Mahler equations for Zeckendorf numeration

<u>Olivier Carton¹ & Reem Yassawi²</u>

¹IRIF, Université Paris Cité, CNRS & IUF

 $^2 {\rm Queen}$ Mary University of London Engineering and Physical Science Research Council

Combinatorics on Words Seminar October 2024 Prologue: numeration systems and automaticity

Act 1: the classical base-q numeration

Act 2: the Zeckendorf numeration

Outline

Prologue: numeration systems and automaticity

ŀ

Act 1: the classical base-q numeration

Act 2: the Zeckendorf numeration

Numeration systems

A numeration system (U, B) consists of

- ▶ a sequence of natural numbers $U = (u_n)_{n \ge 0}$ with $u_0 = 1$,
- ▶ a finite ordered digit set B such that for each $n \in \mathbb{N}$ there are $b_k, \ldots, b_0 \in B$ with $n = \sum_{i=0}^k b_i u_i$.

We say that $b_k \cdots b_0$ is the canonical representation of n if $b_k \cdots b_0$ is the greatest representation of n for the lexicographic order.

We write

$$(n)_U := b_k \cdots b_0$$
 and $[b_k \cdots b_0]_U := n$

Example (The base-q numeration system for $q \ge 2$) $U = (q^n)_{n \ge 0}, B = \{0, 1, \dots, q-1\}$. If q = 3, then $(26)_3 = 222$.

Zeckendorf numeration

Recall the Fibonacci numbers $(F_n)_{n \ge 0}$, defined by

$$\begin{split} F_{-2} &= 0, \\ F_{-1} &= 1, \\ F_n &= F_{n-1} + F_{n-2} \text{ for } n \geqslant 0. \end{split}$$

The Zeckendorf numeration system is $Z = ((F_n)_n, B = \{0, 1\}).$

The canonical expansion $(n)_Z = b_n \cdots b_0$ satisfies $b_i b_{i+1} = 0$ for each *i*.

Example

	n	55	34	21	13	8	5	3	2	1	
-	61	0	1	0	1	1	1	0	0	1	
	61	0	1	1	0	0	1	0	0	1	
	61	1	0	0	0	0	1	0	0	1	
(6)	$1)_Z$	= 10	0000	1001	and	[10	111	100	$l]_Z$	= 6	;]

Automaticity in U

A sequence $(a_n)_{n\geq 0}$ taking values in a finite set A is *U*-automatic if there is a deterministic finite automaton whose output is a_n when fed with $(n)_U$. If U is the base-q numeration, we will say that $(a_n)_{n\geq 0}$ is q-automatic.

Example (Thue-Morse $a_n = |(n)_2|_1 \mod 2$)

 $(17)_2 = 10001$ and $s \xrightarrow{1}{\rightarrow} t \xrightarrow{0}{\rightarrow} t \xrightarrow{0}{\rightarrow} t \xrightarrow{1}{\rightarrow} s$ and $s \xrightarrow{0}{\rightarrow}$

Thus $a_{17} = 0$. $a_n = 0$ precisely when $(n)_2$ contains an even number of the digit 1.

Prologue: numeration systems and automaticity

Act 1: the classical base-q numeration

Act 2: the Zeckendorf numeration

Characterisation of q-automaticity for $q = p^n$, p prime

Theorem (Christol 1980)

Let $(a_n)_{n\geq 0}$ be a sequence in \mathbb{F}_q , with $q = p^n$ for some $n \geq 1$. Then $(a_n)_{n\geq 0}$ is q-automatic if and only if $f(x) = \sum_{n\geq 0} a_n x^n$ is algebraic over $\mathbb{F}_q(x)$.

Example (Catalan numbers $C_n = \frac{1}{n+1} \binom{2n}{n}$)

•
$$y = \sum_{n \ge 0} C_n x^n$$
 satisfies $xy^2 - y + 1 = 0$ over \mathbb{Q} ,

• $y = \sum_{n \ge 0} (C_n \mod 3) x^n$ satisfies $xy^2 + 2y + 1 = 0$ over \mathbb{F}_3 , and hence $(C_n \mod 3)_{n \ge 0}$ is automatic.

