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Numeration systems

A numeration system (U,B) consists of

▶ a sequence of natural numbers U = (un)n⩾0 with u0 = 1,

▶ a finite ordered digit set B such that for each n ∈ N there
are bk, . . . , b0 ∈ B with n =

∑k
i=0 biui.

We say that bk · · · b0 is the canonical representation of n if
bk · · · b0 is the greatest representation of n for the lexicographic
order.
We write

(n)U := bk · · · b0 and [bk · · · b0]U := n

Example (The base-q numeration system for q ⩾ 2)

U = (qn)n⩾0, B = {0, 1, . . . , q − 1}. If q = 3, then (26)3 = 222.



Zeckendorf numeration

Recall the Fibonacci numbers (Fn)n⩾0, defined by

F−2 = 0,

F−1 = 1,

Fn = Fn−1 + Fn−2 for n ⩾ 0.

The Zeckendorf numeration system is Z = ((Fn)n, B = {0, 1}).

The canonical expansion (n)Z = bn · · · b0 satisfies bibi+1 = 0 for
each i.

Example
n 55 34 21 13 8 5 3 2 1

61 0 1 0 1 1 1 0 0 1
61 0 1 1 0 0 1 0 0 1
61 1 0 0 0 0 1 0 0 1

(61)Z = 100001001 and [10111001]Z = 61



Automaticity in U

A sequence (an)n⩾0 taking values in a finite set A is
U -automatic if there is a deterministic finite automaton whose
output is an when fed with (n)U .
If U is the base-q numeration, we will say that (an)n⩾0 is
q-automatic.

Example (Thue-Morse an = |(n)2|1 mod 2)

B = {0, 1}

A = {0, 1}
s t

0 1

0
1

1

0

(17)2 = 10001 and s
1−→ t

0−→ t
0−→ t

0−→ t
1−→ s and s

0−→

Thus a17 = 0. an = 0 precisely when (n)2 contains an even
number of the digit 1.
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Characterisation of q-automaticity for q = pn, p prime

Theorem (Christol 1980)

Let (an)n⩾0 be a sequence in Fq, with q = pn for some n ⩾ 1.
Then (an)n⩾0 is q-automatic if and only if f(x) =

∑
n⩾0 anx

n is
algebraic over Fq(x).

Example (Catalan numbers Cn = 1
n+1

(
2n
n

)
)

▶ y =
∑
n⩾0

Cnx
n satisfies xy2 − y + 1 = 0 over Q,

▶ y =
∑
n⩾0

(Cn mod 3)xn satisfies xy2 + 2y + 1 = 0 over F3,

and hence (Cn mod 3)n⩾0 is automatic.

1

1 2

2 0

1

2

0 1

2

0
1

1

2

0

1
0, 1, 2



Limitations of Christol’s theorem

Christol’s theorem does not provide a characterisation of
q-automatic sequences if q not a power of a prime.

Question Is there a generalisation of Christol’s theorem to all
q-automatic sequences?

Answer Yes.

Question Is there a version of Christol’s theorem for the
Zeckendorf numeration system?

Answer Yes!



Christol’s theorem, example
Let us find the annihilating polynomial for the Thue-Morse
sequence, defined as

an = 0 precisely when (n)2 contains an even number 1s.

f(x) =
∑
n

a2nx
2n +

∑
n

a2n+1x
2n+1

=
∑
n

anx
2n + x

∑
n

(an + 1)x2n

so, with s(x) = 1
1+x ,

f(x) = (1 + x)f(x2) + xs(x2) & s(x) = (1 + x)s(x2) (1)

and

f(x2) = (1 + x2)f(x4) + x2s(x4), & s(x2) = (1 + x2)s(x4) (2)

Substituting (2) in (1) we get that f(x) is a root of the Ore
polynomial

xf(x) = (1 + x)f(x2) + (1 + x)4f(x4).



From automatic to regular sequences

Definition
A sequence (an)n⩾0 taking values in a finite set A is
U -automatic if there is a deterministic finite automaton whose
output is an when fed with (n)U .

Definition (Allouche-Shallit)

A sequence (an)n⩾0 taking values in a finite set A commutative
ring R is U -automatic U -regular if there is a
deterministic finite automaton weighted automaton whose
output is an when fed with (n)U .

Theorem (Allouche-Shallit 1992)

A sequence is q-regular and takes on finitely many values if and
only if it is q-automatic.



Examples

All from Allouche-Shallit’s article, 1992:

▶ an = # 1’s in (n)2 defines a 2-regular sequence

▶ the sequence
0, 2, 6, 8, 20, 24, . . . ,

which lists the numerators of the left endpoints of the
Cantor set, is 2-regular.

▶ an = (nj)n⩾0 is 2-regular,

▶ an =
∑n

i=1⌊loga i⌋ is q-regular.

