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Number of distinct squares

Square = string represented by xx

Q. How many distinct squares can a string of length n contain?

< 2n [Fraenkel and Simpson, 1998] < 11n/6 [Deza et al., 2015]

< 2n − (log n) [Ilie, 2007] < 1.5n [Thierry, 2020]

< 95n/48 [Lam, 2013] < n −  + 1 [Brlek & Li, 2022]

Distinct square conjecture [Fraenkel and Simpson, 1998]

The maximum number of distinct squares is less than n.

caabaabcaabaabcc # of distinct squares = 5
# of occ. of squares = 9

Considering the distinctness is more interesting than the occurrences 
because the maximum number of occ. of squares is (n2) for a string an．
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Exact matching Parameterized matching

Order-preserving matchingAbelian matching

Squares in other matching models

Square = concatenation of two equal strings

Q. What happens if “equal” is changed from exact matching 

to another matching model (equivalence)?

cbabacababcbd

abac

= cbabacababcbd

abac

≡

abac

≡ bac

abc

cbabacababcbd

abac

≡

abac

≡

a a

b
c

b b

c
d

cbabacababcbd

cabb

≡

cabb

≡

#(a) = 1

#(b) = 2

#(c) = 1
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Parameterized equivalence [Baker, 1996]

E.g.

Definition. Two strings x and y of length k are said to be parameterized 
equivalent if there is a bijection f on  such that f(x[i]) = y[i] for all 1 ≤ 𝑖 ≤ 𝑘. 

We write 𝑥 ≡ 𝑦 if two strings x and y are parameterized equivalent.

abbacabaacbaccababba

aabc aabc aabc

≡ ≡ ≡

bac

abc
acb

abc

cab

abc
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Definition. A string w is called a parameterized square when w = xy for 
strings x, y and x and y are parameterized equivalent. 

Parameterized square (P-square)

E.g.

abacbbbaccabbaabccbacbbca

a

b

c

b

c

a

a

b

c

a

c

b

a

b

c

a

c

b

◼ We sometimes use “P” to denote the term “parameterized” (e.g., P-square).

5



Distinct squares in other models [Kociumaka et al., 2016]

abacbbbaccabbaabccbacbbca

a

b

c

a

c

b

a

b

c

c

b

a

In case A, they are distinct 
since ccabba ≠ aabccb．

In case B, they are not distinct 
since ccabba ≠ aabccb but ccabba ≡ aabccb.

a

b

c

b

c

a

There are two types of the distinctness.
A) # of p-squares that are distinct as strings.

B) # of p-squares that are non-equivalent in the equivalence model.
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Distinct squares in other models [Kociumaka et al., 2016]

n : string length， : alphabet size

distinct as strings non-equivalent

upper bound lower bound upper bound lower bound

Parameterized ≤ 2(!)2 n
[Kociumaka et al., 2016]

– ≤ 2! n
[Kociumaka et al., 2016]

–

Order-preserving (n)
[Gawrychowski et al., 2023]

(n)
[Gawrychowski et al., 2023]

(n)
[Gawrychowski et al., 2023]

–

Abelian (n)
[Kociumaka et al., 2016]

(n)
[Kociumaka et al., 2016]

≤ (n–1)11/6

[Kociumaka et al., 2016]

(n1.5)
[Kociumaka et al., 2016]

There are two types of the distinctness.
A) # of p-squares that are distinct as strings.

B) # of p-squares that are non-equivalent in the equivalence model.
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Distinct squares in other models [Kociumaka et al., 2016]

distinct as strings non-equivalent

upper bound lower bound upper bound lower bound

Parameterized ≤ 2(!)2 n
[Kociumaka et al., 2016]

– ≤ 2! n
[Kociumaka et al., 2016]

–

Order-preserving (n)
[Gawrychowski et al., 2023]

(n)
[Gawrychowski et al., 2023]

(n)
[Gawrychowski et al., 2023]

–

Abelian (n)
[Kociumaka et al., 2016]

(n)
[Kociumaka et al., 2016]

≤ (n–1)11/6

[Kociumaka et al., 2016]

(n1.5)
[Kociumaka et al., 2016]

Theorem 1. Any string of length n that contains  distinct characters 
can contain at most n non-equivalent parameterized squares. 

There are two types of the distinctness.
A) # of p-squares that are distinct as strings.

