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Avoiding squares, 010, and 212

These infinite ternary words avoid squares, 010, and 212.
• tm3= 01202101210201202102012101202101210 . . .

• w1 = 02101210201202102012101202101210 . . .

• w2 = 102101210201202102012101202101210 . . .

tm3 is the fixed point of 0 7→ 012, 1 7→ 02, 2 7→ 1.
• F (w1) = F (tm3).
• 1021 ∈ F (w2) \ F (tm3).



Avoiding {AA,010,212}

False statements:
• If u is finite and avoids {AA,010,212}, then u ∈ F (tm3).
• If w is right-infinite and avoids {AA,010,212}, then

F (w) = F (tm3).
True statement:
• If w is bi-infinite and avoids {AA,010,212}, then

F (w) = F (tm3).
We say that tm3 essentially avoids {AA,010,212} or that
{AA,010,212} characterizes tm3.
• tm3 essentially avoids {AA,1021,1201}.



Patterns

• Pattern p: finite word in {A,B,C, . . .}∗.
• Occurrence of p: any word such that A,B,C, . . . are

replaced by a non-empty word.
• 1201020210021 contains the occurrence

A 7→ 0, B 7→ 10, C 7→ 2 of ABCACB.
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Formulas

• Consider the pattern AABBCABBA.
• 0000 is not forbidden.
• 0110011 is not forbidden.

Replace every isolated variable by a dot to get the formula
AABB.ABBA.
AABB and ABBA are the fragments of the formula.

• Consider the formula AABB.ABBA.
• 0000 is forbidden (A 7→ 0, B 7→ 0).
• 0110011 is forbidden (A 7→ 0, B 7→ 1).

• If p is recurrent, then w avoids p iff w avoids f .



Fixed points with a characterization

name morphism forbidden critical exponent slope

fib 01/0 AAAA, 11, 000, 10101 (5 +
√

5)/2 ≃ 3.618 1
p 01/21/0 AAA, 00, 11, 22, 20, 212, 0101, 02102, 5X3 − 26X2 + 43X − 23 2

121012, 01021010, 21021012102 X ≃ 2.48
tm2 01/10 ABABA, 000, 111 2+ 10/3
tm3 012/02/1 AA, 010, 212 2 10/3
fp5 01/23/4/21/0 AA, 02, 03, 13, 14, 20, 24, 31, 32, 40, (5 +

√
5)/4 ≃ 1.809 4

41, 43, 121, 212, 304, 3423, 4234 (∗)
fp4 01/21/03/23 AB.BA.AC.CA.BC, 02, 010, 12101, 2 4

103230121
pd 01/00 AAAA, AAABABAA, 11, 1001 4 5/3 (∗)



Symmetries of fp4

fp4 = 0121032101230321012103230123032101210 . . .

• fp4 essentially avoids
{AB.BA.AC.CA.BC,02,010,12101,103230121}.

• 24 permutations and reverse.

• F
(

fp4R
)
= F (π(fp4)), where π = (02)(13) = 2/3/0/1.

• So there are 24 distinct versions of fp4.
• fp4 essentially avoids AB.BA.AC.CA.BC and 23 large

factors.
•
{

fp4(1), fp4(2), . . . , fp4(24)

}
essentially avoids

AB.BA.AC.CA.BC.
Erratum: symmetries of fp4 are wrong in my papers, sorry.



The Fibonacci word

Proof that fib essentially avoids {AAAA,11,000,10101}:
• Suppose w ∈ ω{0,1}ω avoids {AAAA,11,000,10101}.
• Since w avoids 11, then w ∈ ω{01,0}ω.
• So w = h(v) with h = 01/0.

• If v contains AAAA, then h(v) contains AAAA.
• If v contains 11, then h(11x) contains 000.
• If v contains 000, then h(000) contains 10101.
• If v contains 10101, then v contains 0101010 and

h(0101010x) contains (010)4.



The binary Thue-Morse word

• tm2 essentially avoids {ABABA,000,111}.
• tm2 essentially avoids {ABABA,AAA}.
• tm2 essentially avoids fh = AABCAA.BCB.
• tm2 essentially avoids fe = AABCAAB.AABCAB.AABCB.

• AAACAAA contains fe via A 7→ A, B 7→ A, C 7→ C.
• ABABACABABA contains fe via A 7→ AB, B 7→ A, C 7→ C.



