Restivo Salemi property for α -power free languages with $\alpha \geq 5$ and $k \geq 3$ letters

Josef Rukavicka

Department of Mathematics, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague

May 2024

Finite and Infinite Words, Powers

A - alphabet with q letters, where q is finite.

A - alphabet with q letters, where q is finite.

A *finite word* of length *n* is a sequence $u_1u_2 \cdots u_n$ with $u_i \in A$.

A - alphabet with q letters, where q is finite.

A *finite word* of length *n* is a sequence $u_1u_2 \cdots u_n$ with $u_i \in A$.

A *right infinite word* is a sequence $u_1u_2\cdots$ with $u_i \in A$.

A - alphabet with q letters, where q is finite.

A *finite word* of length *n* is a sequence $u_1 u_2 \cdots u_n$ with $u_i \in A$.

A *right infinite word* is a sequence $u_1 u_2 \cdots$ with $u_i \in A$.

A *left infinite word* is a sequence $\cdots u_2 u_1$ with $u_i \in A$.

A - alphabet with q letters, where q is finite.

A *finite word* of length *n* is a sequence $u_1 u_2 \cdots u_n$ with $u_i \in A$.

A *right infinite word* is a sequence $u_1u_2\cdots$ with $u_i \in A$.

A *left infinite word* is a sequence $\cdots u_2 u_1$ with $u_i \in A$.

A *bi-infinite word* is a sequence $\cdots u_{-2}u_{-1}u_0u_1u_2\cdots$ with $u_i \in A$.

An α -power of a nonempty word r is the word $r^{\alpha} = rr \cdots rt$ such that $\frac{|r^{\alpha}|}{|r|} = \alpha$ and t is a prefix of r, where $\alpha > 0$ is a rational number.

An α -power of a nonempty word r is the word $r^{\alpha} = rr \cdots rt$ such that $\frac{|r^{\alpha}|}{|r|} = \alpha$ and t is a prefix of r, where $\alpha > 0$ is a rational number.

Example

$$(1234)^3 = 123412341234$$
 and $(1234)^{\frac{7}{4}} = 1234123$.

Let *w* be a finite or infinite word.

Let w be a finite or infinite word.

Let

 $\Theta(w) = \{(r, \alpha) \mid r^{\alpha} \text{ is a factor of } w \text{ and } r \text{ is a nonempty word and} \\ \alpha \text{ is a positive rational number} \}.$

Let w be a finite or infinite word.

Let

 $\Theta(w) = \{(r, \alpha) \mid r^{\alpha} \text{ is a factor of } w \text{ and } r \text{ is a nonempty word and} \\ \alpha \text{ is a positive rational number} \}.$

We say that w is α -power free if

$$\{(\mathbf{r},\beta)\in\Theta(\mathbf{w})\mid\beta\geq\alpha\}=\emptyset$$

and we say that w is α^+ -power free if

$$\{(\mathbf{r},\beta)\in\Theta(\mathbf{w})\mid\beta>\alpha\}=\emptyset.$$

Let w be a finite or infinite word.

Let

 $\Theta(w) = \{(r, \alpha) \mid r^{\alpha} \text{ is a factor of } w \text{ and } r \text{ is a nonempty word and} \\ \alpha \text{ is a positive rational number} \}.$

We say that w is α -power free if

$$\{(\mathbf{r},\beta)\in\Theta(\mathbf{w})\mid\beta\geq\alpha\}=\emptyset$$

and we say that w is α^+ -power free if

$$\{(\mathbf{r},\beta)\in\Theta(\mathbf{w})\mid\beta>\alpha\}=\emptyset.$$

It is a used convention to define that if the word *w* is " α -power-free" then α denotes a number or a "number with +".

Powers

The power free words include well known square free (2-power free), overlap free (2^+ -power free), and cube free words (3-power free).

Powers

The power free words include well known square free (2-power free), overlap free (2^+ -power free), and cube free words (3-power free).

It is easy to see that α -power free words form a factorial language; it means that all factors of a α -power free word are also α -power free words.

