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Number of distinct squares

= string represented by xx

Q. How many distinct squares can a string of length n contain?

caabaabcaabaabcc # of distinct squares =5
# of occ. of squares =9

Considering the distinctness is more interesting than the occurrences
because the maximum number of occ. of squares is ®©(n?) for a string a".

Distinct square conjecture [Fraenkel and Simpson, 1998]
The maximum number of distinct squares is less than n.

<2n [Fraenkel and Simpson, 1998] | < 11n/6 Deza et al., 2015]
< 2n—0(log n) [llie, 2007] < 1.5n Thierry, 2020]
< 95n/48 Lam, 2013] <n—o+1 [Brlek &Li, 2022]




Squares in other matching models

Square = concatenation of two equal strings

Q. What happens if “equal” is changed from exact matching
to another matching model (equivalence)?

Exact matching Parameterized matching
cbabacababcbd cbabacababcbd ???
I Il Il |
abac abac abac abc
Abelian matching Order-preserving matching
#(a) =1
cbabacab d (=) cbabacababecbd

i i #(b) =2 i i

cabb cabb #(c)=1 abac abac




Parameterized equivalence [Baker, 1996]

Definition. Two strings x and y of length k are said to be parameterized

equivalent if there is a bijection f on X such that f(x[i]) = y[i] forall 1 <i<k.
We write x = y If two strings x and y are parameterized equivalent.

E.Q.

abbacabaacbaccababba
1 1 1

bac cab

111 aabc aabc aabc 111

abc achb abc
111

abc
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Parameterized square (P-square)

Definition. A string w is called a parameterized square when w = xy for
strings X, y and x and y are parameterized equivalent.

E.Q. a< a
bec
- ceb

abacbbbafcabbaabccbacbbca

a<b a<a
becC b« C
C“a c Db

B We sometimes use “P” to denote the term “parameterized” (e.g., P-square).



Distinct squares In other models [kociumaka et al., 2016]

There are two types of the distinctness.
A) # of p-squares that are distinct as strings.
B) # of p-squares that are non-equivalent in the equivalence model.

In case A, they are distinct d < d ae C
since ccabba # aabccb. b« c b~ b
ceDb C e a

abacbbbaecabbéabccbacbbca

a<Db
In case B, they are not distinct b« C
since ccabba # aabccb but ccabba = aabccb. c o3




Distinct squares In other models [kociumaka et al., 2016]

_

There are two types of the distinctness.
A) # of p-squares that are distinct as strings.
B) # of p-squares that are non-equivalent in the equivalence model.

distinct as strings

non-equivalent

upper bound lower bound upper bound lower bound
2
Parameterized <2(c!)’n _ <2c!n _
[Kociumaka et al., 2016] [Kociumaka et al., 2016]
Order-preserving O(on) Q(cn) O(cn) —
[Gawrychowski et al., 2023] | [Gawrychowski et al., 2023] | [Gawrychowski et al., 2023]
11/6 1.5
Abelian O(cn) Q(cn) <(n-1) Q(n*°)
[Kociumaka et al., 2016] [Kociumaka et al., 2016] [Kociumaka et al., 2016] [Kociumaka et al., 2016]

n : string length, o : alphabet size



Distinct squares In other models [kociumaka et al., 2016]

-

There are two types of the distinctness.
A) # of p-squares that are distinct as strings.
B) # of p-squares that are non-equivalent in the equivalence model.

distinct as strings

non-equivalent

upper bound lower bound upper bound lower bound
2
Parameterized <2(c!)’n — <2c!n _
[Kociumaka et al., 2016] ~ [Kociumaka et al., 2016]
Order-preserving O(on) Q(cn) / O(cn) —
[Gawrychowski et al., 2023] | [Gawrychowski et al., 2023] § [Gawrychowski et al., 2023]
11/6 1.5
Abelian O(on) O(on) A < (n-1) Q(n'*)
[Kociumaka et al., 2016] [Kociumaka et al., 2016] 7 [Kociumaka et al., 2016] [Kociumaka et al., 2016]

Theorem 1. Any string of length n that contains o distinct characters
can contain at most on non-equivalent parameterized squares.
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Upper bound (main theorem)

Theorem 2. For any string s that contains o distinct characters, there can be
at most o prefixes of s that are P-squares and have no other parameterized

occurrences in s.

l at most ¢ parameterized squares for each of n positions

Theorem 1. Any string of length n that contains o distinct characters
can contain at most on non-equivalent parameterized squares.

B We consider the periodicity in the parameterized equivalent model.



Standard period

Definition. An integer p is said to be a period of string w
1. ifw[i] = wl[i+p] for all i satisfying 1 <i<|w|—p,

or equivalently,
2. Ifwll.|w|-p] =w[p+1..|wl].

