Summation and Transduction
in Automatic Sequences

Luke Schaeffer
University of Waterloo

Motivation

First-order statements about k-automatic sequences can be
mechanically decided by Walnut.

Motivation

First-order statements about k-automatic sequences can be
mechanically decided by Walnut.

| | w |

lwlay >_w,w € L?

Summation/transduction are not first-order predicates.

Section 2

Summation

Period-doubling sequence

Definition
Define the period-doubling sequence,

p=h*(1)=1011101010111011-- -,

as the fixed pointof : {0, 1}* — {0, 1}* where

h(1) =10,
h(@) =11.

Partial Sums

pP=19061T11 0616180611

\p = 01123 4455866 7

Partial Sums

pP=19061T11 0616180611

\p = 01123 4455866 7

Notbounded = not automatic or morphic

Partial Sums

P=10611180610180 11

\p = 01123 445056 6 7

Notbounded = not automatic or morphic

k-automatic C k-synchronized C k-regular

Partial Sums

P=10111018618011

\p = 01123 445056 6 7

Notbounded = not automatic or morphic

k-automatic C k-synchronized C k-regular

Theorem
Every k-automatic sequence has k-regular partial sums.

k-regular sequences

Definition
A sequence (a;)°, € Z is k-regular if there exist
e matrices Mo, ..., N e Zi e

e vectorsu,v € Z¢,
such thatforallz > 0,

an:uTM,j--~M V.

To

wherer; - - -1y = (n); € [k]*.

Constructing Prefixes

Po- P = 101110101601116111011101

Constructing Prefixes

Po-pn = 10111010101118111011101
— K(10111010101)1

Constructing Prefixes

Po-pn = 10111010101118111011101
— K(10111010101)1
— w(h(10111)1)1

Constructing Prefixes

Po-pn = 10111010101118111011101
— K(10111010101)1
— w(h(10111)1)1
— h(h(h(10)1)1)1

Constructing Prefixes

P =

= h

10111010101118111811101
A(18111810101)1
(R(19111)1)1

h(h(h(10)1)1)1
(

= h(k(h(r(1))1)T)1

Constructing Prefixes

Po-pn = 10111010101118111011101
— 1(19111010101)1
— A(h(18111)1)1

= h(h(h(10)1)1)1

= h(h(h(R(1))1)1)1

X Itis not obvious which symbol(s) to append.

Constructing Prefixes

Po-pn = 10111010101118111011101
— 1(19111010101)1
— A(h(18111)1)1

= h(h(h(10)1)1)1

= h(h(h(R(1))1)1)1

X Itis not obvious which symbol(s) to append.
v # of symbols comes from base-k digits

Constructing Prefixes

Po P2

10111010101118111811101
A(18111810101)1

h(h(10111)1)1

h(h(h(10)1)1)1

h(h(h(R(1))1)1)1

X Itis not obvious which symbol(s) to append.
v # of symbols comes from base-k digits

X We prefer not to append at all = pure morphic solution

Prefixes

1011
he hA

10111010 101110101

Prefixes

Include preview of next symbol

10110
/ h1

10111010H 19011101010

Prefixes

Include preview of next symbol

10116
ho h
10111010H 19011101010
he(0) = 11 hi(0) = 11
he(1) =10 hi(1)=10
ho(E]) = r(E]) = 10
)) =10

Example

Note: (23), = 10111.

h1(h1(hq(he(h1(H)))))

Example

Note: (23), = @11 1.

hy (hg (hg (hg (kg ()))))

Example

Note: (23), = 10111.

h1(h1(hq(he(h1(H)))))
= hy(h1(h1(he(10]))))

Example

Note: (23), = 10111.

Example

Note: (23), = 10111.

1(
1(
1(
1(

h1(h1(he(hq(H)))))
h1(hq(he(10))))
h1(hq(10H)))
h1(101110))

Example

Note: (23), = 10111.

h1(h1(hq(he(hy (H)))))
ha(hq(h1(he(10))))

= hq(h1(hq(10HN)))

hi(he(101110))
h1(10111010101H)

Example

Note: (23), = 10111.

h1(h1(he(hq(H)))))
h1(hq(he(10))))

h1(hq(10H)))

h1(101110))

= (101110101010

— 10111010101110111011101[

ha (
ha (
ha (
ha (

Parikh vectors

Definition
The Parikh vector of awordw € X*is

(’W’a)ae):-

Le., a vector of the number of occurrences of each alphabet
symbol.