Powers

The power free words include well known square free (2-power free), overlap free (2^+ -power free), and cube free words (3-power free).

It is easy to see that α -power free words form a factorial language; it means that all factors of a α -power free word are also α -power free words.

It is also easy to see that the reverse function preserves the power-freeness.

Square free infinite word

[A. Thue, *Über unendliche Zeichenreihen*, Skrifter udgivne af Videnskabsselskabet i Christiania: Mathematisk-naturvidenskabelig Klasse, (1906).]

Square free infinite word

[A. Thue, *Über unendliche Zeichenreihen*, Skrifter udgivne af Videnskabsselskabet i Christiania: Mathematisk-naturvidenskabelig Klasse, (1906).]

Axel Thue proved the existence of infinite square-free words on an alphabet with three letters

Square free infinite word

[A. Thue, *Über unendliche Zeichenreihen*, Skrifter udgivne af Videnskabsselskabet i Christiania: Mathematisk-naturvidenskabelig Klasse, (1906).]

Axel Thue proved the existence of infinite square-free words on an alphabet with three letters

Some other generalizations of power-free words are being studied; for example abelian powers, pseudo squares, and reverse powers.

Dejean's Conjecture

We define the *repetition threshold* RT(k) to be the infimum of all rational numbers α such that there exists an infinite α -power-free word over an alphabet with *k* letters.

Dejean's Conjecture

We define the *repetition threshold* RT(k) to be the infimum of all rational numbers α such that there exists an infinite α -power-free word over an alphabet with *k* letters.

Dejean's conjecture states that RT(2) = 2, $RT(3) = \frac{7}{4}$, $RT(4) = \frac{7}{5}$, and $RT(k) = \frac{k}{k-1}$ for each k > 4. [Dejean, *Sur un théorème de Thue*, Journal of Combinatorial Theory, 1972.]

Dejean's Conjecture

We define the *repetition threshold* RT(k) to be the infimum of all rational numbers α such that there exists an infinite α -power-free word over an alphabet with *k* letters.

Dejean's conjecture states that RT(2) = 2, $RT(3) = \frac{7}{4}$, $RT(4) = \frac{7}{5}$, and $RT(k) = \frac{k}{k-1}$ for each k > 4. [Dejean, *Sur un théorème de Thue*, Journal of Combinatorial Theory, 1972.]

Dejean's conjecture has been proved by the work of several authors. The final step in 2011 by [Currie and Rampersad, *A proof of dejean's conjecture*, Math. Comp., 2011.] Preliminaries



Then Dejean's conjecture implies that there are infinitely many finite α -power free words over Σ_k , where $\alpha > RT(k)$.

Preliminaries

Restivo and Salemi Problems

In 1985, Restivo and Salemi presented a list of five problems concerning the extendability of power free words. [Restivo and Salemi, *Some decision results on nonrepetitive words*, Combinatorial Algorithms on Words, 1985]

In 1985, Restivo and Salemi presented a list of five problems concerning the extendability of power free words. [Restivo and Salemi, *Some decision results on nonrepetitive words*, Combinatorial Algorithms on Words, 1985]

Problem 1: Given an α -power-free word u, decide whether for every positive integer n there are words w, v such that |w| = |v| = n and such that:

- uv is α-power-free,
- wu is α -power-free, and
- wuv is α-power-free.

In 1985, Restivo and Salemi presented a list of five problems concerning the extendability of power free words. [Restivo and Salemi, *Some decision results on nonrepetitive words*, Combinatorial Algorithms on Words, 1985]

Problem 1: Given an α -power-free word u, decide whether for every positive integer n there are words w, v such that |w| = |v| = n and such that:

- uv is α-power-free,
- wu is α -power-free, and
- wuv is α-power-free.

Problem 2: Given an α -power-free word u, construct, if it exists, an infinite α -power-free word having u as a prefix.

Problem 3: Given an arbitrary positive integer k, does there exists an α -power-free word u such that:

- there exists a word v of length k such that uv is α -power-free and
- for every word \overline{v} with $|\overline{v}| > |v|$ we have that $u\overline{v}$ is not α -power-free.