{
tm3, tm3′, tm3′′} essentially avoids 144 formulas

The hardest formulas
• ABCA.BCAB.BCB.CBA
• ABCAB.BCB.AC
• ABCA.BCAB.ACB.BCB
• ABCA.BCAB.BCB.AC.BA

The easiest formula
• fe = ABCAB.ABCBA.ACB.BAC

AACAA contains fe via A 7→ A, B 7→ A, C 7→ C.



{
tm3, tm3′, tm3′′} essentially avoids other formulas

If f is such that
• ABCA.ABA.ACA ⪯ f ⪯ ABCA.ABA.ACA.ACB.CBA,
• ABCA.ABA.BCB.AC ⪯ f ⪯ ABCA.ABA.ABCBA.ACB, or
• ABCA.ABA.BCB.CBA ⪯ f ⪯ ABCA.ABA.ABCBA.ACB.

then
{

tm3, tm3′, tm3′′} essentially avoids f .

AAABAAACAAABAAA contains f via A 7→ A, B 7→ ABA, C 7→ ACA.



And now the morphic words

Matthieu has found a dozen other fixed points, such as
010/12/10 with critical exponent ≃ 2.414 and slope ≃ 2.78,
that fit in the critical exponent VS slope trade-off but do not
seem to have a characterization.

Unsurprisingly, morphic words with a characterization are
images of fixed points that have a characterization.



Images of fib

Consider h = 0/01. Every bi-infinite 11
3 -free binary word that

contains no pair of complementary factors of length 4 has the
same factor set as h(fib) or h(fib).

Consider g = 01/11. Every bi-infinite 15
4 -free binary word that

contains no antisquare other than 01 and 10 has the same
factor set as g(fib) or g(fib).

fib, h(fib), and g(fib) have critical exponent 5+
√

5
2 ≃ 3.618



No antisquare other than 01 and 10

Consider g = 01/11. Every bi-infinite 15
4 -free binary word w

that contains no antisquare other than 01 and 10 has the same
factor set as g(fib) or g(fib).

• W.l.o.g., w contains 11.
• w = · · ·01a01b01c01d · · · with · · · a,b, c,d · · · ∈ {1,3}.
• w ∈ ω{01,0111}ω. w ∈ ω{01,11}ω. w = g(v).

• v avoids AAAA.
• g(11) = 1111 is a 4-power.
• g(000) = 010101 is an antisquare.
• g(x0101010) = x101110111011101 = x(1011)

15
4 .{

g(fib),g(fib)
}

essentially avoids {AAAA,0011,0110,1100,
1001,010101,101010,1000101110,0111010001,
101110111011101,010001000100010}.



Images of p

ξ = 01/0110/1.
ρ = 01100101101/0110010/011001.

Every bi-infinite 29
11 -free binary word that contains no pair of

complementary factors of length 8 has the same factor set as
either ξ(p), ξ(p), ξ(p)R, ξ(p)R, ρ(p), ρ(p), ρ(p)R, or ρ(p)R.
(5

2
+-free).

ψ = 11001/0/01101.

Every bi-infinite 5
2 -free binary word that contains no pair of

complementary factors of length 11 has the same factor set as
either ψ(p), ψ(p), ψ(p)R, or ψ(p)R. (X -free, X ≃ 2.48).



Images of p

µ = 011001/1001/0. ν = 011/0/01.

Every bi-infinite 15
4 -free binary word containing at most 18

palindromes has the same set of factors as either µ(p), µ(p),
µ(p)R, or µ(p)R. (28

11
+

-free).

Every recurrent 28
11 -free binary word containing at most 20

palindromes has the same set of factors as either ν(p), ν(p),
ν(p)R, or ν(p)R. (5

2
+-free).

NB: ν(p)R010110ν(p) is bi-infinite, 5
2
+-free and has 20

palindromes.



Images of tm3

tm2 = w(tm3) where w = 011/01/0.



Polynomial binary formulas

• gx = 01110/0110/0

• gy = 0111/01/00

• gz = 0001/001/11

• gt = 01011011010/01011010/010

•
{

gx(tm3),gy (tm3),gz(tm3),gz(tm3)
}

essentially avoids
AA.ABA.ABBA.

• {gx(tm3),gt(tm3)} essentially avoids f ,
with f ∈ {ABA.AABB, BBA.ABA.AABB, AABA.AABB}.

• gx(tm3) essentially avoids AABA.ABB.BBA.