E.g.,

Prasny (BANANA) = | 1

Why the Parikh vectors?

1. Sum reduces to Parikh vectors

]
S wi= 0o+ 1ok = ($) i)

Why the Parikh vectors?

1. Sum reduces to Parikh vectors
n T
S wi= 0o+ 1ok = ($) i)

2. Diagram:

1011H

10116 10111010kl

10116 10111010kl

— O 1 W

10116 10111010kl

—_ O W
— O 1 W

10111010kl

1011H

N wn O -

S O O —
o O O —
— — O O

o N O O

- N O —

19011101010

19110

N O — O

S — — O

O —~ O

— — O O

S a © O

- N O

22

i=0

“TII)(PO o Ppn)

u' P (hq (hq (hq(hg(hq (HD)))))

22

=0

“TII)(PO o Ppn)

u ' P(hq (hq (7 (hg(hy (H))))))
u' MU (hq(hq (hg(hq (H)))))

22

=0

“TII)(PO o Ppn)

= u'P(hq(hq(hq(hg(h1())))))
= u' Mq(hq(h (hg(hq(H))))

u' M1 MM MM (Hl)

22

=0

“TII)(PO o Ppn)

= u'P(hq(hq(hq(hg(h1())))))
= u' Mq(hq(h (hg(hq(H))))

— uTM—I M1 M M@M1II)()
= uTM1M1 M M@M-]V

22

Z P = “TLI)(PO o Ppn)

= uTll)(h-] (hq(hq (hg(hq ()
= uTM1ll)(h1 (h‘] (h@(h1 ()))))

= u' MMM MaM1 Y (H)
= uTM-IM-IM-]M@M-]V

Theorem

Every k-automatic sequence has k-regular partial sums.
ry q 74 p

Warning

We cannot use a k-regular sequence directly in Walnut.

Reduction modulo m

Theorem

A k-regular sequence modulo m is k-automatic.

Proof

Matrices (Z%), vectors (Z?), and integers (Z) collapse to finite
sets mod . [l

Example

P=1811T180610610 11
> mod2

t\pmod2 = 9 1 1 8 1 8 8 1 1 6 0 1

Example

P=1061 1106166180611
> mod2

t\pmod2 = 9 1 1 8 1 8 8 1 1 6 0 1

Fact
Foralln € N, t, = Zl";é p; (mod 2)

Example

P=1061 1106166180611
> mod2

t\pmod2 = 9 1 1 8 1 8 8 1 1 6 0 1

Fact
Foralln € N,t, = " p; (mod 2)

Fact
Foralln € N,p, =t,.; —t, (mod 2).

Finiteness

Theorem (Allouche and Shallit, 1990)

If a sequence is k-regular and takes on finitely many values
then it is k-automatic.

Example

Considerd = ¢ (1) where

$(0) =011,

b(1) =116.
600 A
500
400

W,
300 A
200 A
100 4
N
(’] 2[’][) 4[‘)() ()'(I)() 8(’)[] 1(;()(]
n

.

Subtract 3 from each symbol to reduce by 3n.

Subtract 3 from each symbol to reduce by 3n.

0 =
T
T +3

Subtract 2 from each symbol to reduce by 2n.

0 ——— -2

T

1 +1

Subtract 2 from each symbol to reduce by 2n.

0 ——— 2

T

+1

T
1000

We have a new bounded sequence.
n—I1 n—I1
r,=) td)=3) d&—2m
i=0 i=0

Theorem
The sequence ¥ is 3-automatic.

k-Synchronized seguences

Definition
Afunction f: N — IN is k-synchronized if some automaton
accepts

{(2. flx))i : ¢ € N}

k-Synchronized seguences

Definition
Afunction f: N — IN is k-synchronized if some automaton
accepts
{(2. flx))i : ¢ € N}
Theorem

n s Y 1 dyis 3-synchronized.

k-Synchronized seguences

Definition
Afunction f: N — IN is k-synchronized if some automaton
accepts
{(2. flx))i : ¢ € N}
Theorem

n s Y 1 dyis 3-synchronized.

