
Avoiding abelian and additive powers in rich
words

Lucas Mol

Joint work with Jonathan Andrade

(And some earlier work with James Currie, Narad Rampersad,
and Jeffrey Shallit)

One World Combinatorics on Words Seminar
January 28, 2025

Plan

Introduction

Our constructions

The template method

Three types of powers

▶ An (ordinary) square is a nonempty word of the form xx .
▶ E.g., murmur, hotshots

▶ An abelian square is a nonempty word of the form xx ′, where
x ′ is an anagram of x .
▶ E.g., reappear, intestines

▶ An additive square is a nonempty word of the form xx ′, where
x and x ′ have the same length and the same sum.
▶ E.g., 0312, 210201

▶ Ordinary, abelian, and additive k-powers are defined
analogously for k ≥ 2.
▶ E.g., 011 101 110 011 is an abelian/additive 4-power.

Three types of powers

▶ An (ordinary) square is a nonempty word of the form xx .
▶ E.g., murmur, hotshots

▶ An abelian square is a nonempty word of the form xx ′, where
x ′ is an anagram of x .
▶ E.g., reappear, intestines

▶ An additive square is a nonempty word of the form xx ′, where
x and x ′ have the same length and the same sum.
▶ E.g., 0312, 210201

▶ Ordinary, abelian, and additive k-powers are defined
analogously for k ≥ 2.
▶ E.g., 011 101 110 011 is an abelian/additive 4-power.

Three types of powers

▶ An (ordinary) square is a nonempty word of the form xx .
▶ E.g., murmur, hotshots

▶ An abelian square is a nonempty word of the form xx ′, where
x ′ is an anagram of x .
▶ E.g., reappear, intestines

▶ An additive square is a nonempty word of the form xx ′, where
x and x ′ have the same length and the same sum.
▶ E.g., 0312, 210201

▶ Ordinary, abelian, and additive k-powers are defined
analogously for k ≥ 2.
▶ E.g., 011 101 110 011 is an abelian/additive 4-power.

Three types of powers

▶ An (ordinary) square is a nonempty word of the form xx .
▶ E.g., murmur, hotshots

▶ An abelian square is a nonempty word of the form xx ′, where
x ′ is an anagram of x .
▶ E.g., reappear, intestines

▶ An additive square is a nonempty word of the form xx ′, where
x and x ′ have the same length and the same sum.
▶ E.g., 0312, 210201

▶ Ordinary, abelian, and additive k-powers are defined
analogously for k ≥ 2.
▶ E.g., 011 101 110 011 is an abelian/additive 4-power.

Three types of powers

▶ An (ordinary) square is a nonempty word of the form xx .
▶ E.g., murmur, hotshots

▶ An abelian square is a nonempty word of the form xx ′, where
x ′ is an anagram of x .
▶ E.g., reappear, intestines

▶ An additive square is a nonempty word of the form xx ′, where
x and x ′ have the same length and the same sum.
▶ E.g., 0312, 210201

▶ Ordinary, abelian, and additive k-powers are defined
analogously for k ≥ 2.
▶ E.g., 011 101 110 011 is an abelian/additive 4-power.

Avoiding abelian powers

Theorem (Dekking 1979): Abelian 4-powers are avoidable over
{0, 1}.

Theorem (Dekking 1979): Abelian cubes are avoidable over
{0, 1, 2}.

Theorem (Keränen 1992): Abelian squares are avoidable over
{0, 1, 2, 3}.

▶ All three alphabet sizes are smallest possible.

Avoiding abelian powers

Theorem (Dekking 1979): Abelian 4-powers are avoidable over
{0, 1}.

Theorem (Dekking 1979): Abelian cubes are avoidable over
{0, 1, 2}.

Theorem (Keränen 1992): Abelian squares are avoidable over
{0, 1, 2, 3}.

▶ All three alphabet sizes are smallest possible.

Avoiding abelian powers

Theorem (Dekking 1979): Abelian 4-powers are avoidable over
{0, 1}.

Theorem (Dekking 1979): Abelian cubes are avoidable over
{0, 1, 2}.

Theorem (Keränen 1992): Abelian squares are avoidable over
{0, 1, 2, 3}.

▶ All three alphabet sizes are smallest possible.

Avoiding abelian powers

Theorem (Dekking 1979): Abelian 4-powers are avoidable over
{0, 1}.

Theorem (Dekking 1979): Abelian cubes are avoidable over
{0, 1, 2}.

Theorem (Keränen 1992): Abelian squares are avoidable over
{0, 1, 2, 3}.

▶ All three alphabet sizes are smallest possible.

Avoiding abelian powers

Theorem (Dekking 1979): Abelian 4-powers are avoidable over
{0, 1}.

Theorem (Dekking 1979): Abelian cubes are avoidable over
{0, 1, 2}.

Theorem (Keränen 1992): Abelian squares are avoidable over
{0, 1, 2, 3}.

▶ All three alphabet sizes are smallest possible.

Avoiding additive powers

Theorem (Dekking 1979): Additive 4-powers are avoidable over
{0, 1}.

Theorem (Cassaigne, Currie, Schaeffer, and Shallit 2014): Additive
cubes are avoidable over {0, 1, 3, 4}.

Theorem (Rao 2015): Additive cubes are avoidable over several
subsets of Z of size 3.

Open Problem: Are additive squares avoidable over some finite
subset of Z?

Avoiding additive powers

Theorem (Dekking 1979): Additive 4-powers are avoidable over
{0, 1}.

Theorem (Cassaigne, Currie, Schaeffer, and Shallit 2014): Additive
cubes are avoidable over {0, 1, 3, 4}.

Theorem (Rao 2015): Additive cubes are avoidable over several
subsets of Z of size 3.

Open Problem: Are additive squares avoidable over some finite
subset of Z?

Avoiding additive powers

Theorem (Dekking 1979): Additive 4-powers are avoidable over
{0, 1}.

Theorem (Cassaigne, Currie, Schaeffer, and Shallit 2014): Additive
cubes are avoidable over {0, 1, 3, 4}.

Theorem (Rao 2015): Additive cubes are avoidable over several
subsets of Z of size 3.

Open Problem: Are additive squares avoidable over some finite
subset of Z?

