Factor complexity of the most significant digits and unipotent dynamics on a torus Mehdi Golafshan joint work with Ivan Mitrofanov

University of Liège

One World Combinatorics on Words Seminar October, 08

State of Art

State of Art

- F.C. is stand for factor complexity.
 - **1** F.C. of sequences of the most significant digits of the decimal expansion of 2^n .
- (2) F.C. of sequences of the most significant digits of the decimal expansion of a^n .
- (3) F.C. of sequences of the most significant digits of the *b*-expansion of a^n .
- (4) F.C. of sequences of the most significant digits of the decimal expansion of 3^{n^2} .
- **5** F.C. of sequences of the most significant digits of the *b*-expansion of a^{n^d} .

Factor Complexity

Factor Complexity

Morse and Hedlund (1938)

- under the name block growth
- subword complexity (1975)

Definition The *factor complexity* of **w** is the map

 $p_{\mathbf{w}}: \mathbb{N} \to \mathbb{N}$ $n \mapsto \#(Fac(\mathbf{w}) \cap \mathcal{A}^n).$

Let's cite a few of them

Let's cite a few of them

And so on and so on

The Most Significant Digits

Definition

For every non-zero real number x, the most significant (decimal) digit of x, denoted by $D_b(x)$, is the unique integer $j \in [\![1, b - 1]\!]$ satisfying

$$b^k j \leq |x| < b^k (j+1)$$

for some (necessarily unique) $k \in \mathbb{Z}$.

Notation

 $p_{a,b}(n)$: factor complexity of the most significant digits of the sequence (a^n) in base b.

The Most Significant Digits of First 50 Terms (Concatenated)

Sequence	The most significant digits of first 50 terms (concatenated)
(2 ⁿ)	2481361251 2481361251 2481361251 2481361251 2481371251
(3 ⁿ)	3928272615 1514141313 1392827262 6151514141 3139282727
(4 ⁿ)	4162141621 4162141621 4172141731 4172141731 4173141731
(5 ⁿ)	5216317319 4216317319 4215217319 4215217319 4215217318
(6 ⁿ)	6321742116 3217421163 2174211632 1742116321 8421163218
(7 ⁿ)	7432118542 1196432117 5321196432 1175321196 4321175321
(8 ⁿ)	8654322111 8654322111 9754322111 9765432211 1865432211
(9 ⁿ)	9876554433 3222211111 1987765544 3332222111 1119877655

Table: Leading digits (in base 10) of the first 50 terms of the sequences (a^n) , $a \in [2, 9]$

Empirical Factor Complexities Based on the First 100,000 Terms (I)

7

Empirical Factor Complexities Based on the First 100,000 Terms (II)

8

Admissible Pairs

Definition

A pair (a, b) is called admissible if

- i) a is a positive rational number;.
- ii) *b* is a squarefree integer \ge 5;

iii) *a* and *b* are multiplicative independent: $\log_b(a) \notin \mathbb{Q}$.

- A pair (a, b) is called strong admissible if
 - I) a is a positive real number;.
 - II) *b* is a squarefree integer \ge 5;

III) *a* and *b* are multiplicative independent: $\log_b(a) \notin \mathbb{Q}$.

- A pair (a, b) is called weak admissible if
 - A) a is a positive real number;.
 - B) $b \ge 5$;
 - C) a and b are multiplicative independent: $\log_b(a) \notin \mathbb{Q}$.

Complexity of Leading Digit Sequences

Table: Formulas for sequences in different bases

Complexity of Leading Digit Sequences

Table: Formulas for sequences in different bases

Theorem 1. (He & Hildebrand & ... 2020)

• Let (a, b) be an admissible pair. Then $p_{a,b}(n)$ is an affine function for $n \ge 1$.

Complexity of Leading Digit Sequences

Table: Formulas for sequences in different bases

Theorem 1. (He & Hildebrand & ... 2020)

• Let (a, b) be an admissible pair. Then $p_{a,b}(n)$ is an affine function for $n \ge 1$.

