axel Thue proved the existence of infinite square-free words on an alphabet with three letters

Square free infinite word

[A. Thue,Über unendliche Zeichenreihen, Skrifter udgivne af
Videnskabsselskabet i Christiania: Mathematisk-naturvidenskabelig Klasse, (1906).]

Axel Thue proved the existence of infinite square-free words on an alphabet with three letters

Some other generalizations of power-free words are being studied; for example abelian powers, pseudo squares, and reverse powers.

Dejean's Conjecture

We define the repetition threshold $R T(k)$ to be the infimum of all rational numbers α such that there exists an infinite α-power-free word over an alphabet with k letters.

Dejean's Conjecture

We define the repetition threshold $R T(k)$ to be the infimum of all rational numbers α such that there exists an infinite α-power-free word over an alphabet with k letters.

Dejean's conjecture states that $R T(2)=2, R T(3)=\frac{7}{4}, R T(4)=\frac{7}{5}$, and $R T(k)=\frac{k}{k-1}$ for each $k>4$. [Dejean, Sur un théorème de Thue, Journal of Combinatorial Theory, 1972.]

Dejean's Conjecture

We define the repetition threshold $R T(k)$ to be the infimum of all rational numbers α such that there exists an infinite α-power-free word over an alphabet with k letters.

Dejean's conjecture states that $R T(2)=2, R T(3)=\frac{7}{4}, R T(4)=\frac{7}{5}$, and $R T(k)=\frac{k}{k-1}$ for each $k>4$. [Dejean, Sur un théorème de Thue, Journal of Combinatorial Theory, 1972.]

Dejean's conjecture has been proved by the work of several authors. The final step in 2011 by [Currie and Rampersad, A proof of dejean's conjecture, Math. Comp., 2011.]

Dejean's Conjecture

Then Dejean's conjecture implies that there are infinitely many finite α-power free words over Σ_{k}, where $\alpha>R T(k)$.

Restivo and Salemi Problems

In 1985, Restivo and Salemi presented a list of five problems concerning the extendability of power free words. [Restivo and Salemi, Some decision results on nonrepetitive words, Combinatorial Algorithms on Words, 1985]

Restivo and Salemi Problems

In 1985, Restivo and Salemi presented a list of five problems concerning the extendability of power free words. [Restivo and Salemi, Some decision results on nonrepetitive words, Combinatorial Algorithms on Words, 1985]

Problem 1: Given an α-power-free word u, decide whether for every positive integer n there are words w, v such that $|w|=|v|=n$ and such that:

- $u v$ is α-power-free,
- wu is α-power-free, and
- wuv is α-power-free.

Restivo and Salemi Problems

In 1985, Restivo and Salemi presented a list of five problems concerning the extendability of power free words. [Restivo and Salemi, Some decision results on nonrepetitive words, Combinatorial Algorithms on Words, 1985]

Problem 1: Given an α-power-free word u, decide whether for every positive integer n there are words w, v such that $|w|=|v|=n$ and such that:

- $u v$ is α-power-free,
- wu is α-power-free, and
- wuv is α-power-free.

Problem 2: Given an α-power-free word u, construct, if it exists, an infinite α-power-free word having u as a prefix.

Restivo and Salemi Problems

Problem 3: Given an arbitrary positive integer k, does there exists an α-power-free word u such that:

- there exists a word v of length k such that $u v$ is α-power-free and
- for every word \bar{v} with $|\bar{v}|>|v|$ we have that $u \bar{v}$ is not α-power-free.

Restivo and Salemi Problems

Problem 3: Given an arbitrary positive integer k, does there exists an α-power-free word u such that:

- there exists a word v of length k such that $u v$ is α-power-free and
- for every word \bar{v} with $|\bar{v}|>|v|$ we have that $u \bar{v}$ is not α-power-free.

Problem 4: Given finite α-power-free words u and v, decide whether there is a transition word w, such that $u w u$ is α-power free.

Restivo and Salemi Problems

Problem 3: Given an arbitrary positive integer k, does there exists an α-power-free word u such that:

- there exists a word v of length k such that $u v$ is α-power-free and
- for every word \bar{v} with $|\bar{v}|>|v|$ we have that $u \bar{v}$ is not α-power-free.