Limitations of Christol's theorem

Christol's theorem does not provide a characterisation of q-automatic sequences if q not a power of a prime.

Question Is there a generalisation of Christol's theorem to all *q*-automatic sequences?

Answer Yes.

Question Is there a version of Christol's theorem for the Zeckendorf numeration system?

Answer Yes!

Christol's theorem, example

Let us find the annihilating polynomial for the Thue-Morse sequence, defined as

 $a_n = 0$ precisely when $(n)_2$ contains an even number 1s.

$$f(x) = \sum_{n} a_{2n} x^{2n} + \sum_{n} a_{2n+1} x^{2n+1}$$
$$= \sum_{n} a_n x^{2n} + x \sum_{n} (a_n + 1) x^{2n}$$

so, with $s(x) = \frac{1}{1+x}$, $f(x) = (1+x)f(x^2) + xs(x^2) \& s(x) = (1+x)s(x^2)$ (1) and

$$f(x^2) = (1+x^2)f(x^4) + x^2s(x^4), & s(x^2) = (1+x^2)s(x^4)$$

Substituting (2) in (1) we get that f(x) is a root of the Ore polynomial

$$xf(x) = (1+x)f(x^2) + (1+x)^4 f(x^4).$$

From automatic to regular sequences

Definition

A sequence $(a_n)_{n \ge 0}$ taking values in a finite set A is *U*-automatic if there is a deterministic finite automaton whose output is a_n when fed with $(n)_U$.

Definition (Allouche-Shallit)

A sequence $(a_n)_{n\geq 0}$ taking values in a finite set A commutative ring R is U-automatic U-regular if there is a deterministic finite automaton weighted automaton whose output is a_n when fed with $(n)_U$.

Theorem (Allouche-Shallit 1992)

A sequence is q-regular and takes on finitely many values if and only if it is q-automatic.

Examples

All from Allouche-Shallit's article, 1992:

- ▶ $a_n = #$ 1's in $(n)_2$ defines a 2-regular sequence
- ▶ the sequence

$$0, 2, 6, 8, 20, 24, \ldots,$$

which lists the numerators of the left endpoints of the Cantor set, is 2-regular.

►
$$a_n = (n^j)_{n \ge 0}$$
 is 2-regular,

►
$$a_n = \sum_{i=1}^n \lfloor \log_a i \rfloor$$
 is *q*-regular.

- The number of comparisons required to mergesort n items,
- For $a \in \mathbb{R}$, $(a^n)_{n \ge 0}$ is q-regular if and only if a = 0 or a is a root of unity.

Weighted automata

A weighted automaton \mathcal{A} with weights in a ring R consists of

- \blacktriangleright a finite state set S,
- ▶ an alphabet B
- ▶ a transition weight function $\Delta : S \times B \times S \to R$ which assigns a weight to each labelled edge, denoted $s \xrightarrow{b:r} s'$, and
- ▶ initial and final weight functions $I: S \to \mathbb{R}$ and $F: S \to \mathbb{R}$.

Example

Let $B = \{0, 1\}$ and $R = \mathbb{F}_2$.

Generating sequences using weighted automata

In a weighted automaton, there may be many paths that a given word labels. We are interested in the sum of the weights of all paths that this word labels.

The word 10110 labels three different paths, each of weight 1:

$$\begin{array}{c} \xrightarrow{1} s \xrightarrow{1:1} t \xrightarrow{0:1} t \xrightarrow{1:1} t \xrightarrow{1:1} t \xrightarrow{0:1} t \xrightarrow{1} \\ \xrightarrow{1} s \xrightarrow{1:1} s \xrightarrow{0:1} s \xrightarrow{1:1} t \xrightarrow{1:1} t \xrightarrow{0:1} t \xrightarrow{1} \\ \xrightarrow{1} s \xrightarrow{1:1} s \xrightarrow{0:1} s \xrightarrow{1:1} s \xrightarrow{1:1} t \xrightarrow{0:1} t \xrightarrow{1} \end{array}$$

and since $(22)_2 = 10110$ and $R = \mathbb{F}_2$, then $u_{22} = 3 \mod 2 = 1$.

q-Mahler equations

Let R be any commutative ring and let $q \ge 2$. Define the linear operator $\Phi: R[\![x]\!] \to R[\![x]\!]$ as

$$\Phi(f(x)) = f(x^q).$$

Let $A_i(x) \in R[x]$ be polynomials. The equation

$$P(x,y) = \sum_{i=0}^{d} A_i(x)\Phi^i(y) = 0$$

is called a *q*-Mahler equation. If $f \in R[\![x]\!]$ satisfies P(x, f(x)) = 0, then it is called *q*-Mahler.