B) # of p-squares that are non-equivalent in the equivalence model.
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Upper bound (main theorem)

◼ We consider the periodicity in the parameterized equivalent model.

9

Theorem 1. Any string of length n that contains  distinct characters 
can contain at most n non-equivalent parameterized squares. 

at most  parameterized squares for each of n positions

Theorem 2. For any string s that contains  distinct characters, there can be 
at most  prefixes of s that are P-squares and have no other parameterized 

occurrences in s.



Standard period

Definition. An integer p is said to be a period of string w
1. if w[i] = w[i+p] for all i satisfying 1 ≤ i ≤ |w| − p, 

or equivalently, 
2. if w[1..|w|–p] = w[p+1..|w|].

E.g.

a b b a b b a b b a b
period 3

period 6

period 9
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Standard period

a b b a b b a b b a b

period 6

period 3

3 3

66

Definition. An integer p is said to be a period of string w
1. if w[i] = w[i+p] for all i satisfying 1 ≤ i ≤ |w| − p, 

or equivalently, 
2. if w[1..|w|–p] = w[p+1..|w|].

E.g.
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Parameterized period (P-period)

Definition. An integer p is said to be a P-period of string w
1. if f(w[i]) = w[i+p] for all i satisfying 1 ≤ i ≤ |w| − p with a bijection f,

or equivalently, 
2. if w[1..|w|–p] ≡ w[p+1..|w|].

a b b c b a b c c a c
P-period 666

abc

bca

E.g.

◼ We sometimes use p ||f w

to denote the fact “p is a P-period of w with a bijection f ”

(we just write p || w when no confusions occur).
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Properties on P-period

To prove our main result, we use the following lemmas about P-periods.

Lemma 1. Let s be a string that has P-periods p and q and satisfies |s| ≥ 2.
If p + q + min(p, q)∙(|s| − 2) ≤ |s|, then gcd(p, q) is a P-period of s.

Lemma 2. Let x, y, z be strings s.t. p is a P-period of xy with bijection f and a 
P-period of yz with bijection g. If |y| ≥ p∙(|xyz| − 1) + 1, then p is a P-period of 

xyz with bijection f (= g).

Lemma 3. Let s be a string that has a P-period q, and s’ be a substring of s
that has a P-period p. If p∙(|s| − 2) + q + 1 ≤ |s’| and q = kp for some integer k, 

then p is a P-period of s.

Periodicity lemma

Period connection lemma

Period extension lemma
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Properties on P-period

To prove our main result, we use the following lemmas about P-periods.

Lemma 1. Let s be a string that has P-periods p and q and satisfies |s| ≥ 2.
If p + q + min(p, q)∙(|s| − 2) ≤ |s|, then gcd(p, q) is a P-period of s.

Lemma 2. Let x, y, z be strings s.t. p is a P-period of xy with bijection f and a 
P-period of yz with bijection g. If |y| ≥ p∙(|xyz| − 1) + 1, then p is a P-period of 

xyz with bijection f (= g).

Lemma 3. Let s be a string that has a P-period q, and s’ be a substring of s
that has a P-period p. If p∙(|s| − 2) + q + 1 ≤ |s’| and q = kp for some integer k, 

then p is a P-period of s.

Periodicity lemma

Period connection lemma

Period extension lemma
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Proofs are omitted in this talk.

I will give an intuition of these lemmas.



Parameterized periodicity lemma

Periodicity lemma for standard period
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Lemma. [Ideguchi et al., 2023] 

Let s be a string that has P-periods p and q and satisfies |s| ≥ 2.

If p + q + min(p, q)∙(|s| − 1) ≤ |s|, then gcd(p, q) is a P-period of s.

Lemma. [Fine & Wilf, 1965] Let s be a string that has periods p and q.
If p + q – gcd(p, q) ≤ |s|, then gcd(p, q) is a period of s.

(Previous) Periodicity lemmas for P-period

Lemma. [Apostolico & Giancarlo, 2007]

Let s be a string that has a P-period of p with bijection f and a P-period q with 

bijection g. If p + q ≤ |s| and f ∘ g = g ∘ f , then gcd(p, q) is a P-period of s.

without commutativity



Parameterized periodicity lemma 16

Lemma 1. Let s be a string that has P-periods p and q and satisfies |s| ≥ 2.
If p + q + min(p, q)∙(|s| − 2) ≤ |s|, then gcd(p, q) is a P-period of s.