▶ The number of comparisons required to mergesort n items,

▶ For a ∈ R, (an)n⩾0 is q-regular if and only if a = 0 or a is a
root of unity.



Weighted automata

A weighted automaton A with weights in a ring R consists of

▶ a finite state set S,

▶ an alphabet B

▶ a transition weight function ∆ : S ×B × S → R which
assigns a weight to each labelled edge, denoted s b:r−→ s′, and

▶ initial and final weight functions I : S → R and F : S → R.

Example

Let B = {0, 1} and R = F2.

s t
1 1

0:1
1:1

1:1

0:1
1:1



Generating sequences using weighted automata
In a weighted automaton, there may be many paths that a
given word labels. We are interested in the sum of the weights
of all paths that this word labels.
The word 10110 labels three different paths, each of weight 1:

1−→ s
1:1−−→ t

0:1−−→ t
1:1−−→ t

1:1−−→ t
0:1−−→ t

1−→
1−→ s

1:1−−→ s
0:1−−→ s

1:1−−→ t
1:1−−→ t

0:1−−→ t
1−→

1−→ s
1:1−−→ s

0:1−−→ s
1:1−−→ s

1:1−−→ t
0:1−−→ t

1−→

and since (22)2 = 10110 and R = F2, then u22 = 3 mod 2 = 1.

s t
1 1

0:1
1:1

1:1

0:1
1:1



q-Mahler equations

Let R be any commutative ring and let q ⩾ 2. Define the linear
operator Φ : RJxK → RJxK as

Φ(f(x)) = f(xq).

Let Ai(x) ∈ R[x] be polynomials. The equation

P (x, y) =

d∑
i=0

Ai(x)Φ
i(y) = 0

is called a q-Mahler equation.
If f ∈ RJxK satisfies P (x, f(x)) = 0, then it is called q-Mahler.

If q = pk, then a q-Mahler equation over Fq is just a polynomial:(∑
n⩾0

fnx
n

)q

=
∑
n⩾0

f q
nx

qn =
∑
n⩾0

fnx
qn



Theorem (Christol 1980)

Let q be a power of a prime, and let (un)n⩾0 be a sequence
over Fq. The (un)n⩾0 is q-automatic if and only if
f(x) =

∑
n⩾0 anx

n is algebraic over Fq(x).

Theorem (Becker 1992, Dumas 1993)

Let q ⩾ 2, and let (un)n⩾0 be a sequence over a commutative
ring R.

▶ If (un)n⩾0 is q-regular sequence then f(x) =
∑

n⩾0 anx
n is

the solution of a q-Mahler equation,

▶ if f(x) =
∑

n⩾0 anx
n is the solution of an isolating

q-Mahler equation, i.e., of the form y =
∑d

i=1Ai(x)Φ
i(y),

then (un)n⩾0 is q-regular.



From isolating Mahler equations to weighted automata

Theorem (C., Yassawi, 2024)

Let q ⩾ 2 be a natural number. There exists a universal
q-automaton A, such that any isolating q-Mahler equation
P (x, y) over a commutative ring R with initial condition f0
provides weights for A, so that the corresponding weighted
automaton generates the solution f(x) of P (x, y) with
f(0) = f0.

▶ The universal q-automaton A consists of a countable states
set S and transitions in S × {0, 1, . . . , q − 1} × S.

▶ Given an isolating q-Mahler equation

P (x, y) = y −
∑d

i=1

(∑h
j=0 αi,jx

j
)
Φi(y), we use its

coefficients αi,j as weights, setting other edge weights to
zero, so reducing A to a weighted automaton.



Example

For a 2-Mahler equation with height 3 and exponent 2

f(x) = A1(x)f(x
2) +A2(x)f(x

4)

where A1(x) = α1,0 + α1,1x+ α1,2x
2 + α1,3x

3

and A2(x) = α2,0 + α2,1x+ α2,2x
2 + α2,3x

3

s0,0 s0,1 s0,2

s1,0 s1,1 s1,2

f0

f0

1

0:α1,0

1:α1,1

1:α1,0

0:1
1:1

0:α1,2

1:α1,3

0:α1,1

1:α1,2

0:α1,0

1:α1,1

0:1

0:α1,3

0:α1,2

1:α1,3

0:α2,0

1:α2,1

1:α2,0

0:α2,2

1:α2,3

0:α2,1

1:α2,2

0:α2,0

1:α2,1
0:α2,3

0:α2,2

1:α2,3



Example

whilst for a 2-Mahler equation with height 3 and exponent 1

f(x) = (α1,0 + α1,1x+ α1,2x
2 + α1,3x

3)f(x2)

s0,0 s0,1 s0,2

s1,0 s1,1 s1,2

f0

f0

1

0:α1,0

1:α1,1

1:α1,0

0:1
1:1

0:α1,2

1:α1,3

0:α1,1

1:α1,2

0:α1,0

1:α1,1

0:1

0:α1,3

0:α1,2

1:α1,3

0:α2,0

1:α2,1

1:α2,0

0:α2,2

1:α2,3

0:α2,1

1:α2,2

0:α2,0

1:α2,1
0:α2,3

0:α2,2

1:α2,3
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From q-Mahler equations to Z-Mahler equations

Theorem (Becker 1992, Dumas 1993)

Let q ⩾ 2, and let (un)n⩾0 be a sequence over a commutative
ring R.

