What I know about Parikh-collinear morphisms

Markus A. Whiteland (ULiège)

FNRS Postdoc Rese<mark>archer</mark>

mwhiteland@uliege.be

Based on joint work M. Rigo and M. Stipulanti (ULiège)

June 11, 2024

@One World Combinatorics on Words Seminar

Main characters

- $|w|_a$: Number of occurrences of $a \in A$ in $w \in A^*$
- $\Psi(w) := (|w|_a)_{a \in A}$: Parikh vector of word $w \in A^*$

Main characters

- $|w|_a$: Number of occurrences of $a \in A$ in $w \in A^*$
- $\Psi(w) := (|w|_a)_{a \in A}$: Parikh vector of word $w \in A^*$

Definition (Parikh-collinear morphism)

A morphism $f: A^* \to B^*$ is Parikh-collinear if, $\forall a, b \in A$, $\Psi(f(b)) = r_{a,b}\Psi(f(a))$ for some $r_{a,b} \in \mathbb{Q}$. (i.e., the Parikh-vectors span a 1D subspace.)

Example: $f: 0 \mapsto 000111, 1 \mapsto 0110$ is Parikh-collinear; $\Psi(f(0)) = (3,3), \ \Psi(f(1)) = (2,2).$

further examples: Thue–Morse; $0 \mapsto 012$, $1 \mapsto 102$, $2 \mapsto \varepsilon$.

In the literature

Appear in the works of Dekking, Allouche et al., Cassaigne et al.

In the literature

Appear in the works of Dekking, Allouche et al., Cassaigne et al.

- Factor complexity function: $p_x : \mathbb{N} \to \mathbb{N}$, $n \mapsto \#\mathcal{L}_n(x)$.
- Abelian equivalence relation: $u \sim_{ab} v$ if $\Psi(u) = \Psi(v)$.
- Abelian complexity function $a_x : \mathbb{N} \to \mathbb{N}, n \mapsto \#\mathcal{L}_n(x)/\sim_{ab}$.

In the literature

Appear in the works of Dekking, Allouche et al., Cassaigne et al.

- Factor complexity function: $p_x : \mathbb{N} \to \mathbb{N}$, $n \mapsto \#\mathcal{L}_n(x)$.
- Abelian equivalence relation: $u \sim_{ab} v$ if $\Psi(u) = \Psi(v)$.
- Abelian complexity function $a_x : \mathbb{N} \to \mathbb{N}, n \mapsto \#\mathcal{L}_n(x)/\sim_{ab}$.

Theorem (Cassaigne–Richomme–Saari–Zamboni 2011)

A morphism is Parikh-collinear iff it maps all infinite words to words with bounded a.

Example: C the binary Champernowne word, μ Thue–Morse morphism; $a_{\mu(C)}(n)=2$ if n is odd, otherwise $a_{\mu(C)}(n)=3$.

Aim/Outline of the talk

- Characterizations of Parikh-collinear morphisms
 - Via binomial complexities
- Discuss automatic properties of fixed points
 - In the sense of Allouche and Shallit
- Binomial complexities under the Thue–Morse morphism

Based on Rigo, Stipulanti, W:

- Characterizations of families of morphisms and words via binomial complexities, Eur. J. Comb. (2024).
- Automaticity and Parikh-collinear Morphisms, WORDS'23.
- Automatic Abelian Complexities of Parikh-Collinear Fixed Points, submitted.

Definitions and notation

In a word,
 A factor is a contiguous subsequence;
 A (scattered) subword is a subsequence.

Example:
$$|reappear| = 8$$
, $|reappear|_a = 2 = |reappear|_e$

fac	tor	SI	ubword
reap	pear	re	appear
reap	pear	re	appear
reap	pear	re	appear

Binomial equivalence

Definition

Binomial coefficient $\binom{u}{v}$ of $u, v \in A^*$: # occurrences of v as a subword of u.

Example:
$$\binom{101001}{101} = 6$$

Example:
$$\begin{pmatrix} 101001 \\ 101 \end{pmatrix} = 6$$
 $\begin{pmatrix} 101001 & 101001 & 101001 \\ 101001 & 101001 & 101001 \end{pmatrix}$

Binomial equivalence

Definition

Binomial coefficient $\binom{u}{v}$ of $u, v \in A^*$: # occurrences of v as a subword of u.

Example:
$$\begin{pmatrix} 101001 \\ 101 \end{pmatrix} = 6$$
 $\begin{pmatrix} 101001 & 101001 & 101001 \\ 101001 & 101001 & 101001 \end{pmatrix}$

Definition

Let $k \geq 1$ be an integer.

