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State of Art

• F.C. is stand for factor complexity.

1 F.C. of sequences of the most significant digits of the decimal expansion of 2n.

2 F.C. of sequences of the most significant digits of the decimal expansion of an.

3 F.C. of sequences of the most significant digits of the b-expansion of an.

4 F.C. of sequences of the most significant digits of the decimal expansion of 3n2
.

5 F.C. of sequences of the most significant digits of the b-expansion of and
.

2



State of Art

• F.C. is stand for factor complexity.

1 F.C. of sequences of the most significant digits of the decimal expansion of 2n.

2 F.C. of sequences of the most significant digits of the decimal expansion of an.

3 F.C. of sequences of the most significant digits of the b-expansion of an.

4 F.C. of sequences of the most significant digits of the decimal expansion of 3n2
.

5 F.C. of sequences of the most significant digits of the b-expansion of and
.

2



Factor Complexity

Morse and Hedlund (1938)
• under the name block growth

• subword complexity (1975)

Definition
The factor complexity of w is the map

pw : N → N
n 7→ #(Fac(w) ∩ An).
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Let’s cite a few of them

Periodic words

Sturmian words

Minimal com-
plexity words

Interval exchange
transformation

Cube billiards

p(n) = O(1)

p(n) = n + 1

p(n) = n + k − 1

p(n) = (k − 1)n + 1

p(n) = O(nd−1)

over k letters

over k intervals

in d dimension

And so on and so on ....
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The Most Significant Digits

Definition
For every non-zero real number x , the most significant (decimal) digit of x , denoted by
Db(x), is the unique integer j ∈ J1, b − 1K satisfying

bk j ⩽ |x | < bk (j + 1)

for some (necessarily unique) k ∈ Z.

Notation

pa,b(n): factor complexity of the most significant digits of the sequence (an) in base b.
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The Most Significant Digits of First 50 Terms (Concatenated)

Sequence The most significant digits of first 50 terms (concatenated)
(2n) 2481361251 2481361251 2481361251 2481361251 2481371251
(3n) 3928272615 1514141313 1392827262 6151514141 3139282727
(4n) 4162141621 4162141621 4172141731 4172141731 4173141731
(5n) 5216317319 4216317319 4215217319 4215217319 4215217318
(6n) 6321742116 3217421163 2174211632 1742116321 8421163218
(7n) 7432118542 1196432117 5321196432 1175321196 4321175321
(8n) 8654322111 8654322111 9754322111 9765432211 1865432211
(9n) 9876554433 3222211111 1987765544 3332222111 1119877655

Table: Leading digits (in base 10) of the first 50 terms of the sequences (an), a ∈ J2, 9K
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Empirical Factor Complexities Based on the First 100,000 Terms (I)
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Empirical Factor Complexities Based on the First 100,000 Terms (II)
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Admissible Pairs

Definition
A pair (a, b) is called admissible if

i) a is a positive rational number;.

ii) b is a squarefree integer ⩾ 5;

iii) a and b are multiplicative independent: logb(a) /∈ Q.

• A pair (a, b) is called strong admissible if

I) a is a positive real number;.

II) b is a squarefree integer ⩾ 5;

III) a and b are multiplicative independent: logb(a) /∈ Q.

• A pair (a, b) is called weak admissible if

A) a is a positive real number;.

B) b ⩾ 5;

C) a and b are multiplicative independent: logb(a) /∈ Q.
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Complexity of Leading Digit Sequences

(2n) (3n) (4n) (5n) (6n) (7n) (8n) (9n)
b = 5 2n + 2 3n + 1 3n + 1 4n 4n 4n 3n + 2
b = 6 2n + 3 2n + 3 3n + 2 4n + 1 5n 4n + 1 3n + 2
b = 7 3n + 3 4n + 2 5n + 1 5n + 1 5n + 1 6n 6n
b = 10 4n + 5 6n + 3 6n + 3 4n + 5 7n + 2 8n + 1 7n + 2 8n + 1

Table: Formulas for sequences in different bases

Theorem 1. ( He & Hildebrand & ... 2020)
• Let (a, b) be an admissible pair. Then pa,b(n) is an affine function for n ⩾ 1.