◼ We give an improved version of the above lemma.

◼ Our result gives a tight bound when  = 2 [Apostolico & Giancarlo, 2007].

▻ When  = 2, f and g always commute.

Lemma. [Ideguchi et al., 2023] 

Let s be a string that has P-periods p and q and satisfies |s| ≥ 2.

If p + q + min(p, q)∙(|s| − 1) ≤ |s|, then gcd(p, q) is a P-period of s.



Tighter versions

◼ There exist tighter versions for each alphabet size.

Alphabet size Lower bound of |s|

 = 2 ≥ p + q [Apostolico & Giancarlo, 2007]

 = 3 ≥ p + q + 1 [Our work (not published)]

 = 4 ≥ p + q + ⌊min(p, q) / 2⌋ [Our work (not published)]

 = 5 ≥ p + q + ⌊min(p, q) / 2⌋ + 1 [Our work (not published)]

 ≥ 6 ≥ p + q + min(p, q) ∙ ( − 3) [Our work (not published)]

tight!

tight!

tight!

tight!

Lemma 1. Let s be a string that has P-periods p and q and satisfies |s| ≥ 2.
If p + q + min(p, q)∙(|s| − 2) ≤ |s|, then gcd(p, q) is a P-period of s.

In this work, we only use this general version.

17



Parameterized period connection lemma

◼ Intuitively, if the overlapping part y is sufficiently long,
the whole string has the same period p and they use the same bijection.

Lemma 2. Let x, y, z be strings s.t. p is a P-period of xy with bijection f and a 
P-period of yz with bijection g. If |y| ≥ p∙(|xyz| − 1) + 1, then p is a P-period of 

xyz with bijection f (= g).

x y

y zxy has a P-period p

with bijection f.
yz has a P-period p

with bijection g.

Almost all the characters occur in y.
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Parameterized period extension lemma

◼ Intuitively, a P-period of a substring which is sufficiently long can extend to 
the whole string, if the whole string has a P-period that is a multiple of the 

substring’s P-period. 

Lemma 3. Let s be a string that has a P-period q, and s’ be a substring of s
that has a P-period p. If p∙(|s| − 2) + q + 1 ≤ |s’| and q = kp for some integer k, 

then p is a P-period of s.

s

q

…

p

q = kp

s’ substring of s
…
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Proof of  prefixes theorem

Theorem 2. For any string s that contains  distinct characters, there can be 
at most  prefixes of s that are P-squares and have no other parameterized 

occurrences in s.

s

xi xi’ denotes a P-square 

s.t. xi ≡ xi’, and |xi| < |xi+1|.

xσ

x1

x2 x2’

x1’

xσ’
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Proof of  prefixes theorem

◼ Assume on the contrary that there exists a string s that contains  distinct 
characters s.t. the number of parameterized squares of the prefixes of s

that have no parameterized occurrences other than the prefixes is  + 1.

xσ+1

xσ

xσ+1’

x1

x2 x2’

x1’

xσ’

21

 + 1 prefix squares



Proof of  prefixes theorem

◼ Since x1x1’ has no parameterized equivalent occurrences other than the 
prefix, then |x1x1’| > |x+1|. 

(otherwise, x+1’ has a prefix that is parameterized equivalent to x1x1’.)

xσ+1

xσ

xσ+1’

x1

x2 x2’

x1’

xσ’
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Proof of  prefixes theorem

◼ Since x1x1’ has no parameterized equivalent occurrences other than the 
prefix, then |x1x1’| > |x+1|. 

(otherwise, x+1’ has a prefix that is parameterized equivalent to x1x1’.)

xσ+1

xσ

xσ+1’

x1

x2 x2’

xσ’

23

x1’

f (x1) f (x1’)



Proof of  prefixes theorem

◼ Let ri = |xi+1| – |xi|. 

◼ ri || xi’ (ri is a period of xi’) because xi ≡ xi’ ≡ xi+1[1..|xi|] ≡ xi+1’[1..|xi|].

xi+1

xi

xi+1’
ri

xi’

◼ Hence, ri || xi also holds for any i.

◼ This implies that ri || x1 holds for any i since ri < |x1| and x1 is a prefix of xi .
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Proof of  prefixes theorem

◼ Hence, ri || xi also holds for any i.