Words $u, v \in A^*$ are k-binomially equivalent $(u \sim_k v)$ if $\binom{u}{x} = \binom{v}{x}$ for all $x \in A^{\leq k}$.

Example: $0110 \sim_2 1001$ but $0110 \not\sim_3 1001$

							000	
$\binom{0110}{x}$ $\binom{1001}{x}$	2	2	1	2	2	1	0	0
$\binom{1001}{x}$	2	2	1	2	2	1	0	1

Binomial complexity functions

Definition (Rigo-Salimov (2015) (also WORDS 2013))

k-binomial complexity function of $\mathbf{x} \in A^{\mathbb{N}}$: $\mathbf{b}_{\mathbf{x}}^{(k)} : \mathbb{N} \to \mathbb{N}, \ n \mapsto \#(\mathcal{L}_n(\mathbf{x})/\sim_k)$.

Binomial complexity functions

Definition (Rigo-Salimov (2015) (also WORDS 2013))

k-binomial complexity function of $\mathbf{x} \in A^{\mathbb{N}}$: $\mathbf{b}_{\mathbf{x}}^{(k)} : \mathbb{N} \to \mathbb{N}, \ n \mapsto \#(\mathcal{L}_n(\mathbf{x})/\sim_k)$.

Observation

• $u \sim_{k+1} v \Longrightarrow u \sim_k v$ for all $k \geq 1$.

Binomial complexity functions

Definition (Rigo-Salimov (2015) (also WORDS 2013))

k-binomial complexity function of $\mathbf{x} \in A^{\mathbb{N}}$: $\mathbf{b}_{\mathbf{x}}^{(k)} : \mathbb{N} \to \mathbb{N}, \ n \mapsto \#(\mathcal{L}_n(\mathbf{x})/\sim_k)$.

Observation

- $u \sim_{k+1} v \Longrightarrow u \sim_k v$ for all $k \geq 1$.
- $a(n) = b^{(1)}(n) \le b^{(2)}(n) \le \ldots \le b^{(k)}(n) \le b^{(k+1)}(n) \le \ldots \le p(n)$.

Example: Thue-Morse word

ullet Thue-Morse morphism: $\mu\colon 0\mapsto 01$, $1\mapsto 10$

• Thue–Morse word **t**, fixed point of μ : 01101001100110 · · · ·

Example: Thue-Morse word

- Thue–Morse morphism: $\mu: 0 \mapsto 01, 1 \mapsto 10$
- Thue–Morse word \mathbf{t} , fixed point of μ : 01101001100110...

Theorem (Leieune-Leroy-Rigo 2020)

For all
$$k \geq 1$$
,

For all
$$k \ge 1$$
,
$$b_{\mathbf{t}}^{(k)}(n) = \begin{cases} p_{\mathbf{t}}(n), & \text{if } n \le 2^k - 1; \\ 3 \cdot 2^k - 3, & \text{if } 2^k | n \text{ and } n \ge 2^k; \\ 3 \cdot 2^k - 4, & \text{otherwise.} \end{cases}$$

Example: Sturmian words

Sturmian words:

- Those words **x** for which $p_x(n) = n + 1$ for all n;
- Those aperiodic words **x** for which $b_s^{(1)} = 2$ for all n.
- E.g., Fibonacci word 01001010010010100101001 · · · (f.p. of $0 \mapsto 01$, $1 \mapsto 0$).

Example: Sturmian words

Sturmian words:

- Those words **x** for which $p_x(n) = n + 1$ for all n;
- Those aperiodic words **x** for which $b_s^{(1)} = 2$ for all n.
- E.g., Fibonacci word 01001010010010100101001 · · · (f.p. of $0 \mapsto 01$, $1 \mapsto 0$).

Theorem (Rigo-Salimov 2015)

For a Sturmian word **s** and any $k \ge 2$, $b_s^{(k)} = p_s$.

Example: Sturmian words

Sturmian words:

- Those words **x** for which $p_x(n) = n + 1$ for all n;
- Those aperiodic words **x** for which $b_s^{(1)} = 2$ for all n.
- E.g., Fibonacci word 01001010010010100101001 · · · (f.p. of $0 \mapsto 01$, $1 \mapsto 0$).

Theorem (Rigo-Salimov 2015)

For a Sturmian word **s** and any $k \ge 2$, $b_s^{(k)} = p_s$.