Problem 4: Given finite α-power-free words u and v, decide whether there is a transition word w, such that $u w u$ is α-power free.

Problem 5: Given finite α-power-free words u and v, find a transition word w, if it exists.

Restivo and Salemi Problems

[Petrova and Shur, Transition property for cube-free words, Computer Science - Theory and Applications, 2019.]

Restivo and Salemi Problems

[Petrova and Shur, Transition property for cube-free words, Computer Science - Theory and Applications, 2019.]

The problems 4 and 5 are solved for some overlap free binary words.

Restivo and Salemi Problems

[Petrova and Shur, Transition property for cube-free words, Computer Science - Theory and Applications, 2019.]

The problems 4 and 5 are solved for some overlap free binary words.

For every pair (u, v) of cube free words over an alphabet with k letters, if u can be infinitely extended to the right and v can be infinitely extended to the left respecting the cube-freeness property, then there exists a "transition" word w over the same alphabet such that $u w v$ is cube free.

Restivo and Salemi Property

[Shur, Two-Sided Bounds for the Growth Rates of Power-Free Languages, Developments in Language Theory, 2009]

Restivo and Salemi Property

[Shur, Two-Sided Bounds for the Growth Rates of Power-Free Languages, Developments in Language Theory, 2009]

Conjecture (Conjecture 1)
Let L be a power-free language and let $e(L) \subseteq L$ be the set of words of L that can be extended to a bi-infinite word respecting the given power-freeness. If $u, v \in e(L)$ then $u w v \in e(L)$ for some word w.

Restivo and Salemi Property

[Shallit and Shur, Subword complexity and power avoidance, Theoretical Computer Science, 2019.]

Restivo and Salemi Property

[Shallit and Shur, Subword complexity and power avoidance, Theoretical Computer Science, 2019.]

In 2018, the Conjecture 1 appeared again using a "Restivo Salemi property"; it was defined that a language L has the Restivo Salemi property if Conjecture 1 holds for the language L.

Restivo and Salemi Problems

[Rukavicka, Transition property for α-power free languages with $\alpha \geq 2$ and $k \geq 3$ letters, Developments in Language Theory, 2020]

Restivo and Salemi Problems

[Rukavicka, Transition property for α-power free languages with $\alpha \geq 2$ and $k \geq 3$ letters, Developments in Language Theory, 2020]

$$
\begin{array}{r}
\Upsilon=\{(k, \alpha) \mid k \in \mathbb{N} \text { and } \alpha \in \mathbb{Q} \text { and } k=3 \text { and } \alpha>2\} \\
\cup\{(k, \alpha) \mid k \in \mathbb{N} \text { and } \alpha \in \mathbb{Q} \text { and } k>3 \text { and } \alpha \geq 2\} \\
\cup\left\{\left(k, \alpha^{+}\right) \mid k \in \mathbb{N} \text { and } \alpha \in \mathbb{Q} \text { and } k \geq 3 \text { and } \alpha \geq 2\right\} .
\end{array}
$$

Restivo and Salemi Problems

[Rukavicka, Transition property for α-power free languages with $\alpha \geq 2$ and $k \geq 3$ letters, Developments in Language Theory, 2020]

$$
\begin{array}{r}
\Upsilon=\{(k, \alpha) \mid k \in \mathbb{N} \text { and } \alpha \in \mathbb{Q} \text { and } k=3 \text { and } \alpha>2\} \\
\cup\{(k, \alpha) \mid k \in \mathbb{N} \text { and } \alpha \in \mathbb{Q} \text { and } k>3 \text { and } \alpha \geq 2\} \\
\cup\left\{\left(k, \alpha^{+}\right) \mid k \in \mathbb{N} \text { and } \alpha \in \mathbb{Q} \text { and } k \geq 3 \text { and } \alpha \geq 2\right\} .
\end{array}
$$

The definition of Υ says that: If $(k, \alpha) \in \Upsilon$ and α is a "number with + " then $k \geq 3$ and $\alpha \geq 2$. If $(k, \alpha) \in \Upsilon$ and α is "just" a number then $k=3$ and $\alpha>2$ or $k>3$ and $\alpha \geq 2$.

