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Section 2

Summation



Period-doubling sequence

Definition
Define the period-doubling sequence,

p ≜ hω(1) = 1011101010111011 · · · ,

as the fixed point of h : {0,1}∗ → {0,1}∗ where

h(1) = 10,
h(0) = 11.



Partial Sums

1 0 1 1 1 0 1 0 1 0 1 1 · · ·

0 1 1 2 3 4 4 5 5 6 6 7 · · ·

=p

=+\p

∑

Not bounded =⇒ not automatic or morphic

k-automatic ⊊ k-synchronized ⊊ k-regular

Theorem
Every k-automatic sequence has k-regular partial sums.
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k-regular sequences

Definition

A sequence (ai)∞i=0 ∈ Zω is k-regular if there exist
• matricesM0, . . . , Mk−1 ∈ Zd×d,
• vectors u, v ∈ Zd,
such that for all n ⩾ 0,

an = u⊤Mrj · · ·Mr0v.

where rj · · · r0 = (n)k ∈ [k]∗.



Constructing Prefixes

p0 · · · p22 = 10111010101110111011101

= h(10111010101)1
= h(h(10111)1)1
= h(h(h(10)1)1)1
= h(h(h(h(1))1)1)1

7 It is not obvious which symbol(s) to append.

3 # of symbols comes from base-k digits

7 We prefer not to append at all =⇒ pure morphic solution
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Parikh vectors

Definition
The Parikh vector of a wordw ∈ Σ∗ is

(|w|a)a∈Σ.

I.e., a vector of the number of occurrences of each alphabet
symbol.

E.g.,

ψ{A,B,N}(BANANA) =

3
1
2





Why the Parikh vectors?

1. Sum reduces to Parikh vectors∑
i

wi = 0 · |w|0 + 1 · |w|1 =
(
0
1

)⊤

ψ(w).

2. Diagram:

Σ∗

NΣ

Σ∗

NΣ

ψ

hi

Mi

ψ
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Warning

We cannot use a k-regular sequence directly in Walnut.



Reduction modulo m

Theorem
A k-regular sequence modulo m is k-automatic.

Proof

Matrices (Zd), vectors (Zd), and integers (Z) collapse to finite
sets modm.



Example

1 0 1 1 1 0 1 0 1 0 1 1 · · ·

0 1 1 0 1 0 0 1 1 0 0 1 · · ·

=p

=+\p mod 2

∑
mod2

Fact

For all n ∈N, tn ≡
∑n−1

i=0 pi (mod 2)

Fact

For all n ∈N, pn ≡ tn+1 − tn (mod 2).
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Finiteness

Theorem (Allouche and Shallit, 1990)
If a sequence is k-regular and takes on finitely many values
then it is k-automatic.



Example

Consider d = ϕω(1)where

ϕ(0) = 011,
ϕ(1) = 110.



Subtract 2
3 from each symbol to reduce by 2

3n.

0

1

−2
3

+1
3

τ
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We have a new bounded sequence.

rn =
n−1∑
i=0

τ(di) = 3
n−1∑
i=0

di − 2n.

Theorem
The sequence r is 3-automatic.



k-Synchronized sequences

Definition
A function f : N →N is k-synchronized if some automaton
accepts

{(x, f(x))k : x ∈N}.

Theorem

n 7→
∑n−1

i=0 di is 3-synchronized.

Given (n, s), check if
rn = 3s− 2n.
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Non-example

Partial sums of p also tend to line of slope 2
3 .



Non-example

Apply τ to subtract 2
3n:

Grows likeO(log n).
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Not synchronized either

n−1∑
i=0

pi is 2-synchronized ⇐⇒
n−1∑
i=0

τ(pi) is 2-synchronized

Theorem

If k-synchronized sequence is o(n) then it isO(1).
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Beatty sequences

Theorem (S., Shallit, Zorcic 2024)

Let 0 < γ < 1 be a quadratic irrational, and supposeα,β ∈ Q(γ)
are such thatα ⩾ 0,α+ β ⩾ 0. Then

(bαn+ βc)∞n⩾1

is synchronized in γ-Ostrowski representation.