Avoiding additive powers

Theorem (Dekking 1979): Additive 4-powers are avoidable over
{0, 1}.

Theorem (Cassaigne, Currie, Schaeffer, and Shallit 2014): Additive
cubes are avoidable over {0, 1, 3, 4}.

Theorem (Rao 2015): Additive cubes are avoidable over several
subsets of Z of size 3.

Open Problem: Are additive squares avoidable over some finite
subset of Z?

Avoiding additive powers

Theorem (Dekking 1979): Additive 4-powers are avoidable over
{0, 1}.

Theorem (Cassaigne, Currie, Schaeffer, and Shallit 2014): Additive
cubes are avoidable over {0, 1, 3, 4}.

Theorem (Rao 2015): Additive cubes are avoidable over several
subsets of Z of size 3.

Open Problem: Are additive squares avoidable over some finite
subset of Z?

Rich words

We consider similar problems for rich words.

▶ A palindrome is a finite word that reads the same forwards
and backwards.
▶ Examples: 01010, kayak, saippuakivikauppias

Theorem (Droubay, Justin, and Pirillo 2001): Every word of length
n contains at most n distinct nonempty palindromes.

▶ A word of length n is called rich if it contains n distinct
nonempty palindromes.
▶ The word 01101 contains the palindromes

▶ The word 0120 contains only the palindromes 0, 1, and 2, so
it is not rich.

▶ An infinite word is called rich if all of its finite factors are rich.

Rich words

We consider similar problems for rich words.

▶ A palindrome is a finite word that reads the same forwards
and backwards.

▶ Examples: 01010, kayak, saippuakivikauppias

Theorem (Droubay, Justin, and Pirillo 2001): Every word of length
n contains at most n distinct nonempty palindromes.

▶ A word of length n is called rich if it contains n distinct
nonempty palindromes.
▶ The word 01101 contains the palindromes

▶ The word 0120 contains only the palindromes 0, 1, and 2, so
it is not rich.

▶ An infinite word is called rich if all of its finite factors are rich.

Rich words

We consider similar problems for rich words.

▶ A palindrome is a finite word that reads the same forwards
and backwards.
▶ Examples: 01010,

kayak, saippuakivikauppias

Theorem (Droubay, Justin, and Pirillo 2001): Every word of length
n contains at most n distinct nonempty palindromes.

▶ A word of length n is called rich if it contains n distinct
nonempty palindromes.
▶ The word 01101 contains the palindromes

▶ The word 0120 contains only the palindromes 0, 1, and 2, so
it is not rich.

▶ An infinite word is called rich if all of its finite factors are rich.

Rich words

We consider similar problems for rich words.

▶ A palindrome is a finite word that reads the same forwards
and backwards.
▶ Examples: 01010, kayak,

saippuakivikauppias

Theorem (Droubay, Justin, and Pirillo 2001): Every word of length
n contains at most n distinct nonempty palindromes.

▶ A word of length n is called rich if it contains n distinct
nonempty palindromes.
▶ The word 01101 contains the palindromes

▶ The word 0120 contains only the palindromes 0, 1, and 2, so
it is not rich.

▶ An infinite word is called rich if all of its finite factors are rich.

Rich words

We consider similar problems for rich words.

▶ A palindrome is a finite word that reads the same forwards
and backwards.
▶ Examples: 01010, kayak, saippuakivikauppias

Theorem (Droubay, Justin, and Pirillo 2001): Every word of length
n contains at most n distinct nonempty palindromes.

▶ A word of length n is called rich if it contains n distinct
nonempty palindromes.
▶ The word 01101 contains the palindromes

▶ The word 0120 contains only the palindromes 0, 1, and 2, so
it is not rich.

▶ An infinite word is called rich if all of its finite factors are rich.

Rich words

We consider similar problems for rich words.

▶ A palindrome is a finite word that reads the same forwards
and backwards.
▶ Examples: 01010, kayak, saippuakivikauppias

Theorem (Droubay, Justin, and Pirillo 2001): Every word of length
n contains at most n distinct nonempty palindromes.

▶ A word of length n is called rich if it contains n distinct
nonempty palindromes.
▶ The word 01101 contains the palindromes

▶ The word 0120 contains only the palindromes 0, 1, and 2, so
it is not rich.

▶ An infinite word is called rich if all of its finite factors are rich.

Rich words

We consider similar problems for rich words.

▶ A palindrome is a finite word that reads the same forwards
and backwards.
▶ Examples: 01010, kayak, saippuakivikauppias

Theorem (Droubay, Justin, and Pirillo 2001): Every word of length
n contains at most n distinct nonempty palindromes.

▶ A word of length n is called rich if it contains n distinct
nonempty palindromes.

▶ The word 01101 contains the palindromes

▶ The word 0120 contains only the palindromes 0, 1, and 2, so
it is not rich.

▶ An infinite word is called rich if all of its finite factors are rich.

Rich words

We consider similar problems for rich words.

▶ A palindrome is a finite word that reads the same forwards
and backwards.
▶ Examples: 01010, kayak, saippuakivikauppias

Theorem (Droubay, Justin, and Pirillo 2001): Every word of length
n contains at most n distinct nonempty palindromes.

▶ A word of length n is called rich if it contains n distinct
nonempty palindromes.
▶ The word 01101 contains the palindromes 0,

▶ The word 0120 contains only the palindromes 0, 1, and 2, so
it is not rich.

▶ An infinite word is called rich if all of its finite factors are rich.

Rich words

We consider similar problems for rich words.

▶ A palindrome is a finite word that reads the same forwards
and backwards.
▶ Examples: 01010, kayak, saippuakivikauppias

Theorem (Droubay, Justin, and Pirillo 2001): Every word of length
n contains at most n distinct nonempty palindromes.

▶ A word of length n is called rich if it contains n distinct
nonempty palindromes.
▶ The word 01101 contains the palindromes 0, 1,

▶ The word 0120 contains only the palindromes 0, 1, and 2, so
it is not rich.

▶ An infinite word is called rich if all of its finite factors are rich.

Rich words

We consider similar problems for rich words.