◼ This implies that ri || x1 holds for any i since ri < |x1| and x1 is a prefix of xi .

25

xσ+1

xσ

xσ+1’

rσ

x1

x2 x2’

x1’

r1

…

r1 + r2+ ⋯ + rσ

xσ’



Proof of  prefixes theorem

Claim 1. The smallest P-period p(x1) is a period of x.

◼ Since the condition of the periodicity, we have

p(x1)∙( − 1) + r ≤ r1 + ⋯ + r ≤ |x1’| = |x1| ⇔ p(x1)∙( − 2) + p(x1) + r ≤ |x1|.

xσ+1

xσ

xσ+1’

rσ

x1

x2 x2’

x1’

r1

…

r1 + r2+ ⋯ + rσ

xσ’

• ri || x1

• p(x1) ≤ ri
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Proof of  prefixes theorem

Claim 1. The smallest P-period p(x1) is a period of x.

◼ Since the condition of the periodicity, we have

p(x1)∙( − 1) + r ≤ r1 + ⋯ + r ≤ |x1’| = |x1| ⇔ p(x1)∙( − 2) + p(x1) + r ≤ |x1|.

• ri || x1

• p(x1) ≤ ri

Lemma 1. Let s be a string that has P-periods p and q and satisfies |s| ≥ 2.
If p + q + min(p, q)∙(|s| − 2) ≤ |s|, then gcd(p, q) is a P-period of s.

◼ By combining with Lemma 1, we have gcd(p(x1), r) || x1.

◼ Since p(x1) is the smallest P-period of x1, r = c ∙ p(x1) for some integer c ≥ 1.
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Proof of  prefixes theorem

Claim 1. The smallest P-period p(x1) is a period of x.

◼ Since the condition of the periodicity, we have

p(x1)∙( − 1) + r ≤ r1 + ⋯ + r ≤ |x1’| = |x1| ⇔ p(x1)∙( − 2) + p(x1) + r ≤ |x1|.

◼ This inequation also implies that p(x1)∙( − 2) + r + 1 ≤ |x1|.

• ri || x1

• p(x1) ≤ ri

◼ By combining with Lemma 3 and r = c ∙ p(x1), we have p(x1) || x
(Claim 1 holds).

Lemma 3. Let s be a string that has a P-period q, and s’ be a substring of s
that has a P-period p. If p∙(|s| − 2) + q + 1 ≤ |s’| and q = kp for some integer k, 

then p is a P-period of s.
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Proof of  prefixes theorem

Claim 1. The smallest P-period p(x1) is a period of x.

◼ Since the condition of the periodicity, we have

p(x1)∙( − 1) + r ≤ r1 + ⋯ + r ≤ |x1’| = |x1| ⇔ p(x1)∙( − 2) + p(x1) + r ≤ |x1|.

xσ+1

xσ

xσ+1’

rσ

x1

x2 x2’

x1’

r1

…

r1 + r2+ ⋯ + rσ

xσ’

• ri || x1

• p(x1) ≤ ri

… …

… … … … …

p(x1)
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Proof of  prefixes theorem

Claim 2. The smallest P-period p(x1) is a period of x+1.

◼ Since the condition of the periodicity and |x1| || x, we have

p(x1)∙( − 1) + |x1| ≤ r1 + ⋯ + r–1 + |x1| = |x| ⇔ p(x1)∙( − 2) + p(x1) + |x1| ≤ |x|.

• ri || x1

• p(x1) ≤ ri

30

xσ+1

xσ

xσ+1’

rσ

x1

x2 x2’

x1’

r1

…

r1 + r2+ ⋯ + rσ

xσ’



Proof of  prefixes theorem

Claim 2. The smallest P-period p(x1) is a period of x+1.

◼ Since the condition of the periodicity and |x1| || x, we have

p(x1)∙( − 1) + |x1| ≤ r1 + ⋯ + r–1 + |x1| = |x| ⇔ p(x1)∙( − 2) + p(x1) + |x1| ≤ |x|.

• ri || x1

• p(x1) ≤ ri

Lemma 1. Let s be a string that has P-periods p and q and satisfies |s| ≥ 2.
If p + q + min(p, q)∙(|s| − 2) ≤ |s|, then gcd(p, q) is a P-period of s.