E.Q.

a b babbabbalb
. - - - neriod 3

' ' nerioc
' ' neriod 9

o




Standard period

Definition. An integer p is said to be a period of string w
1. ifw[i] = wl[i+p] for all i satisfying 1 <i<|w|—p,

or equivalently,
2. Ifwll.|w|-p] =w[p+1..|wl].

E.Q.

' ! I I period 3
| |« 3 >

< 3 > |
a b babbabbahlb

I‘ 6 [ ] 6 >

: ! period 6




Parameterized period (P-period)

Definition. An integer p is said to be a P-period of string w

1. 1f f(w[i]) = wli+p] for all 1 satisfying 1 <1< |w| — p with a bijection f,
or equivalently,

2. Ifwll.|w|-p]=w[p+l..|wl].

E.Q.
a bbcbabocaccac
abc — 5 > P-period 6
111 6 S .
bca

B We sometimes use p || w
to denote the fact “p is a P-period of w with a bijection f”
(we just write p || w when no confusions occur).



B

Properties on P-period

To prove our main result, we use the following lemmas about P-periods.

Periodicity lemma

Lemma 1. Let s be a string that has P-periods p and g and satisfies [Z| > 2.
If p+q+ min(p, 9)-(|IZ — 2) <|s|, then gcd(p, q) is a P-period of s.

Period connection lemma

Lemma 2. Let x, Yy, z be strings s.t. p is a P-period of xy with bijection f and a
P-period of yz with bijection g. If |y| > p-(|Z,,,] — 1) + 1, then p Is a P-period of
Xyz with bijection f (= g).

Period extension lemma

Lemma 3. Let s be a string that has a P-period g, and s’ be a substring of s
that has a P-period p. If p-(|Z —2) + g+ 1 <|s’| and q = kp for some integer Kk,
then p is a P-period of s.



Properties on P-period s

Proofs are omitted in this talk.
Periodicity lemma

Lemma 1. Let s be a string that has P-periods p and g and satisfies [Z| > 2.
If p+q+ min(p, 9)-(|IZ — 2) <|s|, then gcd(p, q) is a P-period of s.

Period connection lemma

Lemma 2. Let x, Yy, z be strings s.t. p is a P-period of xy with bijection f and a
P-period of yz with bijection g. If |y| > p-(|Z,,,] — 1) + 1, then p Is a P-period of
Xyz with bijection f (= g).

Period extension lemma

Lemma 3. Let s be a string that has a P-period g, and s’ be a substring of s
that has a P-period p. If p-(|Z —2) + g+ 1 <|s’| and q = kp for some integer Kk,
then p is a P-period of s.



Parameterized periodicity lemma

Periodicity lemma for standard period

_emma. [Fine & Wilf, 1965] Let s be a string that has periods p and g.
fp+qg-—gcd(p, q) <|s|, then gcd(p, g) Is a period of s.

(Previous) Periodicity lemmas for P-period

_emma. [Apostolico & Giancarlo, 2007]
_et s be a string that has a P-period of p with bijection f and a P-period g with
nijectiong. Ifp+g<|siandfog=gof, then gcd(p, q) Is a P-period of s.

_emma. [Ideguchi et al., 2023] without commutativity
_et s be a string that has P-periods p and g and satisfies |2 > 2.
fp+qg+min(p, q)(Z]—1) <|s|, then gcd(p, q) is a P-period of s.




Parameterized periodicity lemma

_emma. [Ideguchi et al., 2023]
_et s be a string that has P-periods p and g and satisfies |2 > 2.
fp+qg+ min(p, q) (2] — 1) <|sl|, then gcd(p, q) iIs a P-period of s.

B We give an improved version of the above lemma.

Lemma 1. Let s be a string that has P-periods p and g and satisfies [Z| > 2.
If p+ g+ min(p, 9)-(|Z — 2) <|s|, then gcd(p, q) is a P-period of s.

B Our result gives a tight bound when ¢ = 2 [Apostolico & Giancarlo, 2007].

= When ¢ =2, f and g always commute.



B

Tighter versions

B There exist tighter versions for each alphabet size.

Alphabet size Lower bound of |s|
c=2 >p+( tight! | [Apostolico & Giancarlo, 2007]
c=3 >p+q+1 tight! | [Our work (not published)!
c=4 >p+q+ |min(p, q) /2] tight! | [Our work (not published)]
oc=05 >p+qg+|min(p,q)/2]+1 tight! | [Our work (not published)]
c>6 >p+q+min(p,q) - (c—3) [Our work (not published)]

Lemma 1. Let s be a string that has P-periods p and g and satisfies |2 > 2.
If p+ g+ min(p, 9)-(|Z —2) <|s|, then gcd(p, q) is a P-period of s.