Theorem 2. (P. Alessandri. PhD thesis, 1996)

A coding of an irrational rotation, the complexity has the form p(n) = cn + d, for n large enough.

Multiplicative independent: $\log_b(a) \notin \mathbb{Q}$

 $\log_b a \in \mathbb{Q} \implies$ the sequence of the most significant digits: periodic $\implies p_{a,b}(n) : bounded$

Multiplicative independent: $\log_b(a) \notin \mathbb{Q}$

 $\log_b a \in \mathbb{Q} \implies$ the sequence of the most significant digits: periodic $\implies p_{a,b}(n)$: bounded

Lower bound of base: $b \ge 5$

 $b = 3 \implies$ interval $I = [\log_b 1, \log_b 2) \implies \ell(I) > \frac{1}{2}$

• the intersection of the interval [0, 2/3] with its translate by 1/2 consists of the two disjoint intervals [0, 1/6] and [1/2, 2/3].

Multiplicative independent: $\log_b(a) \notin \mathbb{Q}$

 $\log_b a \in \mathbb{Q} \implies$ the sequence of the most significant digits: periodic $\implies p_{a,b}(n)$: bounded

Lower bound of base: $b \ge 5$

 $b = 3 \implies$ interval $I = [\log_b 1, \log_b 2) \implies \ell(I) > \frac{1}{2}$

• the intersection of the interval [0, 2/3] with its translate by 1/2 consists of the two disjoint intervals [0, 1/6] and [1/2, 2/3].

Squarefree bases

 $b \ge 5$: non-squarefree integer, q: prime, $q^2 \mid b$, a = q

Case I: $b \neq q^n \implies p_{a,b}(n) : NOT affine$

Case II: $b = q^n \implies periodic \implies p_{a,b}(n) : bounded$

Question: The following number made by the most significant digits of 2^n should be transcendental?

 $A := 0.124813612512\cdots$

Answer:

Question: The following number made by the most significant digits of 2^n should be transcendental?

 $A := 0.124813612512\cdots$

Answer:

Question: The following number made by the most significant digits of 2^n should be transcendental?

 $A := 0.124813612512\cdots$

Answer:

Theorem 3. (Adamczewski & Bugeaud. 2004)

• Let $b \ge 2$ be an integer. The factor complexity of the *b*-ary expansion of every irrational algebraic number satisfies

$$\liminf_{n\to\infty}\frac{\mathrm{p}(n)}{n}=\infty$$

Question: The following number made by the most significant digits of 2^n should be transcendental?

 $A := 0.124813612512\cdots$

Answer:

Theorem 3. (Adamczewski & Bugeaud. 2004)

• Let $b \ge 2$ be an integer. The factor complexity of the *b*-ary expansion of every irrational algebraic number satisfies

$$\liminf_{n\to\infty}\frac{\mathrm{p}(n)}{n}=\infty$$

Example

Let a = 2 and b = 10. Then $p_{2,10}(n) = 4n + 5$. Hence, A is a transcendental number.

Theorem 4. (M. G., Kanel-Belov., Kondakov., & Mitrofanov. 2021)

Let P(*n*) be a polynomial with an irrational leading coefficient. Let w be an infinite word where $w_n = [2\{P(n)\}]$. Then there is a polynomial Q(*k*) that depends only on deg(P), such that Q(*k*) = pw(*k*) for all sufficiently large *k*.

Theorem 4. (M. G., Kanel-Belov., Kondakov., & Mitrofanov. 2021)

Let P(*n*) be a polynomial with an irrational leading coefficient. Let w be an infinite word where $w_n = [2\{P(n)\}]$. Then there is a polynomial Q(*k*) that depends only on deg(P), such that Q(*k*) = pw(*k*) for all sufficiently large *k*.