Theorem 2. (P. Alessandri. PhD thesis, 1996)
• A coding of an irrational rotation, the complexity has the form p(n) = cn + d , for n

large enough.
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Admissibility Requirement

Multiplicative independent: logb(a) /∈ Q
logb a ∈ Q =⇒ the sequence of the most significant digits: periodic =⇒ pa,b(n) : bounded

Lower bound of base: b ⩾ 5
b = 3 =⇒ interval I = [logb 1, logb 2) =⇒ ℓ(I) > 1

2

• the intersection of the interval [0, 2/3] with its translate by 1/2 consists of the two disjoint
intervals [0, 1/6] and [1/2, 2/3].

Squarefree bases

b ⩾ 5: non-squarefree integer, q: prime, q2 | b, a = q

Case I: b ̸= qn =⇒ pa,b(n) : NOTaffine

Case II: b = qn =⇒ periodic =⇒ pa,b(n) : bounded
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Transcendental or Algebraic

Question: The following number made by the most significant digits of 2n should be
transcendental?

A := 0.124813612512 · · ·

Answer:

YES!

Theorem 3. (Adamczewski & Bugeaud. 2004)
• Let b ⩾ 2 be an integer. The factor complexity of the b-ary expansion of every

irrational algebraic number satisfies

lim inf
n→∞

p(n)
n

= ∞

Example
Let a = 2 and b = 10. Then p2,10(n) = 4n + 5. Hence, A is a transcendental number.
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Main Result (arXiv:2402.16210v2)

Theorem 4. (M. G., Kanel-Belov., Kondakov., & Mitrofanov. 2021)
Let P(n) be a polynomial with an irrational leading coefficient. Let W be an infinite word
where Wn = [2{P(n)}]]. Then there is a polynomial Q(k) that depends only on deg(P),
such that Q(k) = pW(k) for all sufficiently large k .

Theorem 5. (M. G. & Mitrofanov. 2024)
Let d ∈ Z>0, let b ⩾ 5 be an integer, and let a > 0 be a real number such that a and b
are multiplicatively independent. Consider the sequence w , where wn is the most
significant digit of and

when expressed in base b.

Then, there exists a polynomial P(k) of degree d(d+1)
2 such that:

P(k) = pw (k) for large enoughk .

13



Main Result (arXiv:2402.16210v2)

Theorem 4. (M. G., Kanel-Belov., Kondakov., & Mitrofanov. 2021)
Let P(n) be a polynomial with an irrational leading coefficient. Let W be an infinite word
where Wn = [2{P(n)}]]. Then there is a polynomial Q(k) that depends only on deg(P),
such that Q(k) = pW(k) for all sufficiently large k .

Theorem 5. (M. G. & Mitrofanov. 2024)
Let d ∈ Z>0, let b ⩾ 5 be an integer, and let a > 0 be a real number such that a and b
are multiplicatively independent. Consider the sequence w , where wn is the most
significant digit of and

when expressed in base b.

Then, there exists a polynomial P(k) of degree d(d+1)
2 such that:

P(k) = pw (k) for large enoughk .

13



Equidistributed Sequences (1)

Definition on Real Intervals

• A sequence of real numbers (si )i∈N>0 is equidistributed on a non-degenerate
interval [a, b] if, for any sub-interval [c, d ] ⊂ [a, b]:

lim
n→∞

#({s1, s2, . . . , sn} ∩ [c, d ])
n

=
d − c
b − a

.

• Intuition: The terms of the sequence spread out uniformly over [a, b] as n
approaches infinity.
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Equidistributed Sequences (2)

Equidistribution Modulo 1
• A sequence (si )i∈N>0 is equidistributed modulo 1 if the sequence of fractional

parts {si} is equidistributed in [0, 1].

▶ Fractional Part: {si} = si − ⌊si⌋.

• Visual Interpretation: When plotted on the unit interval, the fractional parts fill the
interval uniformly.
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Equidistributed Sequences (3)

• Let X be a topological space with a measure µ.