Problem 3: Given an arbitrary positive integer k, does there exists an α -power-free word u such that:

- there exists a word v of length k such that uv is α -power-free and
- for every word \bar{v} with $|\bar{v}| > |v|$ we have that $u\bar{v}$ is not α -power-free.

Problem 4: Given finite α -power-free words u and v, decide whether there is a transition word w, such that uwu is α -power free.

Problem 3: Given an arbitrary positive integer k, does there exists an α -power-free word u such that:

- there exists a word v of length k such that uv is α -power-free and
- for every word \overline{v} with $|\overline{v}| > |v|$ we have that $u\overline{v}$ is not α -power-free.

Problem 4: Given finite α -power-free words u and v, decide whether there is a transition word w, such that uwu is α -power free.

Problem 5: Given finite α -power-free words u and v, find a transition word w, if it exists.

[Petrova and Shur, *Transition property for cube-free words*, Computer Science – Theory and Applications, 2019.]

[Petrova and Shur, *Transition property for cube-free words*, Computer Science – Theory and Applications, 2019.]

The problems 4 and 5 are solved for some overlap free binary words.

[Petrova and Shur, *Transition property for cube-free words*, Computer Science – Theory and Applications, 2019.]

The problems 4 and 5 are solved for some overlap free binary words.

For every pair (u, v) of cube free words over an alphabet with k letters, if u can be infinitely extended to the right and v can be infinitely extended to the left respecting the cube-freeness property, then there exists a "transition" word w over the same alphabet such that uwv is cube free.

Preliminaries

Restivo and Salemi Property

[Shur, *Two-Sided Bounds for the Growth Rates of Power-Free Languages*, Developments in Language Theory, 2009]

Restivo and Salemi Property

[Shur, *Two-Sided Bounds for the Growth Rates of Power-Free Languages*, Developments in Language Theory, 2009]

Conjecture (Conjecture 1)

Let L be a power-free language and let $e(L) \subseteq L$ be the set of words of L that can be extended to a bi-infinite word respecting the given power-freeness. If $u, v \in e(L)$ then $uwv \in e(L)$ for some word w.

Preliminaries

Restivo and Salemi Property

[Shallit and Shur, *Subword complexity and power avoidance*, Theoretical Computer Science, 2019.]

Preliminaries

Restivo and Salemi Property

[Shallit and Shur, *Subword complexity and power avoidance*, Theoretical Computer Science, 2019.]

In 2018, the Conjecture 1 appeared again using a "Restivo Salemi property"; it was defined that a language *L* has the *Restivo Salemi* property if Conjecture 1 holds for the language *L*.

[Rukavicka, *Transition property for* α *-power free languages with* $\alpha \ge 2$ *and* $k \ge 3$ *letters*, Developments in Language Theory, 2020]

[Rukavicka, *Transition property for* α *-power free languages with* $\alpha \ge 2$ *and* $k \ge 3$ *letters*, Developments in Language Theory, 2020]

$$\begin{split} \Upsilon &= \{ (k, \alpha) \mid k \in \mathbb{N} \text{ and } \alpha \in \mathbb{Q} \text{ and } k = 3 \text{ and } \alpha > 2 \} \\ &\cup \{ (k, \alpha) \mid k \in \mathbb{N} \text{ and } \alpha \in \mathbb{Q} \text{ and } k > 3 \text{ and } \alpha \geq 2 \} \\ &\cup \{ (k, \alpha^+) \mid k \in \mathbb{N} \text{ and } \alpha \in \mathbb{Q} \text{ and } k \geq 3 \text{ and } \alpha \geq 2 \}. \end{split}$$

[Rukavicka, *Transition property for* α *-power free languages with* $\alpha \ge 2$ *and* $k \ge 3$ *letters*, Developments in Language Theory, 2020]

$$\Upsilon = \{(k, \alpha) \mid k \in \mathbb{N} \text{ and } \alpha \in \mathbb{Q} \text{ and } k = 3 \text{ and } \alpha > 2\} \\ \cup \{(k, \alpha) \mid k \in \mathbb{N} \text{ and } \alpha \in \mathbb{Q} \text{ and } k > 3 \text{ and } \alpha \ge 2\} \\ \cup \{(k, \alpha^+) \mid k \in \mathbb{N} \text{ and } \alpha \in \mathbb{Q} \text{ and } k \ge 3 \text{ and } \alpha \ge 2\}.$$