Theorem (Rigo-Stipulanti-W. 2024)

An infinite word **s** is a Sturmian word if and only if there exists $k \ge 2$ such that $b_s^{(k)}(n) = n + 1$ for all $n \ge 1$;

Binomial complexities

Tribonacci word z	$b_{z}^{(k)} = p_{z} \ \ \forall k \geq 2$	Lejeune-Rosenfeld-Rigo 2020
Billiard words c	$b_{\mathbf{c}}^{(k)} = p_{\mathbf{c}} \ \ \forall \ k \geq 2$	Vivion 2024
Parikh-constant morphic words	$b^{(k)}$ bounded $\forall k \geq 1$	Rigo-Salimov, 2015
Generalized Thue–Morse words	precise values of b ⁽²⁾	Lü-Chen-Wen-Wu 2024

Work in progress (Golafshan-Rigo-W.): binomial complexities of generalized Thue-Morse words

Characterizing Parikh-collinear morphisms

Theorem (Cassaigne-Richomme-Saari-Zamboni 2011)

A morphism is Parikh-collinear iff it maps all infinite words to words with bounded $b^{(1)}$.

Characterizing Parikh-collinear morphisms

Theorem (Cassaigne-Richomme-Saari-Zamboni 2011)

A morphism is Parikh-collinear iff it maps all infinite words to words with bounded $b^{(1)}$.

Theorem (Rigo-Stipulanti-W. (2024))

For a morphism $f: A^* \to B^*$, TFAE:

- 1. f is Parikh-collinear;
- 2. $\forall k \geq 1$, $u, v \in A^*$: $u \sim_k v \Rightarrow f(u) \sim_{k+1} f(v)$;
- 3. $\exists k \geq 1 \ \forall u, v \in A^* : u \sim_k v \Rightarrow f(u) \sim_{k+1} f(v);$
- 4. f maps, for all $k \ge 0$, all words with bounded $b^{(k)}$ to words with bounded $b^{(k+1)}$;
- 5. f maps, for some $k \ge 0$, all words with bounded $b^{(k)}$ to words with bounded $b^{(k+1)}$.

Morphic words with bounded binomial complexity functions

Generalization of Rigo and Salimov:

Corollary

A fixed point of a Parikh-collinear morphism has bounded $b^{(k)}$ for all k > 1.

Question by Sportiello and Salo

Is a_x ultimately periodic for f.p. of Parikh-collinears?

Question by Sportiello and Salo

Automatic sequences

A sequence $\mathbf{x} \in A^{\mathbb{N}}$ is k-automatic if and only if. . .

• it is obtained as a letter-to-letter coding of a f.p. of a k-uniform morphism.

Automatic sequences

A sequence $\mathbf{x} \in A^{\mathbb{N}}$ is k-automatic if and only if. . .

- it is obtained as a letter-to-letter coding of a f.p. of a k-uniform morphism.
- for each letter $a \in A$, the characteristic sequence $\{n : \mathbf{x}_n = a\}$ is definable in $Th(\mathbb{N}, +, V_k)$, where $V_k : \mathbb{N} \to \mathbb{N}$, $V_k(n) =$ the largest power of k dividing n.

Automatic sequences

A sequence $\mathbf{x} \in A^{\mathbb{N}}$ is k-automatic if and only if. . .

- it is obtained as a letter-to-letter coding of a f.p. of a k-uniform morphism.
- for each letter $a \in A$, the characteristic sequence $\{n: \mathbf{x}_n = a\}$ is definable in $Th(\mathbb{N}, +, V_k)$, where $V_k: \mathbb{N} \to \mathbb{N}$, $V_k(n) =$ the largest power of k dividing n.
- There is a DFAO A such that $A([n]_k) = x_n$ for all $n \in \mathbb{N}$.

E.g., Thue-Morse is defined with the automaton

Automatic Parikh-collinear fixed points

Theorem (Dekking (1978), Allouche et al. (2020), Rigo-Stipulanti-W. (2023)) Let $\mathbf{x} = f^{\omega}(\mathbf{a})$, where f is Parikh-collinear. Then \mathbf{x} is k-automatic for $k = \sum |f(\mathbf{a})|_{\mathbf{a}}$.

Automatic Parikh-collinear fixed points

Theorem (Dekking (1978), Allouche et al. (2020), Rigo-Stipulanti-W. (2023))

Let $\mathbf{x} = f^{\omega}(\mathbf{a})$, where f is Parikh-collinear. Then \mathbf{x} is k-automatic for $k = \sum |f(\mathbf{a})|_{\mathbf{a}}$.

Example

Consider $\mathbf{w} = f^{\omega}(0)$ with f(0) = 010011, f(1) = 1001.