If $q = p^k$, then a q-Mahler equation over \mathbb{F}_q is just a polynomial:

$$\left(\sum_{n\geq 0} f_n x^n\right)^q = \sum_{n\geq 0} f_n^q x^{qn} = \sum_{n\geq 0} f_n x^{qn}$$

Theorem (Christol 1980)

Let q be a power of a prime, and let $(u_n)_{n \ge 0}$ be a sequence over \mathbb{F}_q . The $(u_n)_{n \ge 0}$ is q-automatic if and only if $f(x) = \sum_{n \ge 0} a_n x^n$ is algebraic over $\mathbb{F}_q(x)$.

Theorem (Becker 1992, Dumas 1993)

Let $q \ge 2$, and let $(u_n)_{n \ge 0}$ be a sequence over a commutative ring R.

- ▶ If $(u_n)_{n \ge 0}$ is q-regular sequence then $f(x) = \sum_{n \ge 0} a_n x^n$ is the solution of a q-Mahler equation,
- if $f(x) = \sum_{n \ge 0} a_n x^n$ is the solution of an isolating q-Mahler equation, i.e., of the form $y = \sum_{i=1}^d A_i(x) \Phi^i(y)$, then $(u_n)_{n \ge 0}$ is q-regular.

From isolating Mahler equations to weighted automata

Theorem (C., Yassawi, 2024)

Let $q \ge 2$ be a natural number. There exists a universal q-automaton \mathcal{A} , such that any isolating q-Mahler equation P(x, y) over a commutative ring R with initial condition f_0 provides weights for \mathcal{A} , so that the corresponding weighted automaton generates the solution f(x) of P(x, y) with $f(0) = f_0$.

▶ The universal q-automaton \mathcal{A} consists of a countable states set S and transitions in $S \times \{0, 1, \dots, q-1\} \times S$.

• Given an isolating q-Mahler equation $P(x, y) = y - \sum_{i=1}^{d} \left(\sum_{j=0}^{h} \alpha_{i,j} x^{j} \right) \Phi^{i}(y)$, we use its coefficients $\alpha_{i,j}$ as weights, setting other edge weights to zero, so reducing \mathcal{A} to a weighted automaton.

Example

For a 2-Mahler equation with height 3 and exponent 2

$$f(x) = A_1(x)f(x^2) + A_2(x)f(x^4)$$

where $A_1(x) = \alpha_{1,0} + \alpha_{1,1}x + \alpha_{1,2}x^2 + \alpha_{1,3}x^3$
and $A_2(x) = \alpha_{2,0} + \alpha_{2,1}x + \alpha_{2,2}x^2 + \alpha_{2,3}x^3$

||

Example

whilst for a 2-Mahler equation with height 3 and exponent 1

$$f(x) = (\alpha_{1,0} + \alpha_{1,1}x + \alpha_{1,2}x^2 + \alpha_{1,3}x^3)f(x^2)$$

Prologue: numeration systems and automaticity

ŀ

Act 1: the classical base-q numeration

Act 2: the Zeckendorf numeration

From q-Mahler equations to Z-Mahler equations

Theorem (Becker 1992, Dumas 1993)

Let $q \ge 2$, and let $(u_n)_{n \ge 0}$ be a sequence over a commutative ring R.

- If (u_n) is q-regular, then it is the solution of a q-Mahler equation, and
- if (u_n) is a solution of an isolating q-Mahler equation, then it is q-regular.

Theorem (C., Yassawi 2024)

Let $(u_n)_{n \ge 0}$ be a sequence over a commutative ring R.