Theorem 5. (M. G. & Mitrofanov. 2024)

Let $d \in \mathbb{Z}_{>0}$, let $b \ge 5$ be an integer, and let a > 0 be a real number such that a and b are multiplicatively independent. Consider the sequence w, where w_n is the most significant digit of a^{n^d} when expressed in base b.

Then, there exists a polynomial P(k) of degree $\frac{d(d+1)}{2}$ such that:

 $P(k) = p_w(k)$ for large enough k.

Equidistributed Sequences (1)

Definition on Real Intervals

A sequence of real numbers (s_i)_{i∈N>0} is *equidistributed* on a non-degenerate interval [a, b] if, for any sub-interval [c, d] ⊂ [a, b]:

$$\lim_{n\to\infty}\frac{\#(\{s_1,s_2,\ldots,s_n\}\cap[c,d])}{n}=\frac{d-c}{b-a}$$

• Intuition: The terms of the sequence spread out uniformly over [*a*, *b*] as *n* approaches infinity.

Equidistributed Sequences (2)

Equidistribution Modulo 1

- A sequence (s_i)_{i∈ℕ>0} is *equidistributed modulo* 1 if the sequence of fractional parts {s_i} is equidistributed in [0, 1].
 - Fractional Part: $\{s_i\} = s_i \lfloor s_i \rfloor$.
- Visual Interpretation: When plotted on the unit interval, the fractional parts fill the interval uniformly.

Equidistributed Sequences (3)

• Let X be a topological space with a measure μ .

Generalization to Topological Spaces

• A sequence $(a_n)_{n \in \mathbb{N}_{>0}} \subset X$ is *equidistributed* if, for any open set $U \subset X$:

$$\lim_{n\to\infty}\frac{\#\left(\{a_1,a_2,\ldots,a_n\}\cap U\right)}{n}=\frac{\mu(U)}{\mu(X)}$$

• Implication: The sequence distributes across X proportionally to the measure μ .

Weyl's Theorem

Weyl's Theorem

• Let \mathbb{T}^d be the torus $\mathbb{R}^d/\mathbb{Z}^d$.

Theorem 6. (Weyl. 1916)

Let P(*t*) be a be a polynomial with at least one irrational coefficient. Then the sequence of fractional parts $({P(i)})_{i \in \mathbb{N}_{>0}}$ is equidistributed (and in particular dense) in \mathbb{T}^1 .

Theorem 7. (Weyl. 1916)

Let $P(t) = a_0 t^d + \cdots + a_d$ be a polynomial with real coefficients, where a_0 is irrational. Then the sequence of *d*-tuples

$$({P(n)}, {P(n+1)}, \cdots, {P(n+d-1)})$$

is equidistributed in \mathbb{T}^d .

Unipotent Dynamics on a Torus

Remark: Here we mention the case for 3^{n^2} in decimal expansion. The main result concerns the general case a^{n^d} in base integer $b \ge 5$.

- The most significant digit w_n of the number 3^{n^2} in base 10: *t*.
- This condition can be expressed as:

$$\log_{10}(t) \leq \{\zeta n^2\} < \log_{10}(t+1),$$

where $\zeta = \log_{10}(3)$ and $\{\cdot\}$ denotes the fractional part.

• Map each natural number *n* to a point $v_n \in \mathbb{T}^2$ with coordinates:

$$\mathbf{v}_n = \left(\{\zeta n\}, \{\zeta n^2\}\right).$$

Dynamics under the Map f

• Define the map $f : \mathbb{T}^2 \to \mathbb{T}^2$ by:

$$\begin{aligned} v_{n+1}^{(1)} &= \{ v_n^{(1)} + \zeta \}, \\ v_{n+1}^{(2)} &= \{ v_n^{(2)} + 2v_n^{(1)} + \zeta \} \end{aligned}$$

Note 1: *f* is a self-homeomorphism of \mathbb{T}^2 .