The construction gives $\mathbf{w} = \tau(g^{\omega}(0))$, where

 $g\colon 0\mapsto 01023,\ 1\mapsto 14501,\ 2\mapsto 10102,\ 3\mapsto 31450,\ 4\mapsto 45010,\ 5\mapsto 10231$

 $\tau: 0, 2, 5 \mapsto 0; 1, 3, 4 \mapsto 1.$

Automatic abelian complexity functions

Theorem (Rigo-Stipulanti-W. (2023+))

Let $\mathbf{x} = f^{\omega}(\mathbf{a})$, where f is Parikh-collinear. Then $\mathbf{a}_{\mathbf{x}}$ is k-automatic for $k = \sum |f(\mathbf{a})|_{\mathbf{a}}$. Moreover, given f, the morphism generating $\mathbf{a}_{\mathbf{x}}$ can be effectively computed.

Automatic abelian complexity functions

Theorem (Rigo-Stipulanti-W. (2023+))

Let $\mathbf{x} = f^{\omega}(\mathbf{a})$, where f is Parikh-collinear. Then $\mathbf{a}_{\mathbf{x}}$ is k-automatic for $k = \sum |f(\mathbf{a})|_{\mathbf{a}}$. Moreover, given f, the morphism generating $\mathbf{a}_{\mathbf{x}}$ can be effectively computed.

- Rigo's conjecture: a_x is k-regular whenever x is k-automatic.
- Guo, Lü, Wen¹: Thm holds for Parikh-constant f.
- Allows to query properties about a_x using software like Walnut.

M.A. Whiteland (ULiège)

¹On the boundary sequence of an automatic sequence. Discrete Math. 345(1) (2022)

Proof of aperiodicity with Walnut

Abelian complexity $a_{\mathbf{w}}$ of $\mathbf{w} = f^{\omega}(0)$, $0 \mapsto 010011$, $1 \mapsto 1001$:

Walnut evaluates the following query to True:
eval isAper "?msd_5 ~(Ei,p (p>0)
 & Aj ((j>=i) =>
 (abCompW[j] = abCompW[j+p])))";

Proof sketch

Theorem (Rigo-Stipulanti-W. (2023+))

Let $\mathbf{x} = f^{\omega}(a)$, where f is Parikh-collinear. Then $\mathbf{a}_{\mathbf{x}}$ is k-automatic for $k = \sum |f(a)|_a$. Moreover, given f, the morphism generating $\mathbf{a}_{\mathbf{x}}$ can be effectively computed.

Consider two natural factorizations of $\mathbf{w} = f^{\omega}(0)$; f(0) = 010011, f(1) = 1001.

- 2. $\mathbf{w} = 01001|11001|01001|10100|11100|11001|10010|10011|01001|1 \cdots$

Proof sketch

Theorem (Rigo-Stipulanti-W. (2023+))

Let $\mathbf{x} = f^{\omega}(a)$, where f is Parikh-collinear. Then $\mathbf{a}_{\mathbf{x}}$ is k-automatic for $k = \sum |f(a)|_a$. Moreover, given f, the morphism generating $\mathbf{a}_{\mathbf{x}}$ can be effectively computed.

Consider two natural factorizations of $\mathbf{w} = f^{\omega}(0)$; f(0) = 010011, f(1) = 1001.

- 2. $\mathbf{w} = 01001|11001|01001|10100|11100|11001|10010|10011|0 1001|1 \cdots$

Definition (Cutting set w.r.t. f)

$$\mathsf{CS}_{f,a} := \{ |f(\mathsf{pref}_n(\mathbf{x}))| \colon n \geq 0 \}$$

$$CS_{f,0} = \{0, 6, 10, 16, 22, 26, 30, 34, \ldots\}$$

Proof sketch continued

Proposition

The cutting set of a Parikh-collinear f.p. $f^{\omega}(a)$ is effectively definable in $Th(\mathbb{N},+,V_k)$ for $k=\sum_{a\in A}|f(a)|_a$. In other words, it is k-automatic.

Use effective version of Mossé's recognisability result á la Béal-Durand-Perrin (personal communication)

Proof sketch continued

Proposition

The cutting set of a Parikh-collinear f.p. $f^{\omega}(a)$ is effectively definable in $Th(\mathbb{N}, +, V_k)$ for $k = \sum_{a \in A} |f(a)|_a$. In other words, it is k-automatic.

Use effective version of Mossé's recognisability result à la Béal-Durand-Perrin (personal communication)

Corollary

For each $a \in A$, there exists a 2-tape DFA accepting the pairs $([n]_2, [|\operatorname{pref}_n(\mathbf{x})|_a]_2)$. (I.e., the sequence $(|\operatorname{pref}_n(\mathbf{x})|_a)_{n\geq 0}$ is k-synchronised.)