The definition of Υ says that: If $(k, \alpha) \in \Upsilon$ and α is a "number with +" then $k \ge 3$ and $\alpha \ge 2$. If $(k, \alpha) \in \Upsilon$ and α is "just" a number then k = 3 and $\alpha > 2$ or k > 3 and $\alpha \ge 2$.

Suppose $(\alpha, k) \in \Upsilon$. For every pair (u, v) of α -power free words over an alphabet with *k* letters, if *u* can be infinitely extended to the right and *v* can be infinitely extended to the left respecting the α -freeness property, then there exists a "transition" word *w* over the same alphabet such that *uwv* is α -power free. Also it was shown how to construct the word *w*.

Suppose $(\alpha, k) \in \Upsilon$. For every pair (u, v) of α -power free words over an alphabet with *k* letters, if *u* can be infinitely extended to the right and *v* can be infinitely extended to the left respecting the α -freeness property, then there exists a "transition" word *w* over the same alphabet such that *uwv* is α -power free. Also it was shown how to construct the word *w*.

Less formally said, these results solve Problem 4 and Problem 5 for a wide variety of power free languages.

The very basic idea of our proof is that if u, v are α -power free words and x is a letter such that x is not a factor of both u and v, then clearly uxv is α -power free on condition that $\alpha \ge 2$.

The very basic idea of our proof is that if u, v are α -power free words and x is a letter such that x is not a factor of both u and v, then clearly uxv is α -power free on condition that $\alpha \ge 2$.

Generalization: Consider a finite number of occurrences of the letter *x* instead of a single occurrence.

An essential observation from 2020: If v is a right (left) infinite α -power word with a factor w and x is a letter, then there is a right (left) infinite α -power free word \tilde{v} such that \tilde{v} contains v as a factor and x is not recurrent in \tilde{v} .

An essential observation from 2020: If v is a right (left) infinite α -power word with a factor w and x is a letter, then there is a right (left) infinite α -power free word \tilde{v} such that \tilde{v} contains v as a factor and x is not recurrent in \tilde{v} .

The infinite α -power free words with the non-recurrent letter x have then been used to construct then transition words. The results were shown for α -power free words over an alphabet with k letters, where $(k, \alpha) \in \Upsilon$.

[Rukavicka, *Construction of a Bi-infinite Power Free Word with a Given Factor and a Non-recurrent Letter*, DCFS 2023.]

[Rukavicka, *Construction of a Bi-infinite Power Free Word with a Given Factor and a Non-recurrent Letter*, DCFS 2023.]

[Rukavicka, *Restivo Salemi property for* α *-power free languages with* $\alpha \ge 5$ *and* $k \ge 3$ *letters*, https://arxiv.org/abs/2312.10061]

[Rukavicka, *Construction of a Bi-infinite Power Free Word with a Given Factor and a Non-recurrent Letter*, DCFS 2023.]

[Rukavicka, *Restivo Salemi property for* α *-power free languages with* $\alpha \ge 5$ *and* $k \ge 3$ *letters*, https://arxiv.org/abs/2312.10061]

Let

$$\widetilde{\Upsilon} = \{ (k, lpha) \mid k \in \mathbb{N} \text{ and } lpha \in \mathbb{Q} \text{ and } k \geq 3 \text{ and } lpha \geq 5 \}.$$

[Rukavicka, *Construction of a Bi-infinite Power Free Word with a Given Factor and a Non-recurrent Letter*, DCFS 2023.]

[Rukavicka, *Restivo Salemi property for* α *-power free languages with* $\alpha \ge 5$ *and* $k \ge 3$ *letters*, https://arxiv.org/abs/2312.10061]

Let

$$\widetilde{\Upsilon} = \{(k, lpha) \mid k \in \mathbb{N} ext{ and } lpha \in \mathbb{Q} ext{ and } k \geq 3 ext{ and } lpha \geq 5 \}.$$

Note that $\widetilde{\Upsilon} \subset \Upsilon$.