In other words, partial sums of Sturmian words are
synchronized.
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Section 3

Transduction



Theorem
Letw ∈ Σω be a k-automatic sequence. Given any DFAO T, the
sequence

T(w1), T(w1w2), T(w1w2w3), . . .

is k-automatic.

E.g., with the DFAO computing parity.
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Theorem (Dekking, 1991)

Let f ∈ (F → F)ω be a k-automatic sequence of functions on a finite
set F.

f1, f2 ◦ f1, f3 ◦ f2 ◦ f1, . . .

is k-automatic.
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Theorem
Letw ∈ Σω be a k-automatic sequence. Given
• a finite monoid (M, ·), and

• homomorphismϕ : Σ∗ → M,
the sequence

ϕ(w1),ϕ(w1w2),ϕ(w1w2w3), . . .

is k-automatic.

Reduction: (F → F, ◦) is a finite monoid when F is finite.

Reduction: Can computeϕwith finite state: M.
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Finite automaton data
• Input alphabet: Σ = {0,1},

• Output alphabet: M,

• State set: Q := Mon(Σ∗, M),

• Transition function: δ : Q× {0,1} → Q,

• Initial state: q0 := ϕ ∈ Q,

• Output map: τ : Q → Mwhere τ(q) = q(1).

Theorem
Letw ∈ Σω be a k-automatic sequence. Given any DFAO T, the
sequence

T(w1), T(w1w2), T(w1w2w3), . . .

is k-automatic.
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Transducing k-automatic sequences

Walnut updateMarch 27, 2023

Onemay now transduce automata (that have at most one edge
per input per two states) with the following syntax:

transduce <new> <TRANSDUCER> <old>

For example, to transduce a word automaton T saved in . . . using
a transducer named RUNSUM2 saved in . . ., one writes the
following:

transduce new_T RUNSUM2 T;



Section 4

Something New



Themorphisms h0, h1 are arbitrary!

Lemma
There exists a DFAO computing

ϕ(ha1(ha2(· · · hak(σ) · · · )))

given input a1 · · · ak ∈ Γ∗ where
• Σ, Γ are finite sets,
• (hγ : Σ∗ → Σ∗)γ∈Γ

• a word σ ∈ Σ∗,
• (M, ·) is a finite monoid, and
• ϕ : Σ∗ → M is a monoid homomorphism.
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Corollary (Transducing factors—Jason Bell, S., 2�013)

Letw ∈ Σ∗ be a k-automatic sequence. For any DFAO T, the 2D
sequence

ai,n := T(wi · · ·wi+n−1),

is k-automatic.



Paperfolding Sequences

∧∧∨∧∧∨∨



Definition
The regular paperfolding word,

pf := ∧∧∨∧∧∨∨∧∧∧∨∨∧∨∨ · · · ,

is defined as the unique fixed point of

pf = interleave(∧∨∧∨∧∨ · · · ,pf).

Fact
The regular paperfolding word is 2-automatic.
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Every time you unfold youmake a choice,∧ or∨.

The first unfold fixes the word to be of the form

interleave(∧∨∧∨∧∨ · · · , −)

OR

interleave(∨∧∨∧∨∧ · · · , −)

With somework, this can be translated to morphisms.
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h∧(S) = SA h∨(S) = SC
h∧(A) = BC h∨(A) = BA
h∧(B) = BA h∨(B) = BC
h∧(C) = DC h∨(C) = DA
h∧(D) = DA h∨(D) = DC

over internal alphabet {S,A,B,C,D} and a coding

τ(S) = □
τ(A) = ∧

τ(B) = ∧

τ(C) = ∨

τ(D) = ∨



Finite paperfolding words
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Infinite paperfolding words

Definition

Given an infinite sequence of instructions I ∈ {∧, ∨}ω, define

pf(I) = lim
n→∞ τ(hI1(hI2(· · · hIn(S) · · · )))

E.g., the regular paperfolding word is

pf = pf(∧∧∧ · · · ).