Restivo and Salemi Problems

Suppose $(\alpha, k) \in \Upsilon$. For every pair (u, v) of α-power free words over an alphabet with k letters, if u can be infinitely extended to the right and v can be infinitely extended to the left respecting the α-freeness property, then there exists a "transition" word w over the same alphabet such that $u w v$ is α-power free. Also it was shown how to construct the word w.

Restivo and Salemi Problems

Suppose $(\alpha, k) \in \Upsilon$. For every pair (u, v) of α-power free words over an alphabet with k letters, if u can be infinitely extended to the right and v can be infinitely extended to the left respecting the α-freeness property, then there exists a "transition" word w over the same alphabet such that $u w v$ is α-power free. Also it was shown how to construct the word w.

Less formally said, these results solve Problem 4 and Problem 5 for a wide variety of power free languages.

Restivo and Salemi Problems

The very basic idea of our proof is that if u, v are α-power free words and x is a letter such that x is not a factor of both u and v, then clearly $u x v$ is α-power free on condition that $\alpha \geq 2$.

Restivo and Salemi Problems

The very basic idea of our proof is that if u, v are α-power free words and x is a letter such that x is not a factor of both u and v, then clearly $u x v$ is α-power free on condition that $\alpha \geq 2$.

Generalization: Consider a finite number of occurrences of the letter x instead of a single occurrence.

Restivo and Salemi Problems

An essential observation from 2020: If v is a right (left) infinite α-power word with a factor w and x is a letter, then there is a right (left) infinite α-power free word \widetilde{v} such that \widetilde{v} contains v as a factor and x is not recurrent in \widetilde{v}.

Restivo and Salemi Problems

An essential observation from 2020: If v is a right (left) infinite α-power word with a factor w and x is a letter, then there is a right (left) infinite α-power free word \widetilde{v} such that \widetilde{v} contains v as a factor and x is not recurrent in \widetilde{v}.

The infinite α-power free words with the non-recurrent letter x have then been used to construct then transition words. The results were shown for α-power free words over an alphabet with k letters, where $(k, \alpha) \in \Upsilon$.

Bi-infinite power free words

[Rukavicka, Construction of a Bi-infinite Power Free Word with a Given Factor and a Non-recurrent Letter, DCFS 2023.]

Bi-infinite power free words

[Rukavicka, Construction of a Bi-infinite Power Free Word with a Given Factor and a Non-recurrent Letter, DCFS 2023.]
[Rukavicka, Restivo Salemi property for α-power free languages with $\alpha \geq 5$ and $k \geq 3$ letters, https://arxiv.org/abs/2312.10061]

Bi-infinite power free words

[Rukavicka, Construction of a Bi-infinite Power Free Word with a Given Factor and a Non-recurrent Letter, DCFS 2023.]
[Rukavicka, Restivo Salemi property for α-power free languages with $\alpha \geq 5$ and $k \geq 3$ letters, https://arxiv.org/abs/2312.10061]

Let

$$
\widetilde{\Upsilon}=\{(k, \alpha) \mid k \in \mathbb{N} \text { and } \alpha \in \mathbb{Q} \text { and } k \geq 3 \text { and } \alpha \geq 5\}
$$

Bi-infinite power free words

[Rukavicka, Construction of a Bi-infinite Power Free Word with a Given Factor and a Non-recurrent Letter, DCFS 2023.]
[Rukavicka, Restivo Salemi property for α-power free languages with $\alpha \geq 5$ and $k \geq 3$ letters, https://arxiv.org/abs/2312.10061]

Let

$$
\widetilde{\Upsilon}=\{(k, \alpha) \mid k \in \mathbb{N} \text { and } \alpha \in \mathbb{Q} \text { and } k \geq 3 \text { and } \alpha \geq 5\} .
$$

Note that $\widetilde{\Upsilon} \subset \Upsilon$.