Let $L_{k,\alpha}^{\mathbb{Z}}$ ($L_{k,\alpha}^{\mathbb{N},L}$, $L_{k,\alpha}^{\mathbb{N},R}$) denote the set of all bi-infinite (left infinite, right infinite) α -power free words over an alphabet with *k* letters, where α is a positive rational number and *k* is positive integer.

Let $L_{k,\alpha}^{\mathbb{Z}}$ ($L_{k,\alpha}^{\mathbb{N},L}$, $L_{k,\alpha}^{\mathbb{N},R}$) denote the set of all bi-infinite (left infinite, right infinite) α -power free words over an alphabet with *k* letters, where α is a positive rational number and *k* is positive integer.

It was proved that if $(k, \alpha) \in \widetilde{\Upsilon}$, $v \in L_{k,\alpha}^{\mathbb{Z}}$, and w is a finite factor of v, then there are $\widetilde{v} \in L_{k,\alpha}^{\mathbb{Z}}$ and a letter x such that w is a factor of \widetilde{v} and x has only a finitely many occurrences in \widetilde{v} .

Preliminaries

Bi-infinite power free words

Lemma

If
$$k \geq 3$$
 and $\alpha > 2$ then $L_{k-1,\alpha}^{\mathbb{N},R} \neq \emptyset$.

Lemma

If
$$k \geq 3$$
 and $\alpha > 2$ then $L_{k-1,\alpha}^{\mathbb{N},R} \neq \emptyset$.

Theorem

(reformulation of a result from DLT 2020) If $(k, \alpha) \in \Upsilon$, $v \in L_{k,\alpha}^{\mathbb{N},L}$, $z \in Suf(v), x \in F_{rec}(v) \cap \Sigma_k, s \in L_{k,\alpha}^{\mathbb{N},L}$, and $x \notin F(s)$, then there is a finite word $u \in \Sigma_k^*$ such that $z \in Suf(su)$ and $su \in L_{k,\alpha}^{\mathbb{N},L}$. Preliminaries

Bi-infinite power free words

We define two technical sets Γ and Δ .

Definition

Let Γ be a set of triples defined as follows. We have that $(w, \eta, u) \in \Gamma$ if and only if

•
$$\pmb{w}\in \pmb{\Sigma_k^+},\,\eta,\pmb{u}\in \pmb{\Sigma_k^*},$$
 and

• if $|u| \le |w|$ then $|\eta| \ge (\alpha + 1)\alpha^{|w| - |u|} |w|$.

Definition

Let Δ be a set of 6-tuples defined as follows. We have that $(s, \sigma, w, \eta, x, u) \in \Delta$ if and only if $s \in \Sigma_k^{\mathbb{N},L}, \sigma, \eta, u \in \Sigma_k^*, w \in \Sigma_k^+, x \in \Sigma_k,$ $s \sigma w \eta x u \in L_{k,\alpha}^{\mathbb{N},L},$ $(w, \eta, u) \in \Gamma,$ $occur(s \sigma w, w) = 1, and$ $x \notin F(s) \cup F(u).$ Preliminaries

Bi-infinite power free words

Theorem

If $(s, \sigma, w, \eta, x, \epsilon) \in \Delta$, $t \in L_{k,\alpha}^{\mathbb{N},R}$, and $x \notin F(t)$ then there is $\widehat{\eta} \in Prf(\eta)$ such that $s\sigma w\widehat{\eta}xt \in L_{k,\alpha}^{\mathbb{Z}}$.

Preliminaries

Bi-infinite power free words

Main theorem:

Theorem

If $v \in L_{k,\alpha}^{\mathbb{Z}}$, $w \in F(v) \setminus \{\epsilon\}$, then there there are $\overline{v} \in L_{k,\alpha}^{\mathbb{Z}}$ and $x \in \Sigma_k$ such that $w \in F(\overline{v})$ and $x \notin F_r(\overline{v})$.

Thank you