Fact
There is an uncountable family of paperfolding words.
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Infinite paperfolding words

Definition

Given an infinite sequence of instructions I ∈ {∧, ∨}ω, define

pf(I) = lim
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h∧,0(S) = S h∨,0(S) = S
h∧,0(A) = B h∨,0(A) = B
h∧,0(B) = B h∨,0(B) = B
h∧,0(C) = D h∨,0(C) = D
h∧,0(D) = D h∨,0(D) = D

h∧,1(S) = SA h∨,1(S) = SC
h∧,1(A) = BC h∨,1(A) = BA
h∧,1(B) = BA h∨,1(B) = BC
h∧,1(C) = DC h∨,1(C) = DA
h∧,1(D) = DA h∨,1(D) = DC



We have four morphisms {h∧,0, h∧,1, h∨,0, h∨,1} on alphabet

Σ = {S,A,B,C,D, S , A , B , C , D},

to construct prefixes of arbitrary paperfolding words.

Combine with the lemma.

Theorem

Given a DFAO T, there exists a DFAOM over {∧, ∨}× {0,1}which
computes

T(pf(i1 · · · ik)[0..n− 1])

on input i1 · · · ik ∈ {∧, ∨}∗ and (n)2 for 0 ⩽ n < 2k.
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ω-automata

Many kinds ofω-automaton:

• Büchi
• Rabin
• Streett
• Parity

• Muller

◦ Apply a deterministic automaton to the word.
◦ Accept depending on the set of recurrent states.

Sounds like transduction!
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Fix a state q ∈ Q of theMuller automaton (M).

q is recurrent (in pf(I))

⇐⇒ ∀y, q occurs after pos. y
⇐⇒ ∀y, ∃x, q occurs at pos. x ⩾ y

Fact
There exists an DFA which accepts

(x)2
I = · · ·∨∧∧∧

(y)2

if M is in state q after reading pf(I)[0..x− 1]

and x ⩾ y.

Important! Convert DFA toω-automaton before quantifying.
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• We have constructedω-regular languages

Recur(q) := {I ∈ {∧, ∨}ω | state q is recurrent on pf(I)},

for all states q.

• The set of recurrent states is S ⊆ Q on pf(I) if I is in∩
q∈S

Recur(q) ∩
∩
q/∈S

Recur(q).

• We can construct anω-automaton for

{I ∈ {∧, ∨}ω | M accepts pf(I)}.



• We have constructedω-regular languages

Recur(q) := {I ∈ {∧, ∨}ω | state q is recurrent on pf(I)},

for all states q.

• The set of recurrent states is S ⊆ Q on pf(I) if I is in∩
q∈S

Recur(q) ∩
∩
q/∈S

Recur(q).

• We can construct anω-automaton for

{I ∈ {∧, ∨}ω | M accepts pf(I)}.



• We have constructedω-regular languages

Recur(q) := {I ∈ {∧, ∨}ω | state q is recurrent on pf(I)},

for all states q.

• The set of recurrent states is S ⊆ Q on pf(I) if I is in∩
q∈S

Recur(q) ∩
∩
q/∈S

Recur(q).

• We can construct anω-automaton for

{I ∈ {∧, ∨}ω | M accepts pf(I)}.



Claim
There is an algorithm for detecting a paperfolding word in an
ω-regular language.



Recap

• k-automatic sequences have k-regular partial sums
◦ reductionmodm =⇒ k-automatic,
◦ finitely many values =⇒ k-automatic,
◦ linearly related to k-automatic =⇒ k-synchronized
◦ some partial sums are not synchronized
◦ special case: Beatty sequences are synchronized

• k-automatic sequences transduce to k-automatic sequences
◦ three equivalent versions, first proved by Dekking
◦ proof of monoid version

• transduction proof generalizes beyond prefixes
◦ transducing factors
◦ paperfolding sequences
◦ S-adic sequences?
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