Note 2: f captures the unipotent dynamics of the system.

Note $3:v_n = f^n(0, 0)$.

Critical Sets and Regions

• Define the critical subsets S_t for $t \in [1, 9]$ as:

$$S_t = \left\{ x \in \mathbb{T}^2 : x^{(2)} = \log_{10}(t) \right\}.$$

 \bullet These critical sets divide \mathbb{T}^2 into regions:

$$U_t = \left\{ x \in \mathbb{T}^2 : \log_{10}(t) \leq x^{(2)} < \log_{10}(t+1) \right\}.$$

• The digit \mathbf{w}_k is determined by the index *t* such that $v_k \in U_t$.

Partitions of \mathbb{T}^2

• Define the preimages of the critical sets:

$$S_{t,k} = f^{-k}(S_t).$$

- The sets S_{l,k} for all t and k = 1,..., n divide T² into connected regions:
 forming the partition M_n.
- For a digit sequence $\mathbf{u} = u_1 u_2 \dots u_n$, define:

$$U_{\mathbf{u}} = U_{u_1} \cap f^{-1}(U_{u_2}) \cap \cdots \cap f^{-(n-1)}(U_{u_n}).$$

• The collection $U_n = \{U_U \mid |\mathbf{u}| = n\}$ forms a partition of \mathbb{T}^2 , with \mathcal{M}_n being a sub-partition of \mathcal{U}_n .

Lemma I. The sequence $(v_i)_{i \in \mathbb{N}_{>0}}$ is dense in \mathbb{T}^2 .

Lemma II.

A finite sequence of digits **u** is a factor of **w** if and only if the set $U_u \subset \mathbb{T}^2$ has non-empty interior.

Stable Vectors

• Let $x, y \in \mathbb{R}^2$. It is easy to see that $A(y) - A(x) = \overline{M(y - x)}$, where

$$M = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}$$

We call a vector r ∈ ℝ² stable when for any k ∈ ℕ_{>0} the last coordinate of M^k(r) is an integer.

General case

• Let $x, y \in \mathbb{R}^d$. It is easy to see that A(y) - A(x) = M(y - x), where

$$M = \begin{bmatrix} 1 & 0 & 0 & 0 & \cdots & 0 \\ 2 & 1 & 0 & 0 & \cdots & 0 \\ 3 & 3 & 1 & 0 & \cdots & 0 \\ \vdots & & & \ddots & & \vdots \\ \vdots & & & & \ddots & & \vdots \\ d & \begin{pmatrix} d \\ 2 \end{pmatrix} & \cdots & \begin{pmatrix} d \\ 2 \end{pmatrix} & d & 1 \end{bmatrix}$$

Stable Vectors and Their Group Structure

Notation

 $\bullet \ \mathfrak{R} :$ the set of all stable vectors in torus \mathbb{T}^2

Lemma III.

The set of all stable vectors forms a discrete subgroup in \mathbb{R}^2 .

Partitioning the Torus into Convex Polygones

Lemma IV.

There exists *N* such that for all n > N, M_n is a partition of \mathbb{T}^2 into convex polygones and every *U* from \mathcal{U}_n consists of exactly $\#\mathfrak{R}$ parts from \mathcal{M}_n .

$$p_{\mathsf{W}}(k) = rac{\#\mathcal{M}_k}{\#\mathfrak{R}} \quad ext{for} \quad k > N$$

Counting the Number of Regions in a Line Torus Partition

Counting the Number of Regions in a Line Torus Partition

First:

- Assume that each point belong to at most 2 lines
- Assuming that all the parts in the partition are convex, the number of regions in the partitions is equal to number of points, that belong to exactly 2 lines
- This number is equal to the determinant of some matrix $\mathbf{2}\times\mathbf{2}$
- This determinant is a polynomial P(n).