▶ A palindrome is a finite word that reads the same forwards
and backwards.
▶ Examples: 01010, kayak, saippuakivikauppias

Theorem (Droubay, Justin, and Pirillo 2001): Every word of length
n contains at most n distinct nonempty palindromes.

▶ A word of length n is called rich if it contains n distinct
nonempty palindromes.
▶ The word 01101 contains the palindromes 0, 1, 11,

▶ The word 0120 contains only the palindromes 0, 1, and 2, so
it is not rich.

▶ An infinite word is called rich if all of its finite factors are rich.

Rich words

We consider similar problems for rich words.

▶ A palindrome is a finite word that reads the same forwards
and backwards.
▶ Examples: 01010, kayak, saippuakivikauppias

Theorem (Droubay, Justin, and Pirillo 2001): Every word of length
n contains at most n distinct nonempty palindromes.

▶ A word of length n is called rich if it contains n distinct
nonempty palindromes.
▶ The word 01101 contains the palindromes 0, 1, 11, 0110,

▶ The word 0120 contains only the palindromes 0, 1, and 2, so
it is not rich.

▶ An infinite word is called rich if all of its finite factors are rich.

Rich words

We consider similar problems for rich words.

▶ A palindrome is a finite word that reads the same forwards
and backwards.
▶ Examples: 01010, kayak, saippuakivikauppias

Theorem (Droubay, Justin, and Pirillo 2001): Every word of length
n contains at most n distinct nonempty palindromes.

▶ A word of length n is called rich if it contains n distinct
nonempty palindromes.
▶ The word 01101 contains the palindromes 0, 1, 11, 0110, and

101,

▶ The word 0120 contains only the palindromes 0, 1, and 2, so
it is not rich.

▶ An infinite word is called rich if all of its finite factors are rich.

Rich words

We consider similar problems for rich words.

▶ A palindrome is a finite word that reads the same forwards
and backwards.
▶ Examples: 01010, kayak, saippuakivikauppias

Theorem (Droubay, Justin, and Pirillo 2001): Every word of length
n contains at most n distinct nonempty palindromes.

▶ A word of length n is called rich if it contains n distinct
nonempty palindromes.
▶ The word 01101 contains the palindromes 0, 1, 11, 0110, and

101, so it is rich.

▶ The word 0120 contains only the palindromes 0, 1, and 2, so
it is not rich.

▶ An infinite word is called rich if all of its finite factors are rich.

Rich words

We consider similar problems for rich words.

▶ A palindrome is a finite word that reads the same forwards
and backwards.
▶ Examples: 01010, kayak, saippuakivikauppias

Theorem (Droubay, Justin, and Pirillo 2001): Every word of length
n contains at most n distinct nonempty palindromes.

▶ A word of length n is called rich if it contains n distinct
nonempty palindromes.
▶ The word 01101 contains the palindromes 0, 1, 11, 0110, and

101, so it is rich.

▶ The word 0120 contains only the palindromes 0, 1, and 2, so
it is not rich.

▶ An infinite word is called rich if all of its finite factors are rich.

Rich words

We consider similar problems for rich words.

▶ A palindrome is a finite word that reads the same forwards
and backwards.
▶ Examples: 01010, kayak, saippuakivikauppias

Theorem (Droubay, Justin, and Pirillo 2001): Every word of length
n contains at most n distinct nonempty palindromes.

▶ A word of length n is called rich if it contains n distinct
nonempty palindromes.
▶ The word 01101 contains the palindromes 0, 1, 11, 0110, and

101, so it is rich.
▶ The word 0120 contains only the palindromes 0, 1, and 2, so

it is not rich.

▶ An infinite word is called rich if all of its finite factors are rich.

Rich words

We consider similar problems for rich words.

▶ A palindrome is a finite word that reads the same forwards
and backwards.
▶ Examples: 01010, kayak, saippuakivikauppias

Theorem (Droubay, Justin, and Pirillo 2001): Every word of length
n contains at most n distinct nonempty palindromes.

▶ A word of length n is called rich if it contains n distinct
nonempty palindromes.
▶ The word 01101 contains the palindromes 0, 1, 11, 0110, and

101, so it is rich.
▶ The word 0120 contains only the palindromes 0, 1, and 2, so

it is not rich.

▶ An infinite word is called rich if all of its finite factors are rich.

Avoiding abelian and additive powers in rich words

Theorem (Andrade and Mol 2025+): There is an infinite additive
5-power-free rich word over {0, 1}.

Theorem (Andrade and Mol 2025+): There is an infinite additive
4-power-free rich word over {0, 1, 2}.

▶ The alphabet sizes are smallest possible, even for abelian
powers.

▶ But what about squares and cubes?

Theorem (Pelantová and Starosta 2013): Every infinite rich word
over a finite alphabet contains an ordinary square.

Open Problem: Is there an infinite additive (or abelian) cube-free
rich word over some finite subset of Z?

Avoiding abelian and additive powers in rich words

Theorem (Andrade and Mol 2025+): There is an infinite additive
5-power-free rich word over {0, 1}.

Theorem (Andrade and Mol 2025+): There is an infinite additive
4-power-free rich word over {0, 1, 2}.

▶ The alphabet sizes are smallest possible, even for abelian
powers.

▶ But what about squares and cubes?

Theorem (Pelantová and Starosta 2013): Every infinite rich word
over a finite alphabet contains an ordinary square.

Open Problem: Is there an infinite additive (or abelian) cube-free
rich word over some finite subset of Z?

Avoiding abelian and additive powers in rich words

Theorem (Andrade and Mol 2025+): There is an infinite additive
5-power-free rich word over {0, 1}.

Theorem (Andrade and Mol 2025+): There is an infinite additive
4-power-free rich word over {0, 1, 2}.

▶ The alphabet sizes are smallest possible, even for abelian
powers.

▶ But what about squares and cubes?

Theorem (Pelantová and Starosta 2013): Every infinite rich word
over a finite alphabet contains an ordinary square.

Open Problem: Is there an infinite additive (or abelian) cube-free
rich word over some finite subset of Z?

Avoiding abelian and additive powers in rich words

Theorem (Andrade and Mol 2025+): There is an infinite additive
5-power-free rich word over {0, 1}.

