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Infinite words, factors, complexity

u ∈ AN: an infinite word

(one may also consider a bi-infinite word u ∈ AZ, or a factorial lan-

guage L ⊆ A∗, or a symbolic dynamical system X ⊆ AZ).

w ∈ A∗ is a factor of u if w = ukuk+1uk+|w|−1 for some k.

L(u): the set of factors of u, Ln(u) = L(u) ∩An.

pu(n) = #Ln(u): the complexity function of u.
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Questions on complexity

1. Given an infinite word u, compute its complexity function.

2. If a word has a given property (dynamical, combinatorial, etc.),

what are the consequences on its complexity? and vice versa?

3. Given a function (or a class of functions), does there exist a word

with such complexity? In this case, construct it explicitely.

4. Describe all words whose complexity function is in a given class.

Here we are interested in a question of type 3: among linear growths,

which ones are possible for a complexity function?

4



Linear complexity

Many families of infinite words have a complexity function with linear
growth p(n) = O(n):

• automatic words

• primitive substitutive words

• Sturmian words: p(n) = n+1

• Arnoux-Rauzy words: p(n) = 2n+1

• codings of k-interval exchange transformations: p(n) = (k−1)n+1

• dendric words: p(n) = (k − 1)n+1

• Rote words: p(n) = 2n for n ≥ 1

• paperfolding words: p(n) = 4n for n ≥ 7

• ...
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Thue-Morse word

u = abbabaabbaababbabaab . . . fixed point of a 7→ ab, b 7→ ba

Complexity (Brlek 1989)

p(n+1) = 4n− 2.2k if 2.2k ≤ n ≤ 3.2k

p(n+1) = 2n+4.2k if 3.2k ≤ n ≤ 4.2k

3n ≤ p(n+1) ≤ 10n/3 for n ≥ 2, sharp.

Typical for substitutive words: p(n+1)−p(n) takes finitely many val-

ues, changing when n belongs to a certain sequence with exponential

growth (the lengths of bispecial factors).
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Heinis spectrum

Let α = lim inf
n→∞

p(n)
n and β = limsup

n→∞
p(n)
n .

Theorem (Heinis 2001).

If 1 < α < 2, then β − α ≥ (2−α)(α−1)
α .

In particular 1 < α = β < 2 is impossible. More generally, α = β ∈ R\N
is impossible (Cassaigne and Nicolas 2010).

The Heinis spectrum is the set of possible pairs (α, β):

Ω = {(α, β) : u ∈ AN} ⊂ [0,+∞]2

Question: what is the structure of Ω?
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Examples

Ω contains:

(0,0): periodic words

(1,1): Sturmian words

(k, k): codings of interval exchange transformations

(3,10/3): Thue-Morse

(∞,∞): Champernowne

And also (1,∞), (3/2,5/3), (1+
√
2

2 , 3+
√
2

3 ), ...
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Isolated points in Ω

By the theorem of Morse and Hedlund, (0,0) is the only point for

which α < 1, hence it is isolated.

Theorem (Turki 2016). If

β < min

(

5α2 − 3α

2α2 − α+1
,

4α

2+ α

)

then (α, β) = (32,
5
3).

Corollary. (32,
5
3) is an isolated point in Ω.

It is attained by the fixed point of a 7→ ab, b 7→ aa

(period-doubling word).
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Accumulation point in Ω

Theorem (Aberkane 2001). For ℓ ∈ N, let u be the fixed point of

σ : a 7→ ab, b 7→ (ab)ℓaa. Then α− 1 ∼ 1/ℓ2 and β − 1 ∼ 1/ℓ.

Corollary. (1,1) is an accumulation point in Ω.
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Questions

• Describe families of points in Ω (Kaitlyn Loyd, to appear).

• Find other isolated points in Ω (Firas Ben Ramdhane, in progress).

• Does Ω have non-empty interior?

• Is {1} × [1,∞] ⊂ Ω?

• What does one obtain when restricting to words with a given

property? For instance (Boshernitzan 1984), for words generating

non-uniquely ergodic systems:

ΩnonUE ⊆ Ω ∩ [2,∞]× [3,∞].

• Is Ω compact?

• Are points corresponding to purely substitutive words dense in Ω?
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Rauzy graphs

(Rauzy 1983)

For each n ∈ N, the Rauzy graph Gn is the directed graph with

• vertices: Ln(u),

• edges: Ln+1(u),

• x
z−→ y if x is a prefix of z and y is a suffix of z.

Edges may be labelled in several ways.

Here we choose the first letter of z.
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Example: Fibonacci word

Let u = abaababaabaababaababaabaababaabaab . . . be the Fibonacci word.

It is the fixed point of the substitution a 7→ ab, b 7→ a.

It is a Sturmian word: p(n) = n+1 for all n.

So Gn has n+1 vertices and n+2 edges.
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u = abaababaabaababaababaabaababaabaababaababaabaababaababa . . .
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Rauzy graphs as automata

Gn can be viewed as a nondeterministic finite automaton, where all

states are initial and final. Then:

L(u) ⊆ L(Gn)

L(u) ∩A≤n+1 = L(Gn) ∩A≤n+1

L(Gn+1) ⊆ L(Gn)

L(u) =
⋂

n∈N
L(Gn)
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Rauzy graphs and special factors

A factor w ∈ L(u) is right special (for u) if there exist distinct letters

a and b such that wa ∈ L(u) and wb ∈ L(u).

In Gn:

right special factor = vertex with more than one outgoing edge

left special factor = vertex with more than one incoming edge.