◼ By combining with Lemma 1, we have gcd(p(x1), |x1|) || x.

◼ Since p(x1) is the smallest P-period of x1, |x1| = d ∙ p(x1) for some integer d ≥ 

1.
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Proof of  prefixes theorem

Claim 2. The smallest P-period p(x1) is a period of x+1.

◼ Since the condition of the periodicity and |x1| || x, we have

p(x1)∙( − 1) + |x1| ≤ r1 + ⋯ + r–1 + |x1| = |x| ⇔ p(x1)∙( − 2) + p(x1) + |x1| ≤ |x|.

◼ This inequation also implies that p(x1)∙( − 2) + |x1| + 1 ≤ |x|.

• ri || x1

• p(x1) ≤ ri

◼ By combining with Lemma 3 and |x1| = d ∙ p(x1), we have p(x1) || x+1

(Claim 2 holds).

Lemma 3. Let s be a string that has a P-period q, and s’ be a substring of s
that has a P-period p. If p∙(|s| − 2) + q + 1 ≤ |s’| and q = kp for some integer k, 

then p is a P-period of s.
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x1

Proof of  prefixes theorem

Claim 2. The smallest P-period p(x1) is a period of x+1.

◼ Since the condition of the periodicity and |x1| || x, we have

p(x1)∙( − 1) + |x1| ≤ r1 + ⋯ + r–1 + |x1| = |x| ⇔ p(x1)∙( − 2) + p(x1) + |x1| ≤ |x|.

xσ+1

xσ

xσ+1’

rσ

x1

x2 x2’

x1’

r1

…

r1 + r2+ ⋯ + rσ

xσ’

• ri || x1

• p(x1) ≤ ri

… …

… … … …

p(x1)
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…



Proof of  prefixes theorem

We can use Lemma 2 for x+1 and x1’ because

◼ x+1 and x1’ have a period p(x1) (by Claim 2 & definition).

◼ x+1 and x1’ overlap each other, and the length is r1 + ⋯ + r.

xσ+1

xσ

xσ+1’

rσ

x1

x2 x2’

x1’

r1

…

r1 + r2+ ⋯ + rσ

xσ’

34



Proof of  prefixes theorem

We can use Lemma 2 for x+1 and x1’ because

◼ x+1 and x1’ have a period p(x1) (by Claim 2 & definition),

◼ x+1 and x1’ overlap each other, and 

◼ the overlap length is r1 + ⋯ + r ≥ p(x1)∙( − 1) + 1.

Lemma 2. Let x, y, z be strings s.t. p is a P-period of xy with bijection f and a 
P-period of yz with bijection g. If |y| ≥ p∙(|xyz| − 1) + 1, then p is a P−period of 

xyz with bijection f (= g).
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Proof of  prefixes theorem

By applying Lemma 2 for x+1 and x1’, we have p(x1) || x1x1’.

xσ+1

xσ

xσ+1’

rσ

x1

x2 x2’

x1’

r1

…

r1 + r2+ ⋯ + rσ

xσ’

36



Proof of  prefixes theorem

By a similar argument for x1x1’ and x2’, we have p(x1) || x2x2’.

Then, x1x1’ has another parameterized equivalent occurrence in x2x2’.

x1

x2 x2’

x1’

r1

37

x1 x1’
p(x1)

Theorem 2. For any string s that contains  distinct characters, there can be 
at most  prefixes of s that are P-squares and have no other parameterized 

occurrences in s.



Open questions

◼ Is this upper bound is tight?

▻ How can we improve this bound?

(There is a lower bound for the  prefixes property.)

▻ How can we construct a family of strings that gives a good lower 
bound?

◼ Can we improve bounds in another distinctness (distinct as words)?

Theorem 1. Any string of length n that contains  distinct characters 
can contain at most n non-equivalent parameterized squares. 
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Example of  prefixes

Theorem. For any , there exists a string with alphabet size  such that 
there are  prefixes that are parameterized squares and have no other 

parameterized occurrence.

…

(c1 ⋯ cσ–2 cσ–1) (c1 ⋯ cσ–2 cσ–1) cσ (c2 ⋯ cσ–2 cσ–1 cσ) (c2 ⋯ cσ–2 cσ–1 cσ) c1

123412345234523451

 = 5
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