Generalization to Topological Spaces
• A sequence (an)n∈N>0 ⊂ X is equidistributed if, for any open set U ⊂ X :

lim
n→∞

#({a1, a2, . . . , an} ∩ U)

n
=

µ(U)

µ(X)
.

• Implication: The sequence distributes across X proportionally to the measure µ.
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Weyl’s Theorem

• Let Td be the torus Rd/Zd .

Theorem 6. (Weyl. 1916)
Let P(t) be a be a polynomial with at least one irrational coefficient. Then the sequence
of fractional parts ({P(i)})i∈N>0 is equidistributed (and in particular dense) in T1.

Theorem 7. ( Weyl. 1916)
Let P(t) = a0td + · · ·+ ad be a polynomial with real coefficients, where a0 is irrational.
Then the sequence of d-tuples

({P(n)}, {P(n + 1)}, · · · , {P(n + d − 1)})

is equidistributed in Td .
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Unipotent Dynamics on a Torus

Remark: Here we mention the case for 3n2
in decimal expansion. The main result

concerns the general case and
in base integer b ⩾ 5.

• The most significant digit Wn of the number 3n2
in base 10: t .

• This condition can be expressed as:

log10(t) ⩽ {ζn2} < log10(t + 1),

where ζ = log10(3) and {·} denotes the fractional part.

• Map each natural number n to a point vn ∈ T2 with coordinates:

vn =
(
{ζn}, {ζn2}

)
.

18



Dynamics under the Map f

• Define the map f : T2 → T2 by:

v (1)
n+1 = {v (1)

n + ζ},

v (2)
n+1 = {v (2)

n + 2v (1)
n + ζ}.

Note 1: f is a self-homeomorphism of T2.

Note 2: f captures the unipotent dynamics of the system.

Note 3:vn = f n(0, 0).
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Critical Sets and Regions

• Define the critical subsets St for t ∈ J1, 9K as:

St =
{

x ∈ T2 : x (2) = log10(t)
}
.

• These critical sets divide T2 into regions:

Ut =
{

x ∈ T2 : log10(t) ⩽ x (2) < log10(t + 1)
}
.

• The digit Wk is determined by the index t such that vk ∈ Ut .

20



Partitions of T2

• Define the preimages of the critical sets:

St,k = f−k (St ).

• The sets St,k for all t and k = 1, . . . , n divide T2 into connected regions:
- forming the partition Mn.

• For a digit sequence U = u1u2 . . . un, define:

UU = Uu1 ∩ f−1(Uu2 ) ∩ · · · ∩ f−(n−1)(Uun ).

• The collection Un = {UU | |U| = n} forms a partition of T2, with Mn being a
sub-partition of Un.

21



Density and Factorization in T2

Lemma I.
The sequence (vi )i∈N>0 is dense in T2.

Lemma II.
A finite sequence of digits U is a factor of W if and only if the set UU ⊂ T2 has
non-empty interior.
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Stable Vectors

• Let x , y ∈ R2. It is easy to see that A(y)− A(x) = M(y − x), where

M =

[
1 0
2 1

]
• We call a vector r ∈ R2 stable when for any k ∈ N>0 the last coordinate of Mk (r)

is an integer.

General case
• Let x , y ∈ Rd . It is easy to see that A(y)− A(x) = M(y − x), where

M =



1 0 0 0 · · · 0
2 1 0 0 · · · 0
3 3 1 0 · · · 0
...

. . .
...

...
. . .

...
d

(d
2

)
. . .

(d
2

)
d 1
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Stable Vectors and Their Group Structure

Notation
• R: the set of all stable vectors in torus T2

Lemma III.
The set of all stable vectors forms a discrete subgroup in R2.

24



Partitioning the Torus into Convex Polygones

Lemma IV.
There exists N such that for all n > N, Mn is a partition of T2 into convex polygones
and every U from Un consists of exactly #R parts from Mn.

pW(k) =
#Mk

#R
for k > N

25



Counting the Number of Regions in a Line Torus Partition

First:
• Assume that each point belong to at most 2 lines

• Assuming that all the parts in the partition are convex, the number of regions in
the partitions is equal to number of points, that belong to exactly 2 lines

• This number is equal to the determinant of some matrix 2 × 2

• This determinant is a polynomial P(n).