Given (n, s), check if
r, = 3s— 2n.

Non-example

Partial sums of p also tend to line of slope 2.

600

500 A

400 4

300 1

200 1

100

04

T T T T T
0 200 400 600 800 1000

Non-example

Apply T to subtract %n:

Non-example

Apply T to subtract 2

n:

44 -
o e IR
R
L
—4 =
(I] 2[’][) 4[‘)() G(I)(] 8(‘][]
n

T
1000

Non-example

Apply T to subtract 2n:

2] - e — PR -
PARE [— S PR S
9 — - R -

T
200

T T T T
400 600 800 1000
n

Grows like O(logn).

Not synchronized either

n—I1 n—I1
Z p: is 2-synchronized <= Z T(p;) is 2-synchronized

i=0 i=0

Not synchronized either

n—l1 n—1

Z p: is 2-synchronized <= Z T(p;) is 2-synchronized
i=0 i=0
Theorem

If k-synchronized sequence is o(n) then it is O(1).

Beatty sequences

Theorem (S., Shallit, Zorcic 2024)

Let 0 < Y < 1be a quadratic irrational, and suppose «, 5 € Q(y)
are such that x > 0, x + 3 > 0. Then

([on+ B)2021

is synchronized in 'y - Ostrowski representation.

Beatty sequences

Theorem (S., Shallit, Zorcic 2024)

Let 0 < Y < 1be a quadratic irrational, and suppose «, 5 € Q(y)
are such that x > 0, x + 3 > 0. Then

([on+ B)2021

is synchronized in 'y - Ostrowski representation.

In other words, partial sums of Sturmian words are
synchronized.

Section 3

Transduction

Theorem

Letw € X% be a k-automatic sequence. Given any DFAO T, the
sequence
T(wy), T(wyw,), T(wywows), . ..

is k-automatic.

Theorem

Letw € X% be a k-automatic sequence. Given any DFAO T, the
sequence
T(wy), T(wyw,), T(wywows), . ..

is k-automatic.

E.g., with the DFAO computing parity.
0

0

Theorem (Dekking, 1991)

Letf € (F — F)“ be a k-automatic sequence of functions on a finite

set F.
f.f,of f;0f,0f,...

is k-automatic.

Theorem (Dekking, 1991)

Letf € (F — F)“ be a k-automatic sequence of functions on a finite

set F.
f.f,of f;0f,0f,...

is k-automatic.

start 4’

Theorem (Dekking, 1991)

Letf € (F — F) be a k-automatic sequence of functions on a finite
set F.

f,f,of f;0f,0f, ...

is k-automatic.

Theorem (Dekking, 1991)

Letf € (F — F) be a k-automatic sequence of functions on a finite
set F.
f.f,of . f;0f,0f;,...

is k-automatic.

0 0

Theorem

Letw € L% be a k-automatic sequence. Given
e a finite monoid (M, -), and

e homomorphism $: L* — M,

the sequence

d)(Wl): (I)(W1W2): d)(WleWa), e

is k-automatic.

Theorem

Letw € L% be a k-automatic sequence. Given
e a finite monoid (M, -), and

e homomorphism $: L* — M,

the sequence
d)(Wl): (I)(W1W2): d)(WleWa), e

is k-automatic.

Reduction: (F — F, o) is a finite monoid when F is finite.

Theorem

Letw € L% be a k-automatic sequence. Given
e a finite monoid (M, -), and

e homomorphism $: L* — M,

the sequence
d)(wl)r (I)(Wlwz), ¢(W1W2W3), -

is k-automatic.

Reduction: (F — F, o) is a finite monoid when F is finite.

Reduction: Can compute ¢ with finite state: M.

Typical term

For p, a typical term looks like

$lhq (hq (hq (hg(hq (H)))))].