Theorem (Andrade and Mol 2025+): There is an infinite additive
4-power-free rich word over {0, 1, 2}.

▶ The alphabet sizes are smallest possible, even for abelian
powers.

▶ But what about squares and cubes?

Theorem (Pelantová and Starosta 2013): Every infinite rich word
over a finite alphabet contains an ordinary square.

Open Problem: Is there an infinite additive (or abelian) cube-free
rich word over some finite subset of Z?

Avoiding abelian and additive powers in rich words

Theorem (Andrade and Mol 2025+): There is an infinite additive
5-power-free rich word over {0, 1}.

Theorem (Andrade and Mol 2025+): There is an infinite additive
4-power-free rich word over {0, 1, 2}.

▶ The alphabet sizes are smallest possible, even for abelian
powers.

▶ But what about squares and cubes?

Theorem (Pelantová and Starosta 2013): Every infinite rich word
over a finite alphabet contains an ordinary square.

Open Problem: Is there an infinite additive (or abelian) cube-free
rich word over some finite subset of Z?

Avoiding abelian and additive powers in rich words

Theorem (Andrade and Mol 2025+): There is an infinite additive
5-power-free rich word over {0, 1}.

Theorem (Andrade and Mol 2025+): There is an infinite additive
4-power-free rich word over {0, 1, 2}.

▶ The alphabet sizes are smallest possible, even for abelian
powers.

▶ But what about squares and cubes?

Theorem (Pelantová and Starosta 2013): Every infinite rich word
over a finite alphabet contains an ordinary square.

Open Problem: Is there an infinite additive (or abelian) cube-free
rich word over some finite subset of Z?

Avoiding abelian and additive powers in rich words

Theorem (Andrade and Mol 2025+): There is an infinite additive
5-power-free rich word over {0, 1}.

Theorem (Andrade and Mol 2025+): There is an infinite additive
4-power-free rich word over {0, 1, 2}.

▶ The alphabet sizes are smallest possible, even for abelian
powers.

▶ But what about squares and cubes?

Theorem (Pelantová and Starosta 2013): Every infinite rich word
over a finite alphabet contains an ordinary square.

Open Problem: Is there an infinite additive (or abelian) cube-free
rich word over some finite subset of Z?

Plan

Introduction

Our constructions

The template method

Our constructions

Define β : {0, 1}∗ → {0, 1}∗ and γ : {0, 1, 2}∗ → {0, 1, 2}∗ by

β(0) = 00001 γ(0) = 2

β(1) = 01101 γ(1) = 101

γ(2) = 10001

We show that

▶ B = βω(0) is rich and additive 5-power-free, and

▶ Γ = γω(1) is rich and additive 4-power-free.

Our constructions

Define β : {0, 1}∗ → {0, 1}∗ and γ : {0, 1, 2}∗ → {0, 1, 2}∗ by

β(0) = 00001 γ(0) = 2

β(1) = 01101 γ(1) = 101

γ(2) = 10001

We show that

▶ B = βω(0) is rich and additive 5-power-free,

and

▶ Γ = γω(1) is rich and additive 4-power-free.

Our constructions

Define β : {0, 1}∗ → {0, 1}∗ and γ : {0, 1, 2}∗ → {0, 1, 2}∗ by

β(0) = 00001 γ(0) = 2

β(1) = 01101 γ(1) = 101

γ(2) = 10001

We show that

▶ B = βω(0) is rich and additive 5-power-free, and

▶ Γ = γω(1) is rich and additive 4-power-free.

Proving richness

We make use of the following characterization.

Theorem (Droubay, Justin, and Pirillo 2001): An infinite word w is
rich if and only if every finite prefix of w has a unioccurrent
palindromic suffix.

For B, we use Walnut.

morphism b "0->00001 1->01101":

promote B b:

def FactorEq "?msd_5 Ak (k<n)=>(B[i+k]=B[j+k])":

def Occurs "?msd_5 (m<= n) & (Ek (k+m<=n) & $FactorEq(i,j+k,m))":

def Palindrome "?msd_5 Aj,k ((k<n) & (j+k+1=n)) => (B[i+k]=B[i+j])":

def BisRich "?msd_5 An Ej $Palindrome(j,n-j) & ~$Occurs(j,0,n-j,n-1)":

For Γ, we use an inductive proof with several cases.

Proving richness

We make use of the following characterization.

Theorem (Droubay, Justin, and Pirillo 2001): An infinite word w is
rich if and only if every finite prefix of w has a unioccurrent
palindromic suffix.

For B, we use Walnut.

morphism b "0->00001 1->01101":

promote B b:

def FactorEq "?msd_5 Ak (k<n)=>(B[i+k]=B[j+k])":

def Occurs "?msd_5 (m<= n) & (Ek (k+m<=n) & $FactorEq(i,j+k,m))":

def Palindrome "?msd_5 Aj,k ((k<n) & (j+k+1=n)) => (B[i+k]=B[i+j])":

def BisRich "?msd_5 An Ej $Palindrome(j,n-j) & ~$Occurs(j,0,n-j,n-1)":

For Γ, we use an inductive proof with several cases.

Proving richness

We make use of the following characterization.

Theorem (Droubay, Justin, and Pirillo 2001): An infinite word w is
rich if and only if every finite prefix of w has a unioccurrent
palindromic suffix.

For B, we use Walnut.

morphism b "0->00001 1->01101":

promote B b:

def FactorEq "?msd_5 Ak (k<n)=>(B[i+k]=B[j+k])":

def Occurs "?msd_5 (m<= n) & (Ek (k+m<=n) & $FactorEq(i,j+k,m))":

def Palindrome "?msd_5 Aj,k ((k<n) & (j+k+1=n)) => (B[i+k]=B[i+j])":

def BisRich "?msd_5 An Ej $Palindrome(j,n-j) & ~$Occurs(j,0,n-j,n-1)":

For Γ, we use an inductive proof with several cases.

Proving additive power-freeness

We use a recent variation of the template method.

Theorem (Currie and Rampersad 2012): There is an algorithm
which decides, under certain conditions on h, whether hω(0)
contains abelian k-powers.

Theorem (Rao and Rosenfeld 2018): Less restrictive conditions,
can be used for both abelian and additive powers.

