String attractors for bi-infinite words

Pierre Béaur, France Gheeraert, Benjamin Hellouin de Menibus

LISN, Université Paris-Saclay

One World Combinatorics on Words Seminar November 5th, 2024

Definitions

Factor of a word w

A contiguous subword of w.

ada <u>≺</u>f abrac<mark>ada</mark>bra

aaa <u>⊀</u>f abracadabra

Definitions

Factor of a word w

A contiguous subword of w.

 $ada \leq_f abrac ada bra$ $aaa \not\leq_f abrac ada bra$

String attractor of a word w

Set of marked positions Γ such that any factor of w has an occurrence crossing it.

a<u>br</u>a<u>cad</u>abra

Motivation and existing work

Kempa, Prezza 17

Dictionary compression algorithms are related to the task of finding the smallest string attractor of the input. This is a NP-complete problem.

Motivation and existing work

Kempa, Prezza 17

Dictionary compression algorithms are related to the task of finding the smallest string attractor of the input. This is a NP-complete problem.

- Size of the smallest attractor as a measure of repetitiveness / complexity.
- <u>Profile function</u> of an infinite word: size of the smallest attractor for the prefix of length *n*.
- String attractors for prefixes of classical words: Thue-Morse, *k*-bonacci, etc.

The **span** span(Γ) of an attractor is its diameter.

Restivo, Romana, Sciortino 21

 $w \in \mathcal{A}^{\mathbb{N}}$ admits a finite string attractor if and only if w is ultimately periodic.

Restivo, Romana, Sciortino 21

 $w \in \mathcal{A}^{\mathbb{N}}$ admits a finite string attractor if and only if w is ultimately periodic.

Restivo, Romana, Sciortino 21

 $w \in \mathcal{A}^{\mathbb{N}}$ admits a finite string attractor if and only if w is ultimately periodic.

At most span(Γ) + 1 factors of length $n \Rightarrow$ ultimately periodic.

Restivo, Romana, Sciortino 21

 $w \in \mathcal{A}^{\mathbb{N}}$ admits a finite string attractor if and only if w is ultimately periodic.

At most span(Γ) + 1 factors of length $n \Rightarrow$ ultimately periodic.

Infinite string attractors

No good notion of "size of the smallest infinite string attractor" (sparsest, lowest density...).

If $w \in \mathcal{A}^{\mathbb{Z}}$ admits a finite string attractor Γ , then

Proposition

If $w \in \mathcal{A}^{\mathbb{Z}}$ admits a finite string attractor Γ , then it contains at most $n + \operatorname{span}(\Gamma)$ factors of length n.

Sturmian words

- discrete line with irrational slope
- n+1 factors of length n
- characteristic word: intercept 0.

Words of span 1

Theorem [Béaur, Gheeraert, H. 2024]

A bi-infinite word admits a string attractor of span 1 if, and only if, it is a characteristic Sturmian word up to shift.

 (\Leftarrow) Take the factor *abaaba*:

Words of span 1

Theorem [Béaur, Gheeraert, H. 2024]

A bi-infinite word admits a string attractor of span 1 if, and only if, it is a characteristic Sturmian word up to shift.

 (\Leftarrow) Take the factor *abaaba*:

Words of span 1

Theorem [Béaur, Gheeraert, H. 2024]

A bi-infinite word admits a string attractor of span 1 if, and only if, it is a characteristic Sturmian word up to shift.

 (\Leftarrow) Take the factor *abaaba*:

This direction was implicitely proved in [Barbieri, Labbé, Starosta 21]. (\Rightarrow) Combinatorial proof with special words.

Other Sturmian words

Theorem [Béaur, Gheeraert, H. 2024]

Sturmian words, except shifted characteristic words, have no finite string attractor.

A Sturmian word is the image of another Sturmian word under one of the substitutions:

$$\phi_{a}: \begin{cases} a \mapsto a \\ b \mapsto ba \end{cases} \phi_{b}: \begin{cases} a \mapsto ab \\ b \mapsto b \end{cases}$$

 $= \phi_a(\dots bbababbab.bababbabbabbbb.\dots)$

Other Sturmian words

Theorem [Béaur, Gheeraert, H. 2024]

Sturmian words, except shifted characteristic words, have no finite string attractor.

Words with finite string attractors

Quasi-Sturmian words

A word w is quasi-Sturmian if it has n + k factors of length n, for n large enough.

Cassaigne 1997, Heinis 2001, Gheeraert 2023

w is quasi-Sturmian if and only if $w = \phi(s)$ where s is Sturmian, with some nice properties on ϕ .

Words with finite string attractors

Quasi-Sturmian words

A word w is quasi-Sturmian if it has n + k factors of length n, for n large enough.

Cassaigne 1997, Heinis 2001, Gheeraert 2023

w is quasi-Sturmian if and only if $w = \phi(s)$ where s is Sturmian, with some nice properties on ϕ .

Theorem [Béaur, Gheeraert, H. 2024]

A word w has a finite string attractor Γ if and only if w is a characteristic quasi-Sturmian word.

In this case, w has $n + \operatorname{span}(\Gamma)$ factors of length n for n large enough.

Idea: String attractors behave well under (de)substitutions with nice properties.

Side remarks

Subshift

The set of infinite words where no forbidden factor from ${\cal F}$ occurs.

Subshift attractors

A subshift where every word admits a finite string attractor, then it contains only periodic points.

Side remarks

Subshift

The set of infinite words where no forbidden factor from ${\cal F}$ occurs.

Subshift attractors

A subshift where every word admits a finite string attractor, then it contains only periodic points.

What about "interesting" infinite string attractors?

Arithmetic progressions as string attractors

A word admits every arithmetic progression as a string attractor if it is modulo recurrent.

A subshift admits every arithmetic progression as a string attractor if **and only if** it is totally minimal.

Conclusion

- Complete characterisation of bi-infinite words that admit a finite string attractor.
- A new definition for characteristic words!

This is the same characterisation as for a related notion from symbolic dynamics, indistinguishable pairs [Barbieri, Labbé, Starosta 21].

Conclusion

- Complete characterisation of bi-infinite words that admit a finite string attractor.
- A new definition for characteristic words!

This is the same characterisation as for a related notion from symbolic dynamics, <u>indistinguishable pairs</u> [Barbieri, Labbé, Starosta 21].

Future work

What are the infinite two-dimensional words that admit a finite string attractor?

[Barbieri and Labbé 24] decribe some indistinguishable pairs in higher dimension through cut & project schemes and multidimensional Sturmian words.