Proof sketch continued

Proposition

The cutting set of a Parikh-collinear f.p. $f^{\omega}(a)$ is effectively definable in $Th(\mathbb{N},+,V_k)$ for $k=\sum_{a\in A}|f(a)|_a$. In other words, it is k-automatic.

Use effective version of Mossé's recognisability result á la Béal-Durand-Perrin (personal communication)

Corollary

For each $a \in A$, there exists a 2-tape DFA accepting the pairs $([n]_2, [|\operatorname{pref}_n(\mathbf{x})|_a]_2)$. (I.e., the sequence $(|\operatorname{pref}_n(\mathbf{x})|_a)_{n\geq 0}$ is k-synchronised.)

Conclude by invoking result of J. Shallit (2021).

Thue–Morse word: $\mathbf{t} = 01101001100101101001011001100101001\cdots$ f.p. of the morphism $\mu : 0 \mapsto 01, 1 \mapsto 10.$

Theorem (Thue–Morse complexities (Lejeune–Leroy–Rigo 2020))

For all
$$k \ge 1$$
, $b_{\mathbf{t}}^{(k)}(n) = \begin{cases} p_{\mathbf{t}}(n), & \text{if } n \le 2^k - 1; \\ 3 \cdot 2^k - 3, & \text{if } n \equiv 0 \pmod{2^k} \text{ and } n \ge 2^k; \\ 3 \cdot 2^k - 4, & \text{otherwise.} \end{cases}$

Definition

Let $k \ge 1$. A word **x** has Property \mathcal{P}_k if $b_{\mathbf{x}}^{(j)} = b_{\mathbf{t}}^{(j)}$ for all $1 \le j \le k$.

Definition

A word **x** has Property \mathcal{P}_k if $b_{\mathbf{x}}^{(j)} = b_{\mathbf{t}}^{(j)}$ for all $1 \leq j \leq k$.

Theorem (Richomme-Saari-Zamboni 2011)

An aperiodic word \mathbf{x} has Property \mathcal{P}_1 iff \mathbf{x} is a suffix of $\mu(\mathbf{y})$ for some binary word \mathbf{y} .

Thue–Morse morphism: $\mu: 0 \mapsto 01$, $1 \mapsto 10$.

Proposition

Let **y** be an aperiodic binary word. Then $\mu^k(\mathbf{y})$ and any of its suffixes has Property \mathcal{P}_k .

Proof is by extending results from Lejeune–Leroy–Rigo 2020.

Example: Let $\mathbf{s} = 010010100100\cdots$ be the Fibonacci word; f.p. of $0 \mapsto 01, 1 \mapsto 0$.

Definition: An infinite word **x** is recurrent, if each factor appears infinitely often.

A partial converse:

Proposition

Let \mathbf{x} be a recurrent and assume it has Property \mathcal{P}_k . Then \mathbf{x} is a suffix of the word $\mu^k(\mathbf{y})$ for some aperiodic binary word \mathbf{y} .

Definition: An infinite word **x** is recurrent, if each factor appears infinitely often.

A partial converse:

Proposition

Let \mathbf{x} be a recurrent and assume it has Property \mathcal{P}_k . Then \mathbf{x} is a suffix of the word $\mu^k(\mathbf{y})$ for some aperiodic binary word \mathbf{y} .

Work in progress

Replacing "recurrent" with "aperiodic", thus obtaining a generalization of Richomme–Saari–Zamboni.

Definition ((Abelian) Rauzy graphs (Richomme-Saari-Zamboni 2010))

For \mathbf{x} , the Rauzy graph $R_{\mathbf{x}}(n)$ of order n is the labelled digraph (V, E): $V = \mathcal{L}_n(\mathbf{x})$.

We have $u \to v \in E$ with label (a, b) iff $\exists w : u = aw \& v = wb$ and $awb \in \mathcal{L}(\mathbf{x})$.

The abelian Rauzy graph $AR_x(n) = R_x(n)/\sim_1$.

Example: Abelian Rauzy graphs of the Thue-Morse word.

Definition

Define \equiv_R and \equiv_L on $E_y(n)$ respectively as the equivalence kernels^a of the functions

$$\left(\vec{x} \xrightarrow{(a,b)} \vec{y}\right) \mapsto (\vec{x},b) \qquad \left(\vec{x} \xrightarrow{(a,b)} \vec{y}\right) \mapsto (a,\vec{y}).$$

Let
$$Y = E_{\mathbf{y}}(n)/\equiv_R \cup E_{\mathbf{y}}(n)/\equiv_L$$
.