Theorem (Currie, Mol, Rampersad, and Shallit 2024): More
restrictive conditions, and works only for additive powers, but
(probably) simpler and more efficient.

▶ Jonathan Andrade implemented this algorithm in general, and
then applied it to B = βω(0) and Γ = γω(1).

Proving additive power-freeness

We use a recent variation of the template method.

Theorem (Currie and Rampersad 2012): There is an algorithm
which decides, under certain conditions on h, whether hω(0)
contains abelian k-powers.

Theorem (Rao and Rosenfeld 2018): Less restrictive conditions,
can be used for both abelian and additive powers.

Theorem (Currie, Mol, Rampersad, and Shallit 2024): More
restrictive conditions, and works only for additive powers, but
(probably) simpler and more efficient.

▶ Jonathan Andrade implemented this algorithm in general, and
then applied it to B = βω(0) and Γ = γω(1).

Proving additive power-freeness

We use a recent variation of the template method.

Theorem (Currie and Rampersad 2012): There is an algorithm
which decides, under certain conditions on h, whether hω(0)
contains abelian k-powers.

Theorem (Rao and Rosenfeld 2018): Less restrictive conditions,
can be used for both abelian and additive powers.

Theorem (Currie, Mol, Rampersad, and Shallit 2024): More
restrictive conditions, and works only for additive powers, but
(probably) simpler and more efficient.

▶ Jonathan Andrade implemented this algorithm in general, and
then applied it to B = βω(0) and Γ = γω(1).

Proving additive power-freeness

We use a recent variation of the template method.

Theorem (Currie and Rampersad 2012): There is an algorithm
which decides, under certain conditions on h, whether hω(0)
contains abelian k-powers.

Theorem (Rao and Rosenfeld 2018): Less restrictive conditions,
can be used for both abelian and additive powers.

Theorem (Currie, Mol, Rampersad, and Shallit 2024): More
restrictive conditions, and works only for additive powers, but
(probably) simpler and more efficient.

▶ Jonathan Andrade implemented this algorithm in general, and
then applied it to B = βω(0) and Γ = γω(1).

Proving additive power-freeness

We use a recent variation of the template method.

Theorem (Currie and Rampersad 2012): There is an algorithm
which decides, under certain conditions on h, whether hω(0)
contains abelian k-powers.

Theorem (Rao and Rosenfeld 2018): Less restrictive conditions,
can be used for both abelian and additive powers.

Theorem (Currie, Mol, Rampersad, and Shallit 2024): More
restrictive conditions, and works only for additive powers, but
(probably) simpler and more efficient.

▶ Jonathan Andrade implemented this algorithm in general, and
then applied it to B = βω(0) and Γ = γω(1).

Plan

Introduction

Our constructions

The template method

Theorem (Currie, Mol, Rampersad, and Shallit 2024): There is an
algorithm which decides, under certain conditions on h, whether
hω(0) contains additive k-powers.

The essential ideas:

▶ Any long additive power in hω(0) must have arisen by
applying h repeatedly to some short “seed word”.

▶ These seed words cannot look “too different” from additive
powers – there are only finitely many possible templates for
these seed words.

▶ We can enumerate all short words in hω(0), and check to see
if they match any of the templates.

Some questions:

▶ What are the conditions?

▶ How do we describe the “seed words” for additive k-powers?

For simplicity, we’ll focus on additive squares.

Theorem (Currie, Mol, Rampersad, and Shallit 2024): There is an
algorithm which decides, under certain conditions on h, whether
hω(0) contains additive k-powers.

The essential ideas:

▶ Any long additive power in hω(0) must have arisen by
applying h repeatedly to some short “seed word”.

▶ These seed words cannot look “too different” from additive
powers – there are only finitely many possible templates for
these seed words.

▶ We can enumerate all short words in hω(0), and check to see
if they match any of the templates.

Some questions:

▶ What are the conditions?

▶ How do we describe the “seed words” for additive k-powers?

For simplicity, we’ll focus on additive squares.

Theorem (Currie, Mol, Rampersad, and Shallit 2024): There is an
algorithm which decides, under certain conditions on h, whether
hω(0) contains additive k-powers.

The essential ideas:

▶ Any long additive power in hω(0) must have arisen by
applying h repeatedly to some short “seed word”.

▶ These seed words cannot look “too different” from additive
powers – there are only finitely many possible templates for
these seed words.

▶ We can enumerate all short words in hω(0), and check to see
if they match any of the templates.

Some questions:

▶ What are the conditions?

▶ How do we describe the “seed words” for additive k-powers?

For simplicity, we’ll focus on additive squares.

Theorem (Currie, Mol, Rampersad, and Shallit 2024): There is an
algorithm which decides, under certain conditions on h, whether
hω(0) contains additive k-powers.

The essential ideas:

▶ Any long additive power in hω(0) must have arisen by
applying h repeatedly to some short “seed word”.

▶ These seed words cannot look “too different” from additive
powers – there are only finitely many possible templates for
these seed words.

▶ We can enumerate all short words in hω(0), and check to see
if they match any of the templates.

Some questions:

▶ What are the conditions?

▶ How do we describe the “seed words” for additive k-powers?

For simplicity, we’ll focus on additive squares.

Theorem (Currie, Mol, Rampersad, and Shallit 2024): There is an
algorithm which decides, under certain conditions on h, whether
hω(0) contains additive k-powers.

The essential ideas:

▶ Any long additive power in hω(0) must have arisen by
applying h repeatedly to some short “seed word”.

▶ These seed words cannot look “too different” from additive
powers – there are only finitely many possible templates for
these seed words.

▶ We can enumerate all short words in hω(0), and check to see
if they match any of the templates.

Some questions:

▶ What are the conditions?

▶ How do we describe the “seed words” for additive k-powers?

For simplicity, we’ll focus on additive squares.

Theorem (Currie, Mol, Rampersad, and Shallit 2024): There is an
algorithm which decides, under certain conditions on h, whether
hω(0) contains additive k-powers.

The essential ideas:

▶ Any long additive power in hω(0) must have arisen by
applying h repeatedly to some short “seed word”.

▶ These seed words cannot look “too different” from additive
powers – there are only finitely many possible templates for
these seed words.