Counting the Number of Regions in a Line Torus Partition

First:

- Assume that each point belong to at most 2 lines
- Assuming that all the parts in the partition are convex, the number of regions in the partitions is equal to number of points, that belong to exactly 2 lines
- This number is equal to the determinant of some matrix $\mathbf{2}\times\mathbf{2}$
- This determinant is a polynomial *P*(*n*).

Second:

- Some points belong to more than 2 lines. So our real number of parts differs from P(n) by some error.
- All such points can be classified, the number of such points is affine in n.
- This error is an affine function in *n*.

Mapping on the Torus

Mapping on the Torus

Lemma V.

- Consider the torus T² = [0, 1)² and the mapping *f* : T² → T², as in the previous lemma. Let *k* be a natural number.
- The union of the pre-images of all critical sets under the maps

$$f^0, f^{-1}, \ldots, f^{-(k-1)}$$

divides \mathbb{T}^2 into N(k) connected regions.

• Then *N*(*k*) starting from some *k*₀ is a polynomial in *k* and the degree of this polynomial is 3.

The factor complexity of the most significant digits of the decimal expansion of the sequence 3^{n^2} for large enough length is a polynomial with degree 3.

Let's recaps for general case

Lemma 1. The sequence $(v_i)_{i \in \mathbb{N}_{>0}}$ is dense in \mathbb{T}^d .

Lemma 2. A finite sequence of digits u is a factor of w if and only if the set $U_u \subset \mathbb{T}^d$ has non-empty interior.

Lemma 3. The set of all stable vectors forms a discrete subgroup in \mathbb{R}^d .

Lemma 4. There exists *N* such that for all n > N, M_n is a partition of \mathbb{T}^d into convex polyhedrons and every *U* from \mathcal{U}_n consists of exactly $\#\mathfrak{R}$ parts from \mathcal{M}_n .

Counting the Number of Regions in a *Hyperplane* Torus Partition

Counting the Number of Regions in a *Hyperplane* Torus Partition

First:

- Assume that each point belong to at most *d* hyperplanes
- Assuming that all the parts in the partition are convex, the number of parts in the partitions is equal to number of points, that belong to exactly *d* hyperplanes
- This number is equal to the determinant of some matrix $n \times n$
- This determinant is a polynomial *P*(*n*).

Counting the Number of Regions in a *Hyperplane* Torus Partition

First:

- Assume that each point belong to at most *d* hyperplanes
- Assuming that all the parts in the partition are convex, the number of parts in the partitions is equal to number of points, that belong to exactly *d* hyperplanes
- This number is equal to the determinant of some matrix $n \times n$
- This determinant is a polynomial P(n).

Second:

- Some points belong to more than d hyperplanes. So our real number of parts differs from *P*(*n*) by some error.
- All such points can be classified, the number of such points is affine in n.
- This error is an affine function in *n*.

Lemma 5. Consider the torus $\mathbb{T}^d = [0, 1)^d$ and the mapping $f : \mathbb{T}^d \to \mathbb{T}^d$, as in the previous lemma. Let *k* be a natural number. The union of the pre-images of all critical sets under the maps

$$f^0, f^{-1}, \ldots, f^{-(k-1)}$$

divides \mathbb{T}^d into N(k) connected regions. Then N(k) starting from some k_0 is a polynomial in k and the degree of this polynomial is d(d+1)/2

F.C. of sequences of the most significant digits of the decimal expansion of 2^n .

 $(\mathbf{1})$

F.C. of sequences of the most significant digits of the decimal expansion of 2^n .

• (2, 10): admissible pair $\implies p_{2,10}(k) = 4k + 5$, for all k

 $(\mathbf{1})$

F.C. of sequences of the most significant digits of the decimal expansion of 2^n .

• (2, 10): admissible pair $\implies p_{2,10}(k) = 4k + 5$, for all k

2) F.C. of sequences of the most significant digits of the decimal expansion of a^n .