Typical term

For p, a typical term looks like

$lhq (hq (hq (hg(hq (H)))))].

hq
2 * x*

Typical term

For p, a typical term looks like

$lhq (hq (hq (hg(hq (H)))))].

hq
2 * x*

Typical term

For p, a typical term looks like

$lhq (hq (hq (hg(hq (H)))))].

hq
2* 2 *

Typical term

For p, a typical term looks like

$lhq (hq (hq (hg(hq (H)))))].

hq
>* 2 *

&l (hq (k1 (hg(hq ()))))]

&lhq (hq (hq(hg(hq (H)))))]
= 8(p, 1)[hq(hq(hg(hq(HD))))]

&lhq (hq (hq(hg(hq (H)))))]
5(d, 1)[hq(hq(hg(hq (H))))]
5(8(, 1), 1)[hq (hg(hq (H))]

&l (hq (1 (hg(hq (HD))))]
(&, 1)[h1 (hq (kg (hq (H))))]
5(8(d, 1), 1)[hq (hg(hq (HD))]
5(8(8(p,1),1),1)[hg (4 ()]

5(¢,1),1),1)[hg(hq (WD)

— — —

— 5(5

—
—|

—

—

— == =
— —
))11}
— ~— —
g — P
— = -
—_ T — 0o
< ©® -~
1I\h\|l -
h@ - —
—_ s — -
— T D ~
-~ — “~ ™=
(h\'/ -
prl - — -
=~ 11:@-

- — -
1;11@-6
O
= . S w0 w
N N N
T e o w w

S — — ~—

—
—|

—

—

— ==E =
—_— —_
— — N - -
— ~— —
—m - = o
B35 >
— o —
< ©® -~
T & — R
h@ - —
—_— L~ .
0(\1):
h1:‘|\,
— e
— - —
h\111|®-

- — -

=)
— Vo)
= T A= =

=~ =

— 4 w0
- — = =

S — — ~—

—

—
— =
—
—
—_— — — h —
— —
— — m — .
— — P
— b - =
ET=<5 >
- = ©®
< ©® -~
1/\h\l N
=T o= - —
—_— L~ .
O = = — .
L == = —
— ~—~ .
- = = .
= — .
- = %
- -~ T 5 w
= -~ = =
=S
= . S w0 w
— - = =

S — — ~—

e Y Y) &

—

d: Mon(X*, M) x{0,1} — Mon(X*, M)

&l (hq (k1 (hg(hq ()))))]

®, 1)1 (hq (hg (k1 (H))))]
$,1), 1)k (hg(hq (H)))]
5(,1),1),1)[hg(hq ()]
5(8(,1),1),1),0)[~ (H)]
5(8(8(d,1),1),1),0),1) M
$,11101) (1

d: Mon(X*, M) x{0,1} — Mon(X*, M)

Note: Mon(X*, M) = Set(XZ, M) is finite!

Finite automaton data
Input alphabet: £ = {0, 1},

Output alphabet: M,

State set: Q := Mon(X*, M),

Transition function: 6: Q X {0, 1} — Q,

Finite automaton data
Input alphabet: £ = {0, 1},

Output alphabet: M,

State set: Q := Mon(X*, M),

Transition function: 6: Q X {0, 1} — Q,

Initial state: qo := ¢ € Q,

Finite automaton data

e Inputalphabet: X ={0, 1},

e Output alphabet: M,

e Stateset: Q := Mon(XZ*, M),

e Transition function: 0: Q x {0,1} — Q,
e Initial state: ¢ ;= ¢ € Q,

e Outputmap: T: Q — M where T(q) = q(ll).

Finite automaton data

e Inputalphabet: X ={0, 1},

e Output alphabet: M,

e Stateset: Q := Mon(XZ*, M),

e Transition function: 0: Q x {0,1} — Q,
e Initial state: ¢ ;= ¢ € Q,

e Outputmap: T: Q — M where T(q) = q(ll).

Theorem

Letw € 2% be a k-automatic sequence. Given any DFAO T, the
sequence
T(wy), T(wyw,), T(wywaws), . ..

is k-automatic.

Transducing k-automatic sequences

Walnut update March 27,2023

One may now transduce automata (that have at most one edge
per input per two states) with the following syntax:

transduce <new> <TRANSDUCER> <old>

For example, to transduce a word automaton T saved in . . . using
a transducer named RUNSUM2 saved in . . ., one writes the
following:

transduce new_T RUNSUM2 T;

Section 4

Something New

The morphisms /g, /11 are arbitrary!

The morphisms /g, /11 are arbitrary!

Lemma
There exists a DFAO computing

d)(hal(haz(' : 'hak(o—) e)))

given input a, - - - ap € I where

The morphisms /g, /11 are arbitrary!