▶ If (un) is q-regular, then it is the solution of a q-Mahler
equation, and

▶ if (un) is a solution of an isolating q-Mahler equation, then
it is q-regular.

Theorem (C., Yassawi 2024)

Let (un)n⩾0 be a sequence over a commutative ring R.

▶ If (un) is q-regular Z-regular, then it is the solution of a
q-Mahler Z-Mahler equation,

▶ if (un) is a solution of an isolating q-Mahler Z-Mahler
equation, then it is q-regular Z-regular.



New ingredients

Our proof strategy was to emulate our proof in the case of
q-numeration, i.e.,

▶ to define the linear Z-version of the map m 7→ qm, and

▶ to define the appropriate concept of a Z-Mahler equation,

in order to construct a weighted Z-automaton directly from an
isolating Z-Mahler equation.



The Zeckendorf analogue of n 7→ qn

The map f(n) = qn can be written f(n) := [w0]q where
w = (n)q. So, for (n)Z = w, define ϕ : N → N as

ϕ(n) := [w0]Z .

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13

ϕ(n) 0 2 3 5 7 8 10 11 13 15 16 18 20 21

Issue: ϕ is not linear.

For example,

3 = ϕ(2) = ϕ(1 + 1) ̸= 2ϕ(1) = 4.



Dealing with the nonlinearity of ϕ

Recall ϕ(n) := [(n)Z 0]Z . Define the linearity defect δ by

δ(m,n) := ϕ(m+ n)− ϕ(m)− ϕ(n).

A simple application of Binet’s formula gives

Lemma
For natural numbers m,n, we have −1 ⩽ δ(m,n) ⩽ 1.

In other words, ϕ is almost linear.

We would like to track the linearity defect.



Regularity of Z-expansions

Given a finite set C ⊂ Z, consider

LC := {w ∈ C∗ : [w]Z = 0}

Example (C = {0, 1,−1})
The following words belong to LC :

55 34 21 13 8 5 3 2 1

0 1 −1 −1 0 −1 1 1 0
1 −1 0 −1 0 −1 −1 0 0

Theorem (Frougny)

For C ⊂ Z finite, LC is a regular set of words.

Corollary

There exists a deterministic automaton, which on input of (m)Z
and (n)Z , outputs the linearity defect δ(m−n, n) for m ⩾ n ⩾ 0.



Going back to our strategy

We have defined the almost linear map m 7→ ϕ(m).

We now define the Z-version of Φq(
∑

n fnx
n) =

∑
n fnx

qn.

Define the Z-Mahler operator Φ : RJxK → RJxK as

Φ
(∑
n⩾0

fnx
n
)
:=
∑
n⩾0

fnx
ϕ(n).

The equation

P (x, y) =

d∑
i=0

Ai(x)Φ
i(y) = 0

with Ai(x) ∈ R[x], is a Z-Mahler equation.

If f ∈ RJxK satisfies
∑d

i=0Ai(x)Φ
i(f) = 0, then it is Z-Mahler.



Results

Theorem (C., Yassawi 2024)

Let (un)n⩾0 be a sequence over a commutative ring R.

▶ If (un) is Z-regular, then it is the solution of a Z-Mahler
equation

▶ if (un) is a solution of an isolating Z-Mahler equation, then
it is Z-regular.

Example (an = # of Zeckendorf expansions of n)

f(x) =
∑
n

anx
n =

∏
n

(1 + xFn) and f(x) = (1 + x)Φ(f(x)).

r

s

t
1

1

0:1
1:1 1:1

0:1

0:1
1:1

0:1



Open questions

▶ Allouche and Shallit show that for a ∈ R, (an)n⩾0 is
q-regular if and only if a = 0 or a is a root of unity. Is there
a similar result for Z-regular sequences?

▶ For R = C, Bell, Chyzak, Coons, & Dumas characterise
q-regular series in terms of the q-Mahler equations they
satisfy. Is there a similar characterisation for Zeckendorf
numeration?

▶ Adamczewski-Bell and Shäfke-Singer show that a sequence
which is both k- and ℓ-Mahler over a field of characteristic
zero, with k and ℓ multiplicatively independent, must be
rational. Which series are both k- and Z-Mahler?
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