On a binary alphabet:

the number of right special factors is s(n) = p(n+1)− p(n);

the number of left special factors is s(n) or s(n)+1 (in the case where

one vertex has no incoming edge).
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Rauzy graphs for eventually periodic words

If u is eventually periodic, for n large enough Gn looks like this:

The length of the cycle is the period of u; the length of the tail its

preperiod (if u is purely periodic there is no tail).
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Shape of a Rauzy graph

The shape of a Rauzy graph is the graph obtained by removing all

vertices with indegree and outdegree 1. Branches

x0
a1−→x1

a2−→x2 · · ·xk−1
ak−→xk

are replaced with a single edge x0
a1a2...ak−→ xk labelled with a word.

If u is eventually (but not purely) periodic, for n large the shape of

Gn is:

v

w

where u = vwω.
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Rauzy graphs for Sturmian words

A Sturmian word is a word such that p(n) = n + 1 for all n (the

smallest possible complexity for a non-periodic word).

Such a word is always recurrent: every factor occurs infinitely often.

As a consequence, its Rauzy graphs are strongly connected.

s(n) = (n+ 2) − (n+ 1) = 1: there is one left special factor l and

one right special factor r of length n. Therefore only two shapes are

possible for Gn:
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Rauzy graphs for Sturmian words

s(n) = (n+ 2) − (n+ 1) = 1: there is one left special factor l and

one right special factor r of length n. Therefore only two shapes are

possible for Gn:

Case 1: l 6= r Case 2: l = r
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Evolution from Gn to Gn+1

If G = (V,E) is a directed graph, then its line graph is the graph

D(G) = (V ′, E′) with V ′ = E and

E′ = {(e1, e2) : head(e1) = tail(e2)} .

Gn+1 is always a subgraph of D(Gn). Often Gn+1 = D(Gn), in

particular when u is recurrent (we assume this usually) and there is no

bispecial factor (a factor that is both left special and right special).
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Evolution without bispecial factor

When there is no bispecial factor, Gn+1 = D(Gn) can be deduced

from Gn without any additional information.

Gn and Gn+1 have the same shape. The lengths of branches may

increase or decrease by 1. At least one branch shrinks, so eventually

a bispecial factor will occur in a later graph.

Example (Fibonacci):
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Bispecial factor burst

A bispecial factor is a factor that is both left special and right special.

For simplicity assume a binary alphabet A = {a, b}.

w

aw

bw

wa

wb

aw

bw

wa

wb

Gn D(Gn) Gn+1
(w is bispecial) (w yields 4 edges) (edges may be deleted)
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Evolution for Sturmian words

Assume that there is a bispecial factor of length n.

wx y

wa′

aw wb′

bw

a

a

b

bxa−1 yb−1

Gn D(Gn)

To obtain Gn+1, one of the dashed vertical edges has to be removed

from D(Gn) (exactly one to get p(n+2) = n+3 edges; and the hori-

zontal edges are needed for strong connectedness). So two evolutions

are possible.
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x y

xy x yx y

1 1

|x| − 1 |y| − 1
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Recurrence formulas

Let ni be the length of the i-th bispecial factor (n0 = 0).

Let xi, yi be the labels of the loops of Gni, with |xi| ≥ |yi|, x0 = a,

y0 = b. Then










ni+1 = ni+ |xi|
xi+1 = xiyi
yi+1 = xi

or











ni+1 = ni+ |yi|
xi+1 = yixi
yi+1 = yi

depending on the type of evolution between Gni and Gni+1.
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An s-adic interpretation

Let ϕ(a) = ab, ϕ(b) = a, ψ(a) = ba, ψ(b) = b. Then there is a

sequence of substitutions (σi) ∈ {ϕ,ψ}N such that xi = τi(a), yi =

τi(b), with τi = σ0 ◦ σ1 ◦ · · · ◦ σi−1.

The infinite word

û = lim
i→∞

τi(a)

is such that L(û) = L(u) (actually û is standard Sturmian).

(σi) is an s-adic representation of û.

(σi) has a strong connection with the continued fraction expansion of

the slope of u.
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Very low complexity

Let’s describe graphs for a slightly larger class.

Idea: if p(n + 1) − p(n) = 1 for infinitely many n, then infinitely
often Gn will have a Sturmian shape. This is for instance the case if
α = lim inf p(n)/n < 2.

If p(n) ≤ 4n/3+1 (Aberkane 2001), or more generally if β(2+α) < 4α
(Turki 2016), then the possible evolutions between 8-shaped graphs
are completely described, they correspond to substitutions ϕm (m ≥ 1)
and ψ, where ϕm(a) = abm, ϕm(b) = a, ψ(a) = ba, ψ(b) = b.

Note that ψq ◦ ϕm : a 7→ bqabm, b 7→ bqa.
Up to word conjugacy, this substitution is the same as τm+q+1,q+1
(Creutz and Pavlov 2023).
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Recurrent words with p(n) = n+ o(n)

Recall that ϕm : a 7→ abm, b 7→ a (m ≥ 1) and ψ : a 7→ ba, b 7→ b.

Theorem (Aberkane 2003).

Let u be recurrent. Then pu(n) = n+o(n) if and only if u has the same

factors as û = limi→∞ τ0 ◦ σ1 ◦ · · · ◦ σi(a) where τ0 is any non-periodic

substitution, and σj = ψqj ◦ ϕmj, with mj ≥ 1, qj ≥ 0, and

lim
j→∞
mj 6=1

qj

mj − 1
= +∞ .
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