- ▶ If (u_n) is *q*-regular Z-regular, then it is the solution of a *q*-Mahler Z-Mahler equation,
- ▶ if (u_n) is a solution of an isolating $\frac{q-Mahler}{Z-Mahler}$ Z-Mahler equation, then it is $\frac{q-regular}{Z}$ -regular.

Our proof strategy was to emulate our proof in the case of q-numeration, i.e.,

▶ to define the linear Z-version of the map $m \mapsto qm$, and

▶ to define the appropriate concept of a Z-Mahler equation, in order to construct a weighted Z-automaton directly from an isolating Z-Mahler equation.

The Zeckendorf analogue of $n \mapsto qn$

The map f(n) = qn can be written $f(n) := [w0]_q$ where $w = (n)_q$. So, for $(n)_Z = w$, define $\phi : \mathbb{N} \to \mathbb{N}$ as

Issue: ϕ is not linear.

For example,

$$3 = \phi(2) = \phi(1+1) \neq 2\phi(1) = 4.$$

Dealing with the nonlinearity of ϕ

Recall $\phi(n) := [(n)_Z 0]_Z$. Define the linearity defect δ by

$$\delta(m,n) := \phi(m+n) - \phi(m) - \phi(n).$$

A simple application of Binet's formula gives Lemma For natural numbers m, n, we have $-1 \leq \delta(m, n) \leq 1$.

In other words, ϕ is almost linear.

We would like to track the linearity defect.

Regularity of Z-expansions

Given a finite set $C \subset \mathbb{Z}$, consider

$$\mathcal{L}_C := \{ w \in C^* : [w]_Z = 0 \}$$

Example $(C=\{0,1,-1\})$

The following words belong to \mathcal{L}_C :

55	34	21	13	8	5	3	2	1
0	1	-1	$^{-1}$	0	-1	1	1	0
1	-1	0	-1	0	-1	-1	0	0

Theorem (Frougny)

For $C \subset \mathbb{Z}$ finite, \mathcal{L}_C is a regular set of words.

Corollary

There exists a deterministic automaton, which on input of $(m)_Z$ and $(n)_Z$, outputs the linearity defect $\delta(m-n,n)$ for $m \ge n \ge 0$.

Going back to our strategy

We have defined the almost linear map $m \mapsto \phi(m)$.

We now define the Z-version of $\Phi_q(\sum_n f_n x^n) = \sum_n f_n x^{qn}$.

Define the Z-Mahler operator $\Phi: R[\![x]\!] \to R[\![x]\!]$ as

$$\Phi\left(\sum_{n\geq 0} f_n x^n\right) := \sum_{n\geq 0} f_n x^{\phi(n)}.$$

The equation

$$P(x,y) = \sum_{i=0}^{d} A_i(x)\Phi^i(y) = 0$$

with $A_i(x) \in R[x]$, is a Z-Mahler equation.

If $f \in R[x]$ satisfies $\sum_{i=0}^{d} A_i(x) \Phi^i(f) = 0$, then it is Z-Mahler.

Results

Theorem (C., Yassawi 2024)

Let $(u_n)_{n \ge 0}$ be a sequence over a commutative ring R.

- If (u_n) is Z-regular, then it is the solution of a Z-Mahler equation
- if (u_n) is a solution of an isolating Z-Mahler equation, then it is Z-regular.

Example $(a_n = \# \text{ of Zeckendorf expansions of } n)$

$$f(x) = \sum_{n} a_n x^n = \prod_{n} (1 + x^{F_n})$$
 and $f(x) = (1 + x)\Phi(f(x)).$

Open questions

- ▶ Allouche and Shallit show that for $a \in \mathbb{R}$, $(a^n)_{n \ge 0}$ is *q*-regular if and only if a = 0 or *a* is a root of unity. Is there a similar result for Z-regular sequences?
- ▶ For R = C, Bell, Chyzak, Coons, & Dumas characterise q-regular series in terms of the q-Mahler equations they satisfy. Is there a similar characterisation for Zeckendorf numeration?
- Adamczewski-Bell and Shäfke-Singer show that a sequence which is both k- and ℓ -Mahler over a field of characteristic zero, with k and ℓ multiplicatively independent, must be rational. Which series are both k- and Z-Mahler?