Lemma
There exists a DFAO computing

d)(hal(haz(' : 'hak(G) e)))

given input a, - - - ap € I where

o X, I arefinite sets,

(hy: Z¥ = Z*)yer

aword o € L%,

(M, -) is a finite monoid, and

&: L* — M is a monoid homomorphism.

Corollary (Transducing factors—Jason Bell, S., 2013)
Letw € L be a k-automatic sequence. For any DFAO T, the 2D
sequence

a;,:=T(w; Wi,),

is k-automatic.

Paperfolding Sequences

ANV ANV V

Definition
The regular paperfolding word,

pE = AAVAAVVAAANAVVAVV...,
is defined as the unique fixed point of

pf = interleave(\V AV AV - pf).

Definition
The regular paperfolding word,

pE = AAVAAVVAAANAVVAVV...,
is defined as the unique fixed point of

pf = interleave(\V AV AV - pf).

Fact

The regular paperfolding word is 2-automatic.

Every time you unfold you make a choice, A\ or V.

Every time you unfold you make a choice, A\ or V.

The first unfold fixes the word to be of the form

interleave(AV AV AV -, —)
OR
interleave(V AV AV A ... —)

Every time you unfold you make a choice, A\ or V.

The first unfold fixes the word to be of the form

interleave(AV AV AV -, —)
OR
interleave(V AV AV A ... —)

With some work, this can be translated to morphisms.

~—

T Y S o &

FR Y Y Y

—_— — ~— ~— ~—

~—~

T e Y) &

SA
BC
BA
DC
DA
over internal alphabet{S, A, B, C, D} and a coding

Finite paperfolding words

T(ha(hn(hA(S)))) = T(SABCBADC) =0ONAAVAAVV

Finite paperfolding words

> > > > <<
> > <> > <L
> > > >
> > > >
> > > > <LK
<> > > >
> > > >
A I Y I O
1 | O | I |
oo T <<
Ao @®Oo o@D
T << <00 0O
DoCco®@Aa @A
OO0 00 << <<
e R = = R s R =
S << <O OO0 0
D DHDDDDDD D

— — O~)

AR R Y R R R Y
R R Y Y Y Y Y
— /S /S /S /S /S /
R D e D Y D D

—_— — O~))) ~—— ~—

T Y Y Y Y) S

—)

— O~))) ~—— ~—

Infinite paperfolding words

Definition

Given an infinite sequence of instructions I € {/\, V}*, define

pf(1) = lim (A, (hy(- -k, (S)---)))

n— 00

Infinite paperfolding words

Definition

Given an infinite sequence of instructions I € {/\, V}*, define

pf(1) = lim (A, (hy(- -k, (S)---)))

n— 00

E.g., the regular paperfolding word is

pf =pf(ANA/N---).

Infinite paperfolding words

Definition
Given an infinite sequence of instructions I € {/\, V}*, define

pf(1) = lim (A, (hy(- -k, (S)---)))

n— 00

E.g., the regular paperfolding word is

pf =pf(ANA/N---).

Fact
There is an uncountable family of paperfolding words.

~— Y — —

—_— — ~— ~— ~—

e e N

— = = Y= ==

~—~

— — — ~— ~—
- - - -

<HOR<NON<]
[3 a R o' R R
| I | B
EEEES
< < < < <
AN S N

We have four morphisms {hx g, A 1, Ay 9, by 1} on alphabet
L ={S,AB.C.D.ERAE M O

to construct prefixes of arbitrary paperfolding words.

We have four morphisms {hx g, A 1, Ay 9, by 1} on alphabet
L ={S,AB.C.D.ERAE M O

to construct prefixes of arbitrary paperfolding words.

Combine with the lemma.