Images of tm3

Every bi-infinite binary word containing only the squares 00,
11, 001001, and 110110 has the same factor set as g4(tm3).

g4(0) = 00010011000111011,
g4(1) = 000100111011,
g4(2) = 00111.



Images of tm3

Every bi-infinite binary word containing only the squares 00,
11, 0000, 0001100011, and 1000010000 has the same
factor set as g5(tm3).

g5(0) = 0000100000111000011000111,
g5(1) = 000010000011000111,
g5(2) = 0000011.



The three words of Thue

M1 = 012/1/02/12/ε and M2 = 02/1/0/12/ε

• tm3 essentially avoids {AA,010,212} or
{AA,1021,1201}.

• M1(fp5) essentially avoids {AA,010,020}.
• M2(fp5) essentially avoids {AA,121,212}.

Distance constraints between occurrences of a letter:
• tm3: no two 1s at distance 3.
• M1(fp5): no two 0s at distance 2.
• M2(fp5): no two consecutive 0s at distance 4.



Characterization of M2(fp5)

If ABA.BCB.ACA ⪯ f ⪯ ABA.ABCBA.ACA.ACB.BCA, then
{M2(fp5),M2(fp5)′,M2(fp5)′′} essentially avoids f .



Images of fp5

• 1 overlap: 01010.
• 12 squares: 02, 12, (01)2, (10)2, (010)2, (0110)2,
(1001)2, (100101)2, (011001)2, (100110)2, (101001)2,
(1001011001101001)2.

• characterizes h12(fp5).

h12(0) = 0011,
h12(1) = 01,
h12(2) = 001,
h12(3) = 011,
h12(4) = ε.

M2(0) = 02,
M2(1) = 1,
M2(2) = 0,
M2(3) = 12,
M2(4) = ε.

x12(0) = 001,
x12(1) = 01,
x12(2) = 1.

Notice that h12 = x12 ◦ M2, so that h12(fp5) = x12(M2(fp5)).
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Images of fp5

• 1 overlap: 1001001.
• 14 squares: 02, 12, (01)2, (10)2, (001)2, (010)2, (100)2,
(101)2, (0110)2, (1001)2, (100110)2, (0100110)2,
(0110010)2, and (10010110)2.

• characterizes g14(fp5).

g14(0) = 01,
g14(1) = 00110,
g14(2) = 1,
g14(3) = 0010110,
g14(4) = 0110.



Images of fp5

• 2 overlaps: 0110110 and 1001001.
• 12 squares: 02, 12, (01)2, (10)2, (001)2, (010)2, (011)2,
(100)2, (101)2, (110)2, (01101001)2, (10010110)2.

• characterizes g12(fp5).

g12(0) = 01,
g12(1) = 0,
g12(2) = 011,
g12(3) = ε,
g12(4) = ε.



Images of fp5

• 2 overlaps: 01010 and 10101.
• 8 squares: 02, 12, (01)2, (10)2, (0110)2, (1001)2,

(011001)2, (100110)2.
• characterizes g8(fp5).

g8(0) = 011,
g8(1) = 0,
g8(2) = 01,
g8(3) = ε,
g8(4) = ε.



Images of fp5

Every bi-infinite binary word such that the only occurrences of
ABBA are in
{0000,0110,1001,1111,001100,011110,100001,110011}
has the same factor set as c(fp5).

c(0) = 0010111100,
c(1) = 1101000011,
c(2) = ε,
c(3) = 1101001100,
c(4) = 0010110011.



Polynomial complexity ≠⇒ characterization

Let ma(x) = x01 and mb(x) = x10.

Consider S:
• 0 ∈ S.
• If v ∈ S, then ma(v) ∈ S and mb(v) ∈ S.
• If v ′ is a factor of v ∈ S, then v ′ ∈ S.

Consider c(n) =
∣∣S ∪ Σn

2

∣∣:
• c(n) = 2

(
c
(⌊n

3

⌋)
+ c

(⌊n+1
3

⌋)
+ c

(⌊n+2
3

⌋))
for n ⩾ 8.

• c(n) = Θ
(
nln 6/ ln 3) = Θ

(
n1+ln 2/ ln 3).

Let f ∈ {ABACA.ABCA, ABAC.BACA.ABCA}. A binary word u
is recurrent in a binary word avoiding f if and only if u ∈ S.



Open problems

• Find a formula f such that
{

fib,fib
}

essentially avoids f .

• Find a formula f such that {M1(fp5),M1(fp5)′,M1(fp5)′′}
essentially avoids f .



Thank you


