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Numeration systems

A numeration system (U, B) consists of
» a sequence of natural numbers U = (uy)n>0 with ug =1,

» a finite ordered digit set B such that for each n € N there
are by,...,bg € B with n = Zf:o biu;.

We say that by - - - bg is the canonical representation of n if

by, - - - bo is the greatest representation of n for the lexicographic
order.

We write

(n)y :=by---by and [bg---boly :=n

Example (The base-¢ numeration system for g > 2)
U=(q")n>0, B=1{0,1,...,9 —1}. If ¢ = 3, then (26)3 = 222.



Zeckendorf numeration
Recall the Fibonacci numbers (F},),>0, defined by

F_5=0,
Fq=1,
F,=F, 1+ F,_forn>0.

The Zeckendorf numeration system is Z = ((F),),, B = {0,1}).

The canonical expansion (n)z = b, - - by satisfies b;b;11 = 0 for

each i.

Example
n|55 34 21 13 8 5 3 21
610 1 0 1 1 1 0 01
610 1 1 0 01 0 01
611 0 O O 01001

(61)z = 100001001 and [10111001]7 = 61



Automaticity in U

A sequence (a,)n>0 taking values in a finite set A is
U-automatic if there is a deterministic finite automaton whose
output is a, when fed with (n)y.

If U is the base-¢ numeration, we will say that (a,)n>0 is
g-automatic.

Example (Thue-Morse a,, = |(n)2|; mod 2)

B=1{0,1}

A=1{0,1}

(17)2 = 10001 and sHt 5t 8¢ %+ L s and s

Thus a17 = 0. a, = 0 precisely when (n)s contains an even
number of the digit 1.
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Characterisation of g-automaticity for ¢ = p”, p prime
Theorem (Christol 1980)

Let (an)n>0 be a sequence in Fy, with ¢ = p™ for some n > 1.
Then (an)n>0 is g-automatic if and only if f(x) = > ~qana" is
algebraic over Fy(x).

Example (Catalan numbers C,, = — (*")
> y =Y Cpa" satisfies 2y — y + 1 = 0 over Q,
n>0
> y =Y (C, mod 3)a™ satisfies xy? + 2y + 1 = 0 over F3,
n=0

and hence (C,, mod 3),>¢ is automatic.




Limitations of Christol’s theorem

Christol’s theorem does not provide a characterisation of
g-automatic sequences if ¢ not a power of a prime.

Question Is there a generalisation of Christol’s theorem to all
g-automatic sequences?

Answer Yes.

Question Is there a version of Christol’s theorem for the
Zeckendorf numeration system?

Answer Yes!



Christol’s theorem, example

Let us find the annihilating polynomial for the Thue-Morse
sequence, defined as

an, = 0 precisely when (n)2 contains an even number 1s.

f(z) = Z agna®™ + Z agp it
n n
= Z anz® + Z (an + 1)z*"
n n

T
f@) = (1 +2)f(@%) +ws(@®) & s(z) = (1 +a)s(®) (1)

so, with s(z) =

and
f(®) = 1+ 2D f(ah) + 22s(z?), & s(x?) = (1 +2?2)s(z?) (2)

Substituting (2) in (1) we get that f(z) is a root of the Ore
polynomial

af(x) = (1+2)f(2°) + (1 +2)* f(2*). AN



From automatic to regular sequences

Definition

A sequence (a,)n>0 taking values in a finite set A is
U-automatic if there is a deterministic finite automaton whose
output is a, when fed with (n)y

Definition (Allouche-Shallit)

A sequence (a,)n>0 taking values in a finiteset—=4 commutative
ring R is H-autematie U-regular if there is a
deterministie-finiteantomateon weighted automaton whose
output is a, when fed with (n)y.