Second:
• Some points belong to more than 2 lines. So our real number of parts differs from

P(n) by some error.

• All such points can be classified, the number of such points is affine in n.

• This error is an affine function in n.

26



Counting the Number of Regions in a Line Torus Partition

First:
• Assume that each point belong to at most 2 lines

• Assuming that all the parts in the partition are convex, the number of regions in
the partitions is equal to number of points, that belong to exactly 2 lines

• This number is equal to the determinant of some matrix 2 × 2

• This determinant is a polynomial P(n).

Second:
• Some points belong to more than 2 lines. So our real number of parts differs from

P(n) by some error.

• All such points can be classified, the number of such points is affine in n.

• This error is an affine function in n.

26



Counting the Number of Regions in a Line Torus Partition

First:
• Assume that each point belong to at most 2 lines

• Assuming that all the parts in the partition are convex, the number of regions in
the partitions is equal to number of points, that belong to exactly 2 lines

• This number is equal to the determinant of some matrix 2 × 2

• This determinant is a polynomial P(n).

Second:
• Some points belong to more than 2 lines. So our real number of parts differs from

P(n) by some error.

• All such points can be classified, the number of such points is affine in n.

• This error is an affine function in n.

26



Mapping on the Torus

Lemma V.
• Consider the torus T2 = [0, 1)2 and the mapping f : T2 → T2, as in the previous

lemma. Let k be a natural number.

• The union of the pre-images of all critical sets under the maps

f 0, f−1, . . . , f−(k−1)

divides T2 into N(k) connected regions.

• Then N(k) starting from some k0 is a polynomial in k and the degree of this
polynomial is 3.

The factor complexity of the most significant digits of the decimal expansion of
the sequence 3n2

for large enough length is a polynomial with degree 3.
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Let’s recaps for general case

Lemma 1. The sequence (vi )i∈N>0 is dense in Td .

Lemma 2. A finite sequence of digits U is a factor of W if and only if the set
UU ⊂ Td has non-empty interior.

Lemma 3. The set of all stable vectors forms a discrete subgroup in Rd .

Lemma 4. There exists N such that for all n > N, Mn is a partition of Td into
convex polyhedrons and every U from Un consists of exactly #R parts from Mn.
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Counting the Number of Regions in a Hyperplane Torus Partition

First:
• Assume that each point belong to at most d hyperplanes

• Assuming that all the parts in the partition are convex, the number of parts in the
partitions is equal to number of points, that belong to exactly d hyperplanes

• This number is equal to the determinant of some matrix n × n

• This determinant is a polynomial P(n).

Second:
• Some points belong to more than d hyperplanes. So our real number of parts

differs from P(n) by some error.

• All such points can be classified, the number of such points is affine in n.

• This error is an affine function in n.

Lemma 5. Consider the torus Td = [0, 1)d and the mapping f : Td → Td , as in
the previous lemma. Let k be a natural number. The union of the pre-images of all
critical sets under the maps

f 0, f−1, . . . , f−(k−1)

divides Td into N(k) connected regions. Then N(k) starting from some k0 is a

polynomial in k and the degree of this polynomial is d(d + 1)/2
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Conclusions (I)

1 F.C. of sequences of the most significant digits of the decimal expansion of 2n.

• (2, 10): admissible pair =⇒ p2,10(k) = 4k + 5, for all k

2 F.C. of sequences of the most significant digits of the decimal expansion of an.

• (a, b): admissible pair =⇒ pa,b(k) = ck + d , for all k

3 F.C. of sequences of the most significant digits of the b-expansion of an.

• (a, b): admissible pair =⇒ pa,b(k) = ck + d , for all k
• (a, b): strong admissible pair =⇒ pa,b(k) = ck + d , for large enough k
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Conclusions (II)

4 F.C. of sequences of the most significant digits of the decimal expansion of 3n2
.

• (3, 10): admissible pair =⇒ p(k) = P(k),

deg(P) = 3, for large enough k

5 F.C. of sequences of the most significant digits of the b-expansion of and
.

• (a, b): weak admissible pair =⇒ p(k) = P(k),

deg(P) = d(d + 1)/2, for large enough k
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Appendix (I)

Definition
A connected Lie group is a group G equipped with the structure of a smooth manifold
such that:

1. Smooth Group Operations:
▶ The multiplication map m : G × G → G, m(g, h) = g · h, is smooth.
▶ The inversion map inv : G → G, inv(g) = g−1, is smooth.