▶ We can enumerate all short words in hω(0), and check to see
if they match any of the templates.

Some questions:

▶ What are the conditions?

▶ How do we describe the “seed words” for additive k-powers?

For simplicity, we’ll focus on additive squares.

Theorem (Currie, Mol, Rampersad, and Shallit 2024): There is an
algorithm which decides, under certain conditions on h, whether
hω(0) contains additive k-powers.

The essential ideas:

▶ Any long additive power in hω(0) must have arisen by
applying h repeatedly to some short “seed word”.

▶ These seed words cannot look “too different” from additive
powers – there are only finitely many possible templates for
these seed words.

▶ We can enumerate all short words in hω(0), and check to see
if they match any of the templates.

Some questions:

▶ What are the conditions?

▶ How do we describe the “seed words” for additive k-powers?

For simplicity, we’ll focus on additive squares.

Theorem (Currie, Mol, Rampersad, and Shallit 2024): There is an
algorithm which decides, under certain conditions on h, whether
hω(0) contains additive k-powers.

The essential ideas:

▶ Any long additive power in hω(0) must have arisen by
applying h repeatedly to some short “seed word”.

▶ These seed words cannot look “too different” from additive
powers – there are only finitely many possible templates for
these seed words.

▶ We can enumerate all short words in hω(0), and check to see
if they match any of the templates.

Some questions:

▶ What are the conditions?

▶ How do we describe the “seed words” for additive k-powers?

For simplicity, we’ll focus on additive squares.

Theorem (Currie, Mol, Rampersad, and Shallit 2024): There is an
algorithm which decides, under certain conditions on h, whether
hω(0) contains additive k-powers.

The essential ideas:

▶ Any long additive power in hω(0) must have arisen by
applying h repeatedly to some short “seed word”.

▶ These seed words cannot look “too different” from additive
powers – there are only finitely many possible templates for
these seed words.

▶ We can enumerate all short words in hω(0), and check to see
if they match any of the templates.

Some questions:

▶ What are the conditions?

▶ How do we describe the “seed words” for additive k-powers?

For simplicity, we’ll focus on additive squares.

Templates

▶ Let σ⃗(w) denote the vector

[
length of w
sum of w

]
.

▶ A template is a 4-tuple

[a0, a1, a2, d⃗]

letters or ε vector in Z2

▶ A word w is an instance of this template if

w = a0w0a1w1a2 and σ⃗(w1)− σ⃗(w0) = d⃗ .

▶ An instance of [ε, ε, ε, 0⃗] is an additive square.

▶ An instance of [0, 1, 0, [1, 3]T] is “not too far” from an
additive square.

Templates

▶ Let σ⃗(w) denote the vector

[
length of w
sum of w

]
.

▶ A template is a 4-tuple

[a0, a1, a2, d⃗]

letters or ε vector in Z2

▶ A word w is an instance of this template if

w = a0w0a1w1a2 and σ⃗(w1)− σ⃗(w0) = d⃗ .

▶ An instance of [ε, ε, ε, 0⃗] is an additive square.

▶ An instance of [0, 1, 0, [1, 3]T] is “not too far” from an
additive square.

Templates

▶ Let σ⃗(w) denote the vector

[
length of w
sum of w

]
.

▶ A template is a 4-tuple

[a0, a1, a2, d⃗]

letters or ε vector in Z2

▶ A word w is an instance of this template if

w = a0w0a1w1a2 and σ⃗(w1)− σ⃗(w0) = d⃗ .

▶ An instance of [ε, ε, ε, 0⃗] is an additive square.

▶ An instance of [0, 1, 0, [1, 3]T] is “not too far” from an
additive square.

Templates

▶ Let σ⃗(w) denote the vector

[
length of w
sum of w

]
.

▶ A template is a 4-tuple

[a0, a1, a2, d⃗]

letters or ε vector in Z2

▶ A word w is an instance of this template if

w = a0w0a1w1a2 and σ⃗(w1)− σ⃗(w0) = d⃗ .

▶ An instance of [ε, ε, ε, 0⃗] is an additive square.

▶ An instance of [0, 1, 0, [1, 3]T] is “not too far” from an
additive square.

Templates

▶ Let σ⃗(w) denote the vector

[
length of w
sum of w

]
.

▶ A template is a 4-tuple

[a0, a1, a2, d⃗]

letters or ε vector in Z2

▶ A word w is an instance of this template if

w = a0w0a1w1a2 and σ⃗(w1)− σ⃗(w0) = d⃗ .

▶ An instance of [ε, ε, ε, 0⃗] is an additive square.

▶ An instance of [0, 1, 0, [1, 3]T] is “not too far” from an
additive square.

Templates

▶ Let σ⃗(w) denote the vector

[
length of w
sum of w

]
.

▶ A template is a 4-tuple

[a0, a1, a2, d⃗]

letters or ε vector in Z2

▶ A word w is an instance of this template if

w = a0w0a1w1a2 and σ⃗(w1)− σ⃗(w0) = d⃗ .

▶ An instance of [ε, ε, ε, 0⃗] is an additive square.

▶ An instance of [0, 1, 0, [1, 3]T] is “not too far” from an
additive square.

Parents

Every long-enough instance of a template must have come from an
instance of another template – a parent.

difference D⃗

A0 W0 A1 W1 A2

h

h(A0) h(W0) h(A1) h(W1) h(A2)

a0 w0 a1 w1 a2

difference d⃗

The First Two Conditions

▶ Condition 1: The morphism h is affine, i.e., for all letters x ,
▶ the length of h(x) is given by a+ bx for some a, b ∈ Z, and
▶ the sum of h(x) is given by c + dx for some c , d ∈ Z.

▶ Record this in the matrix Mh =

[
a b
c d

]
.

▶ E.g., β(0) = 00001 and β(1) = 01101, so Mβ =

[
5 0
1 2

]
.

▶ Then σ⃗(h(W)) = Mhσ⃗(W).

▶ Condition 2: Mh is invertible, so that

σ⃗(W) = M−1
h σ⃗(h(W)).