Theorem (Allouche-Shallit 1992)

A sequence is q-reqular and takes on finitely many values if and
only if it is q-automatic.
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Examples

All from Allouche-Shallit’s article, 1992:

» a, = # 1'sin (n)2 defines a 2-regular sequence

> the sequence

0,2,6,8,20,24,...,

which lists the numerators of the left endpoints of the
Cantor set, is 2-regular.
an = (n?)n>0 is 2-regular,
an =y iy|log, 1] is g-regular.
The number of comparisons required to mergesort n items,

vvyyypy

For a € R, (a™)n>0 is g-regular if and only if a =0 or a is a
root of unity.



Weighted automata

A weighted automaton A with weights in a ring R consists of
» 4 finite state set S,
> an alphabet B

P a transition weight function A : .S x B x S — R which
assigns a weight to each labelled edge, denoted s bry o , and

» initial and final weight functions I : S — R and F : S — R.

Example
Let B={0,1} and R = F».

0:1 0:1
1:1 1:1



Generating sequences using weighted automata

In a weighted automaton, there may be many paths that a
given word labels. We are interested in the sum of the weights
of all paths that this word labels.

The word 10110 labels three different paths, each of weight 1:

1
=
1
t—
1
-

and since (22)9 = 10110 and R = Fo, then uge =3 mod 2 = 1.

0:1

1:1
RESETEN
G ®




g-Mahler equations

Let R be any commutative ring and let ¢ > 2. Define the linear
operator ® : R[z] — R[z] as

O(f(x)) = f(a9).
Let A;(z) € R[z] be polynomials. The equation

d

Pla,y) = Ai@)®(y) = 0

i=0
is called a g-Mahler equation.
If f € R[x] satisfies P(z, f(z)) = 0, then it is called g-Mahler.

If ¢ = p¥, then a g-Mahler equation over [F, is just a polynomial:

q
(Z f) =2 fia™ =3 faa™

n=0 n=0 n>=0



Theorem (Christol 1980)

Let q be a power of a prime, and let (up)n>0 be a sequence
over Fy. The (un)n>0 is q-automatic if and only if
f(z) = >,50anx™ is algebraic over Fy(x).

Theorem (Becker 1992, Dumas 1993)
Let ¢ > 2, and let (up)n>0 be a sequence over a commutative
ring R.
» If (un)nzo is q-regular sequence then f(x) =), -oanz" is
the solution of a q-Mahler equation,
> if f(z) =D _,50anx™ is the solution of an isolating
q-Mabhler equation, i.e., of the form y = 2?21 Ai(2)®(y),
then (up)n>o0 is q-regular.



From isolating Mahler equations to weighted automata

Theorem (C., Yassawi, 2024)

Let g > 2 be a natural number. There exists a universal
q-automaton A, such that any isolating q-Mahler equation
P(z,y) over a commutative ring R with initial condition fy
provides weights for A, so that the corresponding weighted
automaton generates the solution f(x) of P(x,y) with

f(0) = fo.

» The universal g-automaton A consists of a countable states
set S and transitions in S x {0,1,...,g— 1} x S.

> Given an isolating g-Mahler equation
P(z,y) =y — Zle (Z?:o a@jxj) ®i(y), we use its
coefficients «; ; as weights, setting other edge weights to
zero, so reducing A to a weighted automaton.



Example

For a 2-Mahler equation with height 3 and exponent 2

fl@) = Ar(@) f(2?) + Az(2) f(z?)

where Aj(z) =a10+ 112+ a1,2m2 + a173x3

and A2 (.73) = Q20 + Q1T + a272x2 + 042731‘3

0:a10 0:01 1 O:cv1 2
l:aq 1 Liag 2 Loz




Example

whilst for a 2-Mahler equation with height 3 and exponent 1

f(@) = (@10 + o117 + a1 20?4+ a1 32%) f(2?)

01(1,1.2

0:cv1 1
1:(!(1‘3

liag g Liovi 2
0:a1 9
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From g-Mahler equations to Z-Mahler equations

Theorem (Becker 1992, Dumas 1993)

Let ¢ > 2, and let (up)n>0 be a sequence over a commutative
ring R.