What I know about Parikh-collinear morphisms

^aEquivalence kernel \sim_f of a function: $x \sim_f y \Leftrightarrow f(x) = f(y)$

Example: Abelian Rauzy graphs of the Thue-Morse word.

Definition

Define \equiv_R and \equiv_L on $E_y(n)$ respectively as the equivalence kernels^a of the functions

$$\left(\vec{x} \xrightarrow{(a,b)} \vec{y}\right) \mapsto (\vec{x},b) \qquad \left(\vec{x} \xrightarrow{(a,b)} \vec{y}\right) \mapsto (a,\vec{y}).$$

Let
$$Y = E_{\mathbf{y}}(n)/\equiv_R \cup E_{\mathbf{y}}(n)/\equiv_L$$
.

^aEquivalence kernel \sim_f of a function: $x \sim_f y \Leftrightarrow f(x) = f(y)$

Example: Abelian Rauzy graphs of the Thue–Morse word.

Definition

Define \equiv_R and \equiv_L on $E_y(n)$ respectively as the equivalence kernels^a of the functions

$$\left(\vec{x} \xrightarrow{(a,b)} \vec{y}\right) \mapsto (\vec{x},b) \qquad \left(\vec{x} \xrightarrow{(a,b)} \vec{y}\right) \mapsto (a,\vec{y}).$$

Let
$$Y = E_{\mathbf{y}}(n)/\equiv_R \cup E_{\mathbf{y}}(n)/\equiv_L$$
.

^aEquivalence kernel \sim_f of a function: $x \sim_f y \Leftrightarrow f(x) = f(y)$

Tools for the proof: formula for $b^{(k+1)}$

Proposition

Let
$$\mathbf{x} = \mu^{k}(\mathbf{y})$$
. We have $b_{\mathbf{x}}^{(k+1)}(r) = p_{\mathbf{t}}(r)$ for all $0 \le r < 2^{k}$. For all $n \ge 1$ we have $b_{\mathbf{x}}^{(k+1)}(2^{k}n) = (2^{k} - 1) \# E_{\mathbf{y}}(n) + b_{\mathbf{y}}^{(1)}(n) - \begin{cases} 2^{k}, & \text{if } 0^{n+1}, 1^{n+1} \in \mathcal{L}(\mathbf{y}); \\ 1, & \text{if } \frac{0^{n+1}, 1^{n} \in \mathcal{L}(\mathbf{y})}{\text{and } 1^{n+1} \notin \mathcal{L}(\mathbf{y})} \text{ (or symm.)}; \\ 0, & \text{otherwise.} \end{cases}$

For all
$$n \ge 1$$
 and $0 < r < 2^k$, setting

$$Z(n,r) := (r-1)\#E_{\mathbf{y}}(n+1) + (2^k - r - 1)\#E_{\mathbf{y}}(n) + \#Y_{\mathbf{y}}(n)$$
, we have $b_{\mathbf{x}}^{(k+1)}(2^k n + r) = Z(n,r) - \dots$

Proof sketch by induction on k.

Proposition

Let \mathbf{x} be a recurrent and assume it has Property \mathcal{P}_k . Then \mathbf{x} is a suffix of the word $\mu^k(\mathbf{y})$ for some aperiodic binary word \mathbf{y} .

Proof sketch by induction on k.

Proposition

Let \mathbf{x} be a recurrent and assume it has Property \mathcal{P}_k . Then \mathbf{x} is a suffix of the word $\mu^k(\mathbf{y})$ for some aperiodic binary word \mathbf{y} .

Base case k = 1: Richomme-Saari-Zamboni 2011.

If **x** has Property \mathcal{P}_{k+1} , then by induction **x** is a suffix of $\mu^k(\mathbf{y})$.

We show that \mathbf{y} must have Property \mathcal{P}_1 by analyzing the possible abelian Rauzy graphs and using formula above.

Question A

Binomial complexities are increasing nested:

$$\mathsf{b}_{\mathsf{x}}^{(1)}(n) \leq \mathsf{b}_{\mathsf{x}}^{(2)}(n) \leq \cdots \leq \mathsf{b}_{\mathsf{x}}^{(k)}(n) \leq \mathsf{b}_{\mathsf{x}}^{(k+1)}(n) \leq \cdots \leq \mathsf{p}_{\mathsf{x}}(n) \quad \forall n \in \mathbb{N}.$$

<u>Notation</u>: For two functions $f,g:\mathbb{N}\to\mathbb{N}$, we write $f\prec g$ when

- $f(n) \le g(n)$ for all $n \in \mathbb{N}$ and
- f(n) < g(n) for infinitely many $n \in \mathbb{N}$.