F.C. of sequences of the most significant digits of the decimal expansion of 2^n .

• (2, 10): admissible pair
$$\implies p_{2,10}(k) = 4k + 5$$
, for all k

F.C. of sequences of the most significant digits of the decimal expansion of a^n .

• (a, b): admissible pair $\implies p_{a,b}(k) = ck + d$, for all k

) F.C. of sequences of the most significant digits of the *b*-expansion of a^n .

F.C. of sequences of the most significant digits of the decimal expansion of 2^n .

• (2, 10): admissible pair $\implies p_{2,10}(k) = 4k + 5$, for all k

F.C. of sequences of the most significant digits of the decimal expansion of a^n .

• (a, b): admissible pair $\implies p_{a,b}(k) = ck + d$, for all k

F.C. of sequences of the most significant digits of the *b*-expansion of a^n .

• (a, b): admissible pair $\implies p_{a,b}(k) = ck + d$, for all k• (a, b): strong admissible pair $\implies p_{a,b}(k) = ck + d$, for large enough k

(4) F.C. of sequences of the most significant digits of the decimal expansion of 3^{n^2} .

4) F.C. of sequences of the most significant digits of the decimal expansion of 3^{n^2} .

• (3, 10): admissible pair \implies p(k) = P(k),

deg(P) = 3, for large enough k

F.C. of sequences of the most significant digits of the decimal expansion of 3^{n^2} .

• (3, 10): admissible pair \implies p(k) = P(k),

deg(P) = 3, for large enough k

F.C. of sequences of the most significant digits of the *b*-expansion of a^{n^d} .

F.C. of sequences of the most significant digits of the decimal expansion of 3^{n^2} .

• (3, 10): admissible pair \implies p(k) = P(k),

deg(P) = 3, for large enough k

) F.C. of sequences of the most significant digits of the *b*-expansion of a^{n^d} .

• (a, b): weak admissible pair $\implies p(k) = P(k)$,

deg(P) = d(d+1)/2, for large enough k

References

- P. Alessandri. "Codages de rotations et basses complexités." Ph.D. Thesis, Aix-Marseille University II, Marseille, France (1996).
- X. He, A. J. Hildebrand, Y. Li, and Y. Zhang. "Complexity of Leading Digit Sequences." *Discrete Math. Theor. Comput. Sci.* **1**, no. 1 (2020).
- M. Golafshan and I. Mitofanov. "Factor complexity of the most significant digits of *and*." *arXiv:2402.16210v2*
- A. Kanel-Belov, G. V. Kondakov, and I. V. Mitrofanov. "Inverse problems of symbolic dynamics." *Banach Cent. Publ.* 94, no. 1 (2011): 43–60.
- L. Kuipers and H. Niderreiter. "Uniform Distribution of Sequences." Pure and applied mathematics, A Wiley-Interscience publication. New York (1974).
- H. Weyl. "Über die Gleichverteilung von Zahlen mod. Eins." Math. Ann. 77 (1996): 313–352.

Appendix (I)

Definition

A connected Lie group is a group *G* equipped with the structure of a smooth manifold such that:

- 1. Smooth Group Operations:
 - ▶ The multiplication map $m : G \times G \rightarrow G$, $m(g, h) = g \cdot h$, is smooth.
 - The inversion map inv : $G \rightarrow G$, inv $(g) = g^{-1}$, is smooth.
- 2. Connectedness:
 - ► The manifold G is connected as a topological space. That is, there do not exist two non-empty, disjoint open subsets U and V of G such that G = U ∪ V.

Appendix (I)

Definition

A connected Lie group is a group *G* equipped with the structure of a smooth manifold such that:

- 1. Smooth Group Operations:
 - ▶ The multiplication map $m : G \times G \rightarrow G$, $m(g, h) = g \cdot h$, is smooth.
 - The inversion map inv : $G \rightarrow G$, inv $(g) = g^{-1}$, is smooth.
- 2. Connectedness:
 - ► The manifold G is connected as a topological space. That is, there do not exist two non-empty, disjoint open subsets U and V of G such that G = U ∪ V.