» If (up) is g-regular, then it is the solution of a q-Mahler
equation, and

» if (un) is a solution of an isolating q-Mahler equation, then
it 1s q-reqular.

Theorem (C., Yassawi 2024)
Let (upn)n>0 be a sequence over a commutative ring R.

» If (uy) is g—regudar Z-reqular, then it is the solution of a
gMehter Z-Mahler equation,

» if (un) is a solution of an isolating ¢ etter Z-Mahler
equation, then it is g—regutar Z-reqular.

-
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New ingredients

Our proof strategy was to emulate our proof in the case of
g-numeration, i.e.,

» to define the linear Z-version of the map m +— gm, and
» to define the appropriate concept of a Z-Mahler equation,

in order to construct a weighted Z-automaton directly from an
isolating Z-Mahler equation.



The Zeckendorf analogue of n — qn

The map f(n) = gn can be written f(n) := [w0], where
w = (n)q. So, for (n)z = w, define ¢ : N — N as

o(n) == [wo]z.
n|01 2345 6 7 8 9 10 11 12 13
¢(n)[0 2 3 5 7 8 10 11 13 15 16 18 20 21

Issue: ¢ is not linear.

For example,

3= 6(2) = $(1+1) # 26(1) = 4.



Dealing with the nonlinearity of ¢

Recall ¢(n) := [(n)z0]z. Define the linearity defect ¢ by
(m,n) := @(m +n) — p(m) — ¢(n).

A simple application of Binet’s formula gives

Lemma
For natural numbers m,n, we have —1 < d(m,n) < 1.

In other words, ¢ is almost linear.

We would like to track the linearity defect.



Regularity of Z-expansions

Given a finite set C' C Z, consider

Lo:={welC":[wz=0}

Example (C' = {0,1,—1})
The following words belong to L¢:

5 34 21 13 8 5 3
o 1 -1 -1 0 -1 1
1 -1 0 -1 0 -1 -1

2 1
10
0 0

Theorem (Frougny)
For C C Z finite, Lc is a reqular set of words.

Corollary

There exists a deterministic automaton, which on input of (m)z

and (n)z, outputs the linearity defect §(m—mn,n) form >=n > Oi FlE



Going back to our strategy

We have defined the almost linear map m — ¢(m).
We now define the Z-version of ®,(>",, fnz™) =, fanzd".

Define the Z-Mahler operator ® : R[z] — R[] as
23 p") = 2t
n=0 n=>0
The equation

d

P(z,y) =Y Ai(2)@'(y) =0

=0
with A;(z) € Rz], is a Z-Mahler equation.

If f € R[x] satisfies 2% A;(x)®"(f) = 0, then it is Z-Mahler.
Irie



Results
Theorem (C., Yassawi 2024)
Let (un)n>0 be a sequence over a commutative ring R.

» If (up) is Z-regular, then it is the solution of a Z-Mahler
equation

» if (uy) is a solution of an isolating Z-Mahler equation, then
it 1s Z-regular.

Example (a,, = # of Zeckendorf expansions of n)

f(x) = apa" = [[A+2") and f(z) = (1+2)®(f(2)).




Open questions

» Allouche and Shallit show that for a € R, (a™),>0 is
g-regular if and only if @ = 0 or a is a root of unity. Is there
a similar result for Z-regular sequences?

» For R = C, Bell, Chyzak, Coons, & Dumas characterise
g-regular series in terms of the g-Mahler equations they
satisfy. Is there a similar characterisation for Zeckendorf
numeration?

» Adamczewski-Bell and Shéfke-Singer show that a sequence
which is both k- and ¢-Mahler over a field of characteristic
zero, with k and ¢ multiplicatively independent, must be
rational. Which series are both k- and Z-Mahler?
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