Bi-infinite power free words

Let $L_{k, \alpha}^{\mathbb{Z}}\left(L_{k, \alpha}^{\mathbb{N}, L}, L_{k, \alpha}^{\mathbb{N}, R}\right)$ denote the set of all bi-infinite (left infinite, right infinite) α-power free words over an alphabet with k letters, where α is a positive rational number and k is positive integer.

Bi-infinite power free words

Let $L_{k, \alpha}^{\mathbb{Z}}\left(L_{k, \alpha}^{\mathbb{N}, L}, L_{k, \alpha}^{\mathbb{N}, R}\right)$ denote the set of all bi-infinite (left infinite, right infinite) α-power free words over an alphabet with k letters, where α is a positive rational number and k is positive integer.

It was proved that if $(k, \alpha) \in \widetilde{\Upsilon}, v \in L_{k, \alpha}^{\mathbb{Z}}$, and w is a finite factor of v, then there are $\widetilde{v} \in L_{k, \alpha}^{\mathbb{Z}}$ and a letter x such that w is a factor of \widetilde{v} and x has only a finitely many occurrences in \widetilde{v}.

Bi-infinite power free words

Lemma

If $k \geq 3$ and $\alpha>2$ then $L_{k-1, \alpha}^{\mathbb{N}, R} \neq \emptyset$.

Bi-infinite power free words

Lemma

If $k \geq 3$ and $\alpha>2$ then $L_{k-1, \alpha}^{\mathbb{N}, R} \neq \emptyset$.

Theorem

(reformulation of a result from DLT 2020) If $(k, \alpha) \in \Upsilon, v \in L_{k, \alpha}^{\mathbb{N}, L}$,
$z \in \operatorname{Suf}(v), x \in F_{r e c}(v) \cap \Sigma_{k}, s \in L_{k, \alpha}^{\mathbb{N}, L}$, and $x \notin F(s)$, then there is a finite word $u \in \Sigma_{k}^{*}$ such that $z \in \operatorname{Suf}(s u)$ and $s u \in L_{k, \alpha}^{\mathbb{N}, L}$.

Bi-infinite power free words

We define two technical sets Γ and Δ.

Definition

Let Γ be a set of triples defined as follows. We have that $(w, \eta, u) \in \Gamma$ if and only if

- $w \in \Sigma_{k}^{+}, \eta, u \in \Sigma_{k}^{*}$, and
- if $|u| \leq|w|$ then $|\eta| \geq(\alpha+1) \alpha^{|w|-|u|}|w|$.

Bi-infinite power free words

Definition

Let Δ be a set of 6 -tuples defined as follows. We have that $(s, \sigma, w, \eta, x, u) \in \Delta$ if and only if
(1) $s \in \Sigma_{k}^{\mathbb{N}, L}, \sigma, \eta, u \in \Sigma_{k}^{*}, w \in \Sigma_{k}^{+}, x \in \Sigma_{k}$,
(2) $s \sigma w \eta x u \in L_{k, \alpha}^{\mathbb{N}, L}$,
(3) $(w, \eta, u) \in \Gamma$,
(4) $\operatorname{occur}(s \sigma w, w)=1$, and
(c) $x \notin F(s) \cup F(u)$.

Bi-infinite power free words

Theorem

If $(s, \sigma, w, \eta, x, \epsilon) \in \Delta, t \in L_{k, \alpha}^{\mathbb{N}, R}$, and $x \notin F(t)$ then there is $\hat{\eta} \in \operatorname{Prf}(\eta)$ such that $s \sigma w \widehat{\eta} x t \in L_{k, \alpha}^{\mathbb{Z}}$.

Bi-infinite power free words

Main theorem:
Theorem
If $v \in L_{k, \alpha}^{\mathbb{Z}}, w \in F(v) \backslash\{\epsilon\}$, then there there are $\bar{v} \in L_{k, \alpha}^{\mathbb{Z}}$ and $x \in \Sigma_{k}$ such that $w \in F(\bar{v})$ and $x \notin F_{r}(\bar{v})$.

Thank you

[^0]: Example
 $(1234)^{3}=123412341234$ and $(1234)^{\frac{7}{4}}=1234123$.