Example

- General Linear Group *GL*(*n*, ℝ): This group is not connected; it has two connected components corresponding to matrices with positive and negative determinants.
- Special Orthogonal Group SO(n): This group is connected for all $n \ge 2$.
- Heisenberg Group: This is an example of a connected, simply connected Lie group.

Appendix (II)

• Let G be a Lie group.

Definition

A lattice subgroup Γ of *G* is a discrete subgroup such that the quotient space G/Γ has finite volume with respect to the Haar measure on *G*.

Appendix (II)

• Let G be a Lie group.

Definition

A lattice subgroup Γ of *G* is a discrete subgroup such that the quotient space *G*/ Γ has finite volume with respect to the Haar measure on *G*.

Example

- 1. Integer Lattice in \mathbb{R}^n :
 - Consider $G = \mathbb{R}^n$, which is an abelian Lie group under addition.
 - The subgroup $\Gamma = \mathbb{Z}^n$ is a lattice in \mathbb{R}^n because the quotient $\mathbb{R}^n/\mathbb{Z}^n$ is compact (specifically, it is the *n*-dimensional torus).

2. Special Linear Group $SL(n, \mathbb{Z})$ in $SL(n, \mathbb{R})$:

- Let $G = SL(n, \mathbb{R})$, the group of $n \times n$ real matrices with determinant 1.
- The subgroup $\Gamma = SL(n, \mathbb{Z})$ consists of matrices with integer entries and determinant 1.
- **Γ** is a lattice in *G* because G/Γ has finite volume with respect to the Haar measure.

3. Heisenberg Group:

The discrete Heisenberg group can serve as a lattice in the continuous Heisenberg group, which is a nilpotent Lie group.

Appendix (III)

Theorem 8. [invariant measures](Ratner. 1990)

Let *G* be a connected Lie group, *H* a lattice subgroup of *G* (i.e., G/H has finite volume), and *U* a subgroup generated by unipotent elements acting on G/H. Then, any *U*-invariant and ergodic probability measure on G/H is homogeneous; that is, it is the Haar measure on a closed orbit of a subgroup containing *U*.

Appendix (III)

Theorem 8. [invariant measures](Ratner. 1990)

Let *G* be a connected Lie group, *H* a lattice subgroup of *G* (i.e., G/H has finite volume), and *U* a subgroup generated by unipotent elements acting on G/H. Then, any *U*-invariant and ergodic probability measure on G/H is homogeneous; that is, it is the Haar measure on a closed orbit of a subgroup containing *U*.

- Invariant Measures: The theorem classifies all measures on *G*/*H* that are invariant and ergodic under the action of unipotent flows.
- Homogeneity: Such measures are supported on closed orbits of subgroups, meaning the behavior of unipotent flows is highly regular and structured.

Appendix (IV)

Theorem 8. [orbit closures](Ratner. 1990)

For the action of a unipotent flow U on G/H, the closure of any orbit Ux (for $x \in G/H$) is homogeneous; that is, it is the orbit of a closed subgroup containing U.

Appendix (IV)

Theorem 8. [orbit closures](Ratner. 1990)

For the action of a unipotent flow U on G/H, the closure of any orbit Ux (for $x \in G/H$) is homogeneous; that is, it is the orbit of a closed subgroup containing U.

Equidistribution: Ratner's theorems imply that sequences generated by unipotent flows become uniformly distributed over certain subsets of G/H.

Number Theory: These results have applications in solving problems related to Diophantine approximations and the distribution of integer points on algebraic varieties.

Dynamics on the Torus: In the context of the original problem, unipotent flows can be used to study the distribution properties of sequences like $\{n^k \alpha\} \mod 1$, where α is irrational, and $k \ge 2$.