The First Two Conditions

▶ Condition 1: The morphism h is affine, i.e., for all letters x ,
▶ the length of h(x) is given by a+ bx for some a, b ∈ Z, and
▶ the sum of h(x) is given by c + dx for some c , d ∈ Z.

▶ Record this in the matrix Mh =

[
a b
c d

]
.

▶ E.g., β(0) = 00001 and β(1) = 01101, so Mβ =

[
5 0
1 2

]
.

▶ Then σ⃗(h(W)) = Mhσ⃗(W).

▶ Condition 2: Mh is invertible, so that

σ⃗(W) = M−1
h σ⃗(h(W)).

The First Two Conditions

▶ Condition 1: The morphism h is affine, i.e., for all letters x ,
▶ the length of h(x) is given by a+ bx for some a, b ∈ Z, and
▶ the sum of h(x) is given by c + dx for some c , d ∈ Z.

▶ Record this in the matrix Mh =

[
a b
c d

]
.

▶ E.g., β(0) = 00001 and β(1) = 01101, so Mβ =

[
5 0
1 2

]
.

▶ Then σ⃗(h(W)) = Mhσ⃗(W).

▶ Condition 2: Mh is invertible, so that

σ⃗(W) = M−1
h σ⃗(h(W)).

The First Two Conditions

▶ Condition 1: The morphism h is affine, i.e., for all letters x ,
▶ the length of h(x) is given by a+ bx for some a, b ∈ Z, and
▶ the sum of h(x) is given by c + dx for some c , d ∈ Z.

▶ Record this in the matrix Mh =

[
a b
c d

]
.

▶ E.g., β(0) = 00001 and β(1) = 01101, so Mβ =

[
5 0
1 2

]
.

▶ Then σ⃗(h(W)) = Mhσ⃗(W).

▶ Condition 2: Mh is invertible, so that

σ⃗(W) = M−1
h σ⃗(h(W)).

The First Two Conditions

▶ Condition 1: The morphism h is affine, i.e., for all letters x ,
▶ the length of h(x) is given by a+ bx for some a, b ∈ Z, and
▶ the sum of h(x) is given by c + dx for some c , d ∈ Z.

▶ Record this in the matrix Mh =

[
a b
c d

]
.

▶ E.g., β(0) = 00001 and β(1) = 01101, so Mβ =

[
5 0
1 2

]
.

▶ Then σ⃗(h(W)) = Mhσ⃗(W).

▶ Condition 2: Mh is invertible, so that

σ⃗(W) = M−1
h σ⃗(h(W)).

Finding Parents

These first two conditions allow us to find all possible parents of a
given template.

difference d⃗

a0 w0 a1 w1 a2

Finding Parents

These first two conditions allow us to find all possible parents of a
given template.

difference d⃗

a0 w0 a1 w1 a2

h(A0) h(A1) h(A2)

Finding Parents

These first two conditions allow us to find all possible parents of a
given template.

difference d⃗

a0 w0 a1 w1 a2

h(A0) h(W0) h(A1) h(W1) h(A2)

Finding Parents

These first two conditions allow us to find all possible parents of a
given template.

difference d⃗

a0 w0 a1 w1 a2

h(A0) h(W0) h(A1) h(W1) h(A2)

h−1

A0 W0 A1 W1 A2

difference D⃗ determined by d⃗ and the choice/position of the h(Ai)’s

The Third Condition

▶ Now that we can compute the parents of a given template t,
we want to compute the set of all ancestors of t (parents,
grandparents, great-grandparents, etc.)

▶ How do we know that this set is finite?

▶ We need a condition which guarantees that for any ancestor
T = [A0,A1,A2, D⃗], the difference D⃗ is not too large.

▶ Condition 3: All eigenvalues of Mh are larger than 1 in
absolute value.

The Third Condition

▶ Now that we can compute the parents of a given template t,
we want to compute the set of all ancestors of t (parents,
grandparents, great-grandparents, etc.)

▶ How do we know that this set is finite?

▶ We need a condition which guarantees that for any ancestor
T = [A0,A1,A2, D⃗], the difference D⃗ is not too large.

▶ Condition 3: All eigenvalues of Mh are larger than 1 in
absolute value.

The Third Condition

▶ Now that we can compute the parents of a given template t,
we want to compute the set of all ancestors of t (parents,
grandparents, great-grandparents, etc.)

▶ How do we know that this set is finite?

▶ We need a condition which guarantees that for any ancestor
T = [A0,A1,A2, D⃗], the difference D⃗ is not too large.

▶ Condition 3: All eigenvalues of Mh are larger than 1 in
absolute value.

The Third Condition

▶ Now that we can compute the parents of a given template t,
we want to compute the set of all ancestors of t (parents,
grandparents, great-grandparents, etc.)

▶ How do we know that this set is finite?

▶ We need a condition which guarantees that for any ancestor
T = [A0,A1,A2, D⃗], the difference D⃗ is not too large.

▶ Condition 3: All eigenvalues of Mh are larger than 1 in
absolute value.

The Last Condition

▶ Condition 4: h is strictly growing.

▶ So taking preimages makes words shorter!

▶ Thus, if hω(0) contains an instance of a template t, then
hω(0) contains a short instance of some ancestor of t.

The Last Condition

▶ Condition 4: h is strictly growing.

▶ So taking preimages makes words shorter!

▶ Thus, if hω(0) contains an instance of a template t, then
hω(0) contains a short instance of some ancestor of t.

The Last Condition

▶ Condition 4: h is strictly growing.

▶ So taking preimages makes words shorter!

▶ Thus, if hω(0) contains an instance of a template t, then
hω(0) contains a short instance of some ancestor of t.

Description of the Algorithm

Suppose that h satisfies these four conditions.

▶ Consider the template t = [ε, ε, ε, 0⃗].
▶ An instance of t is an additive square.

▶ We enumerate all ancestors of t.
▶ This set is finite!

▶ If hω(0) contains an additive square, then it must contain a
short instance of one of these ancestors.
▶ These are our potential “seed words”.

▶ We enumerate all short factors of hω(0), and check to see if
any of them is an instance of an ancestor of t.
▶ If so, then hω(0) contains an additive square.
▶ If not, then hω(0) is additive square-free!

Description of the Algorithm

Suppose that h satisfies these four conditions.