In this work, we only use this general version.



B

Parameterized period connection lemma

Lemma 2. Let x, y, z be strings s.t. p iIs a P-period of xy with bijection f and a
P-period of yz with bijection g. If |y| > p-(|Z,,,] — 1) + 1, then p is a P-period of
Xyz with bijection f (= g).

Almost all the characters occur iny. ]

X y

Xy has a P-period p | y | Z
with bijection f.

yz has a P-period p
with bijection g.

B Intuitively, if the overlapping part y is sufficiently long,
the whole string has the same period p and they use the same bijection.



B

Parameterized period extension lemma

Lemma 3. Let s be a string that has a P-period g, and s’ be a substring of s
that has a P-period p. If p-(|Z —2) + g+ 1 <|s’| and q = kp for some integer Kk,
then p Is a P-period of s.

s’ substring of s
— - I -

B Intuitively, a P-period of a substring which is sufficiently long can extend to
the whole string, if the whole string has a P-period that is a multiple of the

substring’s P-period.



B

Proof of o prefixes theorem

Theorem 2. For any string s that contains o distinct characters, there can be
at most o prefixes of s that are P-squares and have no other parameterized

occurrences in s.

X; X’ denotes a P-square
S.L. i =X, and |X;| < [Xi44]-




B

Proof of o prefixes theorem

B Assume on the contrary that there exists a string s that contains ¢ distinct
characters s.t. the number of parameterized squares of the prefixes of s
that have no parameterized occurrences other than the prefixesis o + 1.

c + 1 prefix squares

e

X0+1 Xa+1




Proof of o prefixes theorem

B

B Since x,X;” has no parameterized equivalent occurrences other than the
prefix, then |X;X;’| > [X,44]-
(otherwise, x_.,’ has a prefix that is parameterized equivalent to x;x;’.)

Xa+1

Xg+1




Proof of o prefixes theorem

B

B Since x,X;” has no parameterized equivalent occurrences other than the

prefix, then |X;X;’| > [X,44]-

(otherwise, x_,,’ has a prefix that is parameterized ec

uivalent to x;x;’.)

f(xq)

f(x;”)

Xa+1

X0+1




Proof of o prefixes theorem

W Letr; = [Xqf —Ixi.

B | x’ (r; s a period of x;’) because x; = X’ = X, [1..|X|] = X, [1..]X]].

X|+l X|+1

B Hence, r; || x; also holds for any I.

B This implies that r; || x; holds for any i since r; < |x,| and x, Is a prefix of x; .



Proof of o prefixes theorem

B

B Hence, r; || X; also holds for any 1.

B This implies that r; || x, holds for any I since r; < |x,| and X, Iis a prefix of x;.

X0+1

X0+1




Proof of o prefixes theorem

B

Claim 1. The smallest P-period p(x;) is a period of Xx.. * i %4

B Since the condition of the periodicity, we have

PX)(c—1)+r <rp+--+r,<|X’|=

© px)<r;

X| & pX)(c—2)+p(Xy) + rg=<|[xq.

Xg+1

9

X0+1




Proof of o prefixes theorem

Claim 1. The smallest P-period p(x;) is a period of Xx.. * i %4

° < .
B Since the condition of the periodicity, we have p(x) =T

p(x)) (0= 1) +rg<r+ - +r,<X’[=X| < [p(xl)'(G —2) +p(Xg) + 1< |X1|-]

Lemma 1. Let s be a string that has P-periods p and g and satisfies [Z| > 2.
If p+q+ min(p, 9)-(|IZ — 2) <|s|, then gcd(p, q) is a P-period of s.

B By combining with Lemma 1, we have gcd(p(X,), r,) || X;.

B Since p(x,) Is the smallest P-period of x,, r_.= ¢ - p(x,) for some integer ¢ > 1.



Proof of o prefixes theorem

Claim 1. The smallest P-period p(x;) is a period of Xx.. * il X

. . s * p(X))<r
B Since the condition of the periodicity, we have

PX)(c—1)+r,<rp+-+r <X’ =X| & pX)(c—2)+p(Xy) + rg< Xy
B This inequation also implies that p(x;)«(c —2) + r_+ 1 <|xy].
Lemma 3. Let s be a string that has a P-period g, and s’ be a substring of s

that has a P-period p. If p-(|Z —2) + g+ 1 <|s’| and q = kp for some integer Kk,
then p Is a P-period of s.

B By combining with Lemma 3 and r_=c - p(x,), we have p(X,) || X
(Claim 1 holds).