Question A

Does there exist an infinite word **w** such that $b_{\mathbf{w}}^{(k)} \prec b_{\mathbf{w}}^{(k+1)}$ for all $k \geq 1$?

This question was inspired by Lejeune's PhD thesis.

"Structured" words answering Question A

The word
$$\mathbf{v} = \tau(g^{\omega}(a))$$
, where $g: a \mapsto a0\alpha, 0 \mapsto 01, 1 \mapsto 10, \alpha \mapsto \alpha^2$ $g^{\omega}(a) := \lim_{n \to \infty} g^n(a)$ $\tau: a \mapsto \varepsilon, 0 \mapsto 0, 1 \mapsto 1, \alpha \mapsto 1$.

- has $b_{\mathbf{v}}^{(1)}$ unbounded
- is binary and morphic

Grillenberger's construction gives a word

 $\mathbf{w} = 0100010101100111 \cdots$ which

- has $b_w^{(1)}$ unbounded
- is binary and uniformly recurrent*

*each factor occurs infinitely many times within bounded gaps.

Question B

Binomial complexities are increasing:

$$\mathsf{b}_{\mathsf{x}}^{(1)}(n) \leq \mathsf{b}_{\mathsf{x}}^{(2)}(n) \leq \cdots \leq \mathsf{b}_{\mathsf{x}}^{(k)}(n) \leq \mathsf{b}_{\mathsf{x}}^{(k+1)}(n) \leq \cdots \leq \mathsf{p}_{\mathsf{x}}(n) \quad \forall n \in \mathbb{N}.$$

Question B (Stabilization)

For each $k \geq 1$, does there exist a word \mathbf{w}_k such that

$$b_{\boldsymbol{w}_k}^{(1)} \prec b_{\boldsymbol{w}_k}^{(2)} \prec \dots \prec b_{\boldsymbol{w}_k}^{(k-1)} \prec b_{\boldsymbol{w}_k}^{(k)} = p_{\boldsymbol{w}_k}?$$

This question was inspired by Lejeune's PhD thesis.

Towards a second answer

Recall for the Thue–Morse word **t**, fixed point of $\varphi: 0 \mapsto 01, 1 \mapsto 10$:

Theorem (Lejeune-Leroy-Rigo 2020)

For all
$$k \ge 1$$
, $b_{\mathbf{t}}^{(k)}(n) = \begin{cases} p_{\mathbf{t}}(n), & \text{if } n \le 2^k - 1; \\ 3 \cdot 2^k - 3, & \text{if } n \equiv 0 \pmod{2^k} \\ 3 \cdot 2^k - 4, & \text{otherwise.} \end{cases}$ and $n \ge 2^k$;

Theorem

The word $\mathbf{x} = \varphi^k(\mathbf{y})$ has Property \mathcal{P}_k .

Corollary

 $b_{\mathbf{x}}^{(1)} \prec \ldots \prec b_{\mathbf{x}}^{(k)}$. Can be further shown that $b_{\mathbf{x}}^{(k)} \prec b_{\mathbf{x}}^{(k+1)}$.

Answering Question B

Theorem (Rigo-Stipulanti-W. (2024))

Let k be an integer.

Let **s** be a Sturmian word and let $\mathbf{s}_k = \varphi^k(\mathbf{s})$.

Then
$$b_{\mathbf{s}_k}^{(1)} \prec b_{\mathbf{s}_k}^{(2)} \prec \cdots \prec b_{\mathbf{s}_k}^{(k+1)} \prec b_{\mathbf{s}_k}^{(k+2)} = p_{\mathbf{s}_k}$$
.

Remark: Such words considered by Frid (1999)

<u>Proof sketch</u>: By the previous corollary, $b_{s_k}^{(1)} \prec b_{s_k}^{(2)} \prec \cdots \prec b_{s_k}^{(k+1)}$.

Can be shown that $b_{s_k}^{(k+1)} \neq p_{s_k}$ by analysing abelian Rauzy graphs.

$$\mathsf{b}_{\mathsf{s}_k}^{(k+2)} = \mathsf{p}_{\mathsf{s}_k}$$
: Use fact that in s : $u \sim_2 v \Rightarrow u = v$ (Rigo-Salimov 2015)

Answering Question B

Example: Let $\mathbf{s} = 010010100100\cdots$ be the Fibonacci word (fixed point of $0 \mapsto 01, 1 \mapsto 0$).