▶ Consider the template t = [ε, ε, ε, 0⃗].

▶ An instance of t is an additive square.

▶ We enumerate all ancestors of t.
▶ This set is finite!

▶ If hω(0) contains an additive square, then it must contain a
short instance of one of these ancestors.
▶ These are our potential “seed words”.

▶ We enumerate all short factors of hω(0), and check to see if
any of them is an instance of an ancestor of t.
▶ If so, then hω(0) contains an additive square.
▶ If not, then hω(0) is additive square-free!

Description of the Algorithm

Suppose that h satisfies these four conditions.

▶ Consider the template t = [ε, ε, ε, 0⃗].
▶ An instance of t is an additive square.

▶ We enumerate all ancestors of t.
▶ This set is finite!

▶ If hω(0) contains an additive square, then it must contain a
short instance of one of these ancestors.
▶ These are our potential “seed words”.

▶ We enumerate all short factors of hω(0), and check to see if
any of them is an instance of an ancestor of t.
▶ If so, then hω(0) contains an additive square.
▶ If not, then hω(0) is additive square-free!

Description of the Algorithm

Suppose that h satisfies these four conditions.

▶ Consider the template t = [ε, ε, ε, 0⃗].
▶ An instance of t is an additive square.

▶ We enumerate all ancestors of t.

▶ This set is finite!

▶ If hω(0) contains an additive square, then it must contain a
short instance of one of these ancestors.
▶ These are our potential “seed words”.

▶ We enumerate all short factors of hω(0), and check to see if
any of them is an instance of an ancestor of t.
▶ If so, then hω(0) contains an additive square.
▶ If not, then hω(0) is additive square-free!

Description of the Algorithm

Suppose that h satisfies these four conditions.

▶ Consider the template t = [ε, ε, ε, 0⃗].
▶ An instance of t is an additive square.

▶ We enumerate all ancestors of t.
▶ This set is finite!

▶ If hω(0) contains an additive square, then it must contain a
short instance of one of these ancestors.
▶ These are our potential “seed words”.

▶ We enumerate all short factors of hω(0), and check to see if
any of them is an instance of an ancestor of t.
▶ If so, then hω(0) contains an additive square.
▶ If not, then hω(0) is additive square-free!

Description of the Algorithm

Suppose that h satisfies these four conditions.

▶ Consider the template t = [ε, ε, ε, 0⃗].
▶ An instance of t is an additive square.

▶ We enumerate all ancestors of t.
▶ This set is finite!

▶ If hω(0) contains an additive square, then it must contain a
short instance of one of these ancestors.

▶ These are our potential “seed words”.

▶ We enumerate all short factors of hω(0), and check to see if
any of them is an instance of an ancestor of t.
▶ If so, then hω(0) contains an additive square.
▶ If not, then hω(0) is additive square-free!

Description of the Algorithm

Suppose that h satisfies these four conditions.

▶ Consider the template t = [ε, ε, ε, 0⃗].
▶ An instance of t is an additive square.

▶ We enumerate all ancestors of t.
▶ This set is finite!

▶ If hω(0) contains an additive square, then it must contain a
short instance of one of these ancestors.
▶ These are our potential “seed words”.

▶ We enumerate all short factors of hω(0), and check to see if
any of them is an instance of an ancestor of t.
▶ If so, then hω(0) contains an additive square.
▶ If not, then hω(0) is additive square-free!

Description of the Algorithm

Suppose that h satisfies these four conditions.

▶ Consider the template t = [ε, ε, ε, 0⃗].
▶ An instance of t is an additive square.

▶ We enumerate all ancestors of t.
▶ This set is finite!

▶ If hω(0) contains an additive square, then it must contain a
short instance of one of these ancestors.
▶ These are our potential “seed words”.

▶ We enumerate all short factors of hω(0), and check to see if
any of them is an instance of an ancestor of t.

▶ If so, then hω(0) contains an additive square.
▶ If not, then hω(0) is additive square-free!

Description of the Algorithm

Suppose that h satisfies these four conditions.

▶ Consider the template t = [ε, ε, ε, 0⃗].
▶ An instance of t is an additive square.

▶ We enumerate all ancestors of t.
▶ This set is finite!

▶ If hω(0) contains an additive square, then it must contain a
short instance of one of these ancestors.
▶ These are our potential “seed words”.

▶ We enumerate all short factors of hω(0), and check to see if
any of them is an instance of an ancestor of t.
▶ If so, then hω(0) contains an additive square.

▶ If not, then hω(0) is additive square-free!

Description of the Algorithm

Suppose that h satisfies these four conditions.

▶ Consider the template t = [ε, ε, ε, 0⃗].
▶ An instance of t is an additive square.

▶ We enumerate all ancestors of t.
▶ This set is finite!

▶ If hω(0) contains an additive square, then it must contain a
short instance of one of these ancestors.
▶ These are our potential “seed words”.

▶ We enumerate all short factors of hω(0), and check to see if
any of them is an instance of an ancestor of t.
▶ If so, then hω(0) contains an additive square.
▶ If not, then hω(0) is additive square-free!

Outlook

Open Problem: Is there an infinite additive square-free word over
some finite subset of Z?

Open Problem: Is there an infinite additive cube-free rich word
over some finite subset of Z?

Open Problem: Is there an infinite additive 4-power-free rich word
over every subset of Z of size 3?

Outlook

Open Problem: Is there an infinite additive square-free word over
some finite subset of Z?

Open Problem: Is there an infinite additive cube-free rich word
over some finite subset of Z?

Open Problem: Is there an infinite additive 4-power-free rich word
over every subset of Z of size 3?

Outlook

Open Problem: Is there an infinite additive square-free word over
some finite subset of Z?

Open Problem: Is there an infinite additive cube-free rich word
over some finite subset of Z?

Open Problem: Is there an infinite additive 4-power-free rich word
over every subset of Z of size 3?

Outlook

Open Problem: Is there an infinite additive square-free word over
some finite subset of Z?

Open Problem: Is there an infinite additive cube-free rich word
over some finite subset of Z?

Open Problem: Is there an infinite additive 4-power-free rich word
over every subset of Z of size 3?

Thank you!

	Introduction
	Our constructions
	The template method