Proof of o prefixes theorem

Claim 1. The smallest P-period p(x;) is a period of Xx.. * i %4

° <: .
B Since the condition of the periodicity, we have p(x) =T

PX) (0 =1) +r S+ -+ <X | =X © p(X)(c—2) +p(Xy) + e <[Xy].
X0+1 Xa+f
P rO_ n
Xy 1 Xy
| | | | | |
X2 Xy
> rl
X1 X{
E]“.[j:]“.[]
I:] 4-'5()(1) r1+ r2+ cee + I’a




Proof of o prefixes theorem

B

Claim 2. The smallest P-period p(x,) Is a period of x_,;. * i %4

B Since the condition of the periodicity and |x;|

PX) (o —=1) +[Xy| S+ +r  + X[ =[X]| &

° <.
| X, we have P =T,

:p(xl)'(G —2) + p(Xy) + [Xq| <[X, ]

X0+1

9

X0+1




Proof of o prefixes theorem

Claim 2. The smallest P-period p(x,) Is a period of x_,;. * i %4

. . s * p(X))<r
B Since the condition of the periodicity and |x,| || X,, we have

P(X)(0 = 1) + Xy STyt o+ 1oy +[Xg| = X [ P() (0~ 2) + P(xy) + o] < X,

Lemma 1. Let s be a string that has P-periods p and g and satisfies [Z| > 2.
If p+q+ min(p, 9)-(|IZ — 2) <|s|, then gcd(p, q) is a P-period of s.

B By combining with Lemma 1, we have gcd(p(X,), |[X1]) || X,

B Since p(x,) Is the smallest P-period of x;, [X,|=d - p(x,) for some integer d >
1.



Proof of o prefixes theorem

Claim 2. The smallest P-period p(x,) Is a period of x_,;. * il X

. . s * p(X))<r
B Since the condition of the periodicity and |x,| || X,, we have

P(X) (o —1) + x| Syt 1+ X = X| & pXp)(o—2) +p(Xy) + [Xq] < [X]-
B This inequation also implies that p(x,)«(c —2) + |X;| + 1 <|x].
Lemma 3. Let s be a string that has a P-period g, and s’ be a substring of s

that has a P-period p. If p-(|Z —2) + g+ 1 <|s’| and q = kp for some integer Kk,
then p Is a P-period of s.

B By combining with Lemma 3 and |x,|=d - p(x,), we have p(X,) || X,+1
(Claim 2 holds).



Proof of o prefixes theorem

Claim 2. The smallest P-period p(x,) Is a period of x_,;. * i %4

. . s * p(X))<r
B Since the condition of the periodicity and |x,| || X,, we have

PX) (o =1) +[Xg| S+ +r 4 +[X| =X © p(Xp)(o—2)+p(Xy) +[Xe| <X,

9

Xa+1 Xa+1

() it gk 4T




Proof of o prefixes theorem

We can use Lemma 2 for x_,; and x;” because
H x_,, and x;” have a period p(x,) (by Claim 2 & definition).

B x_,, and x;,” overlap each other, and the lengthisr;+ --- +r_.

9

Xa+l Xa+1




Proof of o prefixes theorem

We can use Lemma 2 for x_,; and x;” because
B x_., and x;” have a period p(x,) (by Claim 2 & definition),
M x_,, and x,” overlap each other, and

B the overlap lengthis ry+ --- +r_ 2 p(X))-(c —1) + 1.

Lemma 2. Let x, Yy, z be strings s.t. p iIs a P-period of xy with bijection f and a
P-period of yz with bijection g. If |y| > p(|Z,,,| —1) + 1, then p is a P—period of
Xyz with bijection f (= g).



Proof of o prefixes theorem

By applying Lemma 2 for x_,; and x;’, we have p(X,) || XX,




B

Proof of o prefixes theorem

By a similar argument for x,x,” and x,’, we have p(X,) || x,x,’.

Then, x,x;” has another parameterized equivalent occurrence in x,x,’.

p(Xy)
«—> Xl Xl’

Theorem 2. For any string s that contains o distinct characters, there can be
at most o prefixes of s that are P-squares and have no other parameterized

occurrences in s.



Open questions

Theorem 1. Any string of length n that contains ¢ distinct characters
can contain at most on non-equivalent parameterized squares.

M |s this upper bound is tight?

=~ |-

=~

-

ow can we improve this bound?
'here is a lower bound for the o prefixes property.)

ow can we construct a family of strings that gives a good lower

bound?

B Can we improve bounds in another distinctness (distinct as words)?




B

Example of o prefixes

Theorem. For any o, there exists a string with alphabet size ¢ such that
there are o prefixes that are parameterized squares and have no other

parameterized occurrence.

(Cl C0—2 Ca—l) (ClE C0—2 Ca—l) Ca (CZE'" Ca—2 Ca—l Ca) (C2 Ca—2 Ca—l CO‘) Cl
| _ —
| | |
| : | : |

12341234i5234523451
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