Theorem

Given a DFAO T, there exists a DFAO M over {/\,\/} x {0, 1} which
computes

T(pf(i, - - i)[0.n —1])
oninputi, - - i, € {/\,\V}* and (n), for 0 < n < 2k,

All I want for Christmas is

an algorithm to detect a Sturmian word
accepted by an w-automaion

Pierre BEAUR,
joint works with Benjamin HELLOUIN de MENIBUS

LISN, Université Paris-Saclay

All I want for Christmas is

an algorithm to detect a Sturmian word
accepted by an w-automaion

Pierre BEAUR,
joint works with Benjamin HELLOUIN de MENIBUS

LISN, Université Paris-Saclay

What about an algorithm for paperfolding words?

w-automata

Many kinds of w-automaton:

e Bichi
e Rabin
e Streett
e Parity
e Muller

w-automata

Many kinds of w-automaton:

e Biichi
e Rabin
e Streett
e Parity

e Muller
o Apply a deterministic automaton to the word.
o Accept depending on the set of recurrent states.

w-automata

Many kinds of w-automaton:

e Biichi
e Rabin
e Streett
e Parity

e Muller
o Apply a deterministic automaton to the word.
o Accept depending on the set of recurrent states.

Sounds like transduction!

Fix a state g € Q of the Muller automaton (M).

q is recurrent (in pf(I))

Fix a state g € Q of the Muller automaton (M).

q is recurrent (in pf(I))
<= ¥y, qoccurs after pos. y

Fix a state g € Q of the Muller automaton (M).

q is recurrent (in pf(I))
<= ¥y, qoccurs after pos. y
<= Vy,dx,qoccurs atpos.x >y

Fix a state g € Q of the Muller automaton (M).

q is recurrent (in pf(I))
<= ¥y, qoccurs after pos. y
<= Vy,dx,qoccurs atpos.x >y

Fact
There exists an DFA which accepts

if M is in state q after reading p£(I)[0..x — 1]

Fix a state g € Q of the Muller automaton (M).

q is recurrent (in pf(I))
<= ¥y, qoccurs after pos. y
<= Vy,dx,qoccurs atpos.x >y

Fact
There exists an DFA which accepts

if M is in state q after reading p£(I)[0.x — 1] and x > y.

Fix a state g € Q of the Muller automaton (M).

q is recurrent (in pf(I))
<= ¥y, qoccurs after pos. y
<= Vy,dx,qoccurs atpos.x >y

Fact

There exists an DFA which accepts

if M is in state q after reading p£(I)[0.x — 1] and x > y.

Important! Convert DFA to w-automaton before quantifying.

e We have constructed w-regular languages
Recur(q) :={I € {/\, V} | state q is recurrent on pf(I)},

for all states q.

e We have constructed w-regular languages
Recur(q) :={I € {/\, V} | state q is recurrent on pf(I)},

for all states q.

e The set of recurrent statesis S C Q on pf(I) if I'isin

ﬂ Recur(g) N ﬂ Recur(q).

e We have constructed w-regular languages
Recur(q) :={I € {/\, V} | state q is recurrent on pf(I)},

for all states q.

e The set of recurrent statesis S C Q on pf(I) if I'isin

ﬂ Recur(g) N ﬂ Recur(q).

e We can construct an (w-automaton for

{re {/\,V}* | Maccepts pf(I)}.

Claim

There is an algorithm for detecting a paperfolding word in an
w-regular language.

Recap

e k-automatic sequences have k-regular partial sums

(©)

o}
¢}
e}
¢}

reduction mod m = k-automatic,

finitely many values = k-automatic,

linearly related to k-automatic == k-synchronized
some partial sums are not synchronized

special case: Beatty sequences are synchronized

Recap

e k-automatic sequences have k-regular partial sums

(©)

o}
¢}
e}
¢}

® k-

o

@)

reduction mod m = k-automatic,

finitely many values = k-automatic,

linearly related to k-automatic == k-synchronized
some partial sums are not synchronized

special case: Beatty sequences are synchronized

automatic sequences transduce to k-automatic sequences
three equivalent versions, first proved by Dekking
proof of monoid version

Recap

e k-automatic sequences have k-regular partial sums

(©)

o}
¢}
e}
¢}

® k-

o

@)

reduction mod m = k-automatic,

finitely many values = k-automatic,

linearly related to k-automatic == k-synchronized
some partial sums are not synchronized

special case: Beatty sequences are synchronized

automatic sequences transduce to k-automatic sequences
three equivalent versions, first proved by Dekking
proof of monoid version

e transduction proof generalizes beyond prefixes

©)

(@)

(©)

transducing factors
paperfolding sequences
S-adic sequences?

	Introduction
	Summation
	Transduction
	Something New
	Recap