Conclusions

Considered Parikh collinear morphisms w.r.t. binomial complexities.

- Characterisations of Parikh-collinear morphisms using binomial equivalence and binomial complexities.
- Discussed automatic properties of Parikh-collinear fixed points
- Application of Thue–Morse to words.

Conclusions

Considered Parikh collinear morphisms w.r.t. binomial complexities.

- Characterisations of Parikh-collinear morphisms using binomial equivalence and binomial complexities.
- Discussed automatic properties of Parikh-collinear fixed points
- Application of Thue–Morse to words.

Future prospects:

- Complete full generalization of Richomme–Saari–Zamboni (2011)
- Binomial complexities of other families of words?
- Possible behviours of "consecutive" binomial complexities.
- Automaticity of binomial complexities?
- Automaticity of cutting sets?

Unbounded complexities for Question B?

But... the binomial complexities $b_{s_k}^{(1)}, \ldots, b_{s_k}^{(k+1)}$ are bounded.

Question C

For each $k \geq 1$, does there exist a word \mathbf{w}_k such that $b_{\mathbf{w}_k}^{(1)}$ is unbounded and $b_{\mathbf{w}_k}^{(1)} \prec b_{\mathbf{w}_k}^{(2)} \prec \cdots \prec b_{\mathbf{w}_k}^{(k-1)} \prec b_{\mathbf{w}_k}^{(k)} = p_{\mathbf{w}_k}$?

Answer for k = 3:

$$\mathbf{h} = 0112122122212221222 \cdots$$

(fixed point of $0 \mapsto 01, 1 \mapsto 12, 2 \mapsto 2$)

- has $b_h^{(1)}$ unbounded
- has $b_{h}^{(1)} \prec b_{h}^{(2)} \prec b_{h}^{(3)} = p_{h}$.

What about larger values of k? The question remains open...

References and related reading

- Allouche, J.P., Dekking, F.M., Queffélec, M.: Hidden automatic sequences (2020) https://arxiv.org/abs/2010.00920
- Allouche, J.P., Shallit, J.: Automatic sequences: Theory, applications, generalizations. Cambridge University Press, Cambridge (2003).
- Cassaigne, J., Nicolas F.: Factor Complexity. Chapter 4 in Berthé, V., Rigo, M.: Combinatorics, Automata and Number Theory, Cambridge University Press (2010) https://doi.org/10.1017/CB09780511777653
- Cassaigne, J., Richomme, G., Saari, K., Zamboni, L.Q.: Avoiding Abelian powers in binary words with bounded Abelian complexity. Int. J. Found. Comput. S. 22(4), 905–920 (2011).
- Dekking, F.M.: The spectrum of dynamical systems arising from substitutions of constant length (1978) https://doi.org/10.1007/BF00534241
- o Frid, A.: Applying a uniform marked morphism to a word. Discrete Math. Theor. Comput. Sci. 3(3), 125–139 (1999).
- Grillenberger, C.: Constructions of strictly ergodic systems. I. Given entropy. Z. Wahrscheinlichkeit. 25, 323–334 (1973).
- Lejeune, M.: On the k-binomial equivalence of finite words and k-binomial complexity of infinite words.
 Ph.D. thesis, University of Liège (2021), http://hdl.handle.net/2268/259266.

References and related reading

- Lejeune, M., Leroy, J., Rigo, M.: Computing the k-binomial complexity of the Thue–Morse word. J. Comb. Theory, Ser. A 176, 44 (2020).
- Lejeune, M., Rigo, M., Rosenfeld, M.: Templates for the k-binomial complexity of the Adv. Appl. Math. 112, 26 (2020).
- Lü, X.T., Chen, J., Wen, Z.X., Wu, W.: On the 2-binomial complexity of the generalized Thue-Morse words (2021), preprint https://arxiv.org/abs/2112.05347.
- o Richomme, G., Saari, K., Zamboni, L.Q.: Abelian complexity of minimal subshifts (2011) https://doi.org/10.1112/jlms/jdq063
- o Richomme G., Saari K., Zamboni L.Q.: Balance and Abelian complexity of the Tribonacci word (2010), https://doi.org/10.1016/j.aam.2010.01.006
- Rigo, M., Salimov, P.: Another generalization of abelian equivalence: binomial complexity of infinite words.
 Theor. Comput. Sci. 601, 47–57 (2015).
- Shallit, J.: Abelian Complexity and Synchronization INTEGERS 21:#A36 (2021) https://math.colgate.edu/~integers/v36/v36.pdf