2. Connectedness:
▶ The manifold G is connected as a topological space. That is, there do not exist two

non-empty, disjoint open subsets U and V of G such that G = U ∪ V .

Example
• General Linear Group GL(n,R): This group is not connected; it has two

connected components corresponding to matrices with positive and negative
determinants.

• Special Orthogonal Group SO(n): This group is connected for all n ⩾ 2.

• Heisenberg Group: This is an example of a connected, simply connected Lie
group.
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Appendix (II)

• Let G be a Lie group.

Definition
A lattice subgroup Γ of G is a discrete subgroup such that the quotient space G/Γ has
finite volume with respect to the Haar measure on G.

Example
1. Integer Lattice in Rn:

▶ Consider G = Rn, which is an abelian Lie group under addition.
▶ The subgroup Γ = Zn is a lattice in Rn because the quotient Rn/Zn is compact

(specifically, it is the n-dimensional torus).

2. Special Linear Group SL(n,Z) in SL(n,R):
▶ Let G = SL(n,R), the group of n × n real matrices with determinant 1.
▶ The subgroup Γ = SL(n,Z) consists of matrices with integer entries and determinant 1.
▶ Γ is a lattice in G because G/Γ has finite volume with respect to the Haar measure.

3. Heisenberg Group:
▶ The discrete Heisenberg group can serve as a lattice in the continuous Heisenberg

group, which is a nilpotent Lie group.

34



Appendix (II)

• Let G be a Lie group.

Definition
A lattice subgroup Γ of G is a discrete subgroup such that the quotient space G/Γ has
finite volume with respect to the Haar measure on G.

Example
1. Integer Lattice in Rn:

▶ Consider G = Rn, which is an abelian Lie group under addition.
▶ The subgroup Γ = Zn is a lattice in Rn because the quotient Rn/Zn is compact

(specifically, it is the n-dimensional torus).

2. Special Linear Group SL(n,Z) in SL(n,R):
▶ Let G = SL(n,R), the group of n × n real matrices with determinant 1.
▶ The subgroup Γ = SL(n,Z) consists of matrices with integer entries and determinant 1.
▶ Γ is a lattice in G because G/Γ has finite volume with respect to the Haar measure.

3. Heisenberg Group:
▶ The discrete Heisenberg group can serve as a lattice in the continuous Heisenberg

group, which is a nilpotent Lie group.

34



Appendix (III)

Theorem 8. [invariant measures](Ratner. 1990)
Let G be a connected Lie group, H a lattice subgroup of G (i.e., G/H has finite
volume), and U a subgroup generated by unipotent elements acting on G/H. Then,
any U-invariant and ergodic probability measure on G/H is homogeneous; that is, it is
the Haar measure on a closed orbit of a subgroup containing U.

• Invariant Measures: The theorem classifies all measures on G/H that are
invariant and ergodic under the action of unipotent flows.

• Homogeneity: Such measures are supported on closed orbits of subgroups,
meaning the behavior of unipotent flows is highly regular and structured.
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Appendix (IV)

Theorem 8. [orbit closures](Ratner. 1990)
For the action of a unipotent flow U on G/H, the closure of any orbit Ux (for x ∈ G/H)
is homogeneous; that is, it is the orbit of a closed subgroup containing U.

Equidistribution: Ratner’s theorems imply that sequences generated by unipotent
flows become uniformly distributed over certain subsets of G/H.

Number Theory: These results have applications in solving problems related to
Diophantine approximations and the distribution of integer points on algebraic varieties.

Dynamics on the Torus: In the context of the original problem, unipotent flows can be
used to study the distribution properties of sequences like {nkα} mod 1, where α is
irrational, and k ≥ 2.
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