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Three types of powers

▶ An (ordinary) square is a nonempty word of the form xx .
▶ E.g., murmur, hotshots

▶ An abelian square is a nonempty word of the form xx ′, where
x ′ is an anagram of x .
▶ E.g., reappear, intestines

▶ An additive square is a nonempty word of the form xx ′, where
x and x ′ have the same length and the same sum.
▶ E.g., 0312, 210201

▶ Ordinary, abelian, and additive k-powers are defined
analogously for k ≥ 2.
▶ E.g., 011 101 110 011 is an abelian/additive 4-power.
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Avoiding abelian powers

Theorem (Dekking 1979): Abelian 4-powers are avoidable over
{0, 1}.

Theorem (Dekking 1979): Abelian cubes are avoidable over
{0, 1, 2}.

Theorem (Keränen 1992): Abelian squares are avoidable over
{0, 1, 2, 3}.

▶ All three alphabet sizes are smallest possible.



Avoiding abelian powers

Theorem (Dekking 1979): Abelian 4-powers are avoidable over
{0, 1}.

Theorem (Dekking 1979): Abelian cubes are avoidable over
{0, 1, 2}.

Theorem (Keränen 1992): Abelian squares are avoidable over
{0, 1, 2, 3}.

▶ All three alphabet sizes are smallest possible.



Avoiding abelian powers

Theorem (Dekking 1979): Abelian 4-powers are avoidable over
{0, 1}.

Theorem (Dekking 1979): Abelian cubes are avoidable over
{0, 1, 2}.

Theorem (Keränen 1992): Abelian squares are avoidable over
{0, 1, 2, 3}.

▶ All three alphabet sizes are smallest possible.



Avoiding abelian powers

Theorem (Dekking 1979): Abelian 4-powers are avoidable over
{0, 1}.

Theorem (Dekking 1979): Abelian cubes are avoidable over
{0, 1, 2}.

Theorem (Keränen 1992): Abelian squares are avoidable over
{0, 1, 2, 3}.

▶ All three alphabet sizes are smallest possible.



Avoiding abelian powers

Theorem (Dekking 1979): Abelian 4-powers are avoidable over
{0, 1}.

Theorem (Dekking 1979): Abelian cubes are avoidable over
{0, 1, 2}.

Theorem (Keränen 1992): Abelian squares are avoidable over
{0, 1, 2, 3}.

▶ All three alphabet sizes are smallest possible.



Avoiding additive powers

Theorem (Dekking 1979): Additive 4-powers are avoidable over
{0, 1}.

Theorem (Cassaigne, Currie, Schaeffer, and Shallit 2014): Additive
cubes are avoidable over {0, 1, 3, 4}.

Theorem (Rao 2015): Additive cubes are avoidable over several
subsets of Z of size 3.

Open Problem: Are additive squares avoidable over some finite
subset of Z?
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Rich words

We consider similar problems for rich words.

▶ A palindrome is a finite word that reads the same forwards
and backwards.
▶ Examples: 01010, kayak, saippuakivikauppias

Theorem (Droubay, Justin, and Pirillo 2001): Every word of length
n contains at most n distinct nonempty palindromes.

▶ A word of length n is called rich if it contains n distinct
nonempty palindromes.
▶ The word 01101 contains the palindromes

▶ The word 0120 contains only the palindromes 0, 1, and 2, so
it is not rich.

▶ An infinite word is called rich if all of its finite factors are rich.
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Avoiding abelian and additive powers in rich words

Theorem (Andrade and Mol 2025+): There is an infinite additive
5-power-free rich word over {0, 1}.

Theorem (Andrade and Mol 2025+): There is an infinite additive
4-power-free rich word over {0, 1, 2}.

▶ The alphabet sizes are smallest possible, even for abelian
powers.

▶ But what about squares and cubes?

Theorem (Pelantová and Starosta 2013): Every infinite rich word
over a finite alphabet contains an ordinary square.

Open Problem: Is there an infinite additive (or abelian) cube-free
rich word over some finite subset of Z?
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Our constructions

Define β : {0, 1}∗ → {0, 1}∗ and γ : {0, 1, 2}∗ → {0, 1, 2}∗ by

β(0) = 00001 γ(0) = 2

β(1) = 01101 γ(1) = 101

γ(2) = 10001

We show that

▶ B = βω(0) is rich and additive 5-power-free, and

▶ Γ = γω(1) is rich and additive 4-power-free.
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Proving richness

We make use of the following characterization.

Theorem (Droubay, Justin, and Pirillo 2001): An infinite word w is
rich if and only if every finite prefix of w has a unioccurrent
palindromic suffix.

For B, we use Walnut.

morphism b "0->00001 1->01101":

promote B b:

def FactorEq "?msd_5 Ak (k<n)=>(B[i+k]=B[j+k])":

def Occurs "?msd_5 (m<= n) & ( Ek (k+m<=n) & $FactorEq(i,j+k,m))":

def Palindrome "?msd_5 Aj,k ((k<n) & (j+k+1=n)) => (B[i+k]=B[i+j])":

def BisRich "?msd_5 An Ej $Palindrome(j,n-j) & ~$Occurs(j,0,n-j,n-1)":

For Γ, we use an inductive proof with several cases.
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Proving additive power-freeness

We use a recent variation of the template method.

Theorem (Currie and Rampersad 2012): There is an algorithm
which decides, under certain conditions on h, whether hω(0)
contains abelian k-powers.

Theorem (Rao and Rosenfeld 2018): Less restrictive conditions,
can be used for both abelian and additive powers.

Theorem (Currie, Mol, Rampersad, and Shallit 2024): More
restrictive conditions, and works only for additive powers, but
(probably) simpler and more efficient.

▶ Jonathan Andrade implemented this algorithm in general, and
then applied it to B = βω(0) and Γ = γω(1).
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Theorem (Currie, Mol, Rampersad, and Shallit 2024): There is an
algorithm which decides, under certain conditions on h, whether
hω(0) contains additive k-powers.

The essential ideas:

▶ Any long additive power in hω(0) must have arisen by
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▶ These seed words cannot look “too different” from additive
powers – there are only finitely many possible templates for
these seed words.

▶ We can enumerate all short words in hω(0), and check to see
if they match any of the templates.
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▶ How do we describe the “seed words” for additive k-powers?
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Templates

▶ Let σ⃗(w) denote the vector

[
length of w
sum of w

]
.

▶ A template is a 4-tuple

[a0, a1, a2, d⃗ ]

letters or ε vector in Z2

▶ A word w is an instance of this template if

w = a0w0a1w1a2 and σ⃗(w1)− σ⃗(w0) = d⃗ .

▶ An instance of [ε, ε, ε, 0⃗] is an additive square.

▶ An instance of [0, 1, 0, [1, 3]T ] is “not too far” from an
additive square.
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Parents

Every long-enough instance of a template must have come from an
instance of another template – a parent.

difference D⃗

A0 W0 A1 W1 A2

h

h(A0) h(W0) h(A1) h(W1) h(A2)

a0 w0 a1 w1 a2

difference d⃗



The First Two Conditions

▶ Condition 1: The morphism h is affine, i.e., for all letters x ,
▶ the length of h(x) is given by a+ bx for some a, b ∈ Z, and
▶ the sum of h(x) is given by c + dx for some c , d ∈ Z.

▶ Record this in the matrix Mh =

[
a b
c d

]
.

▶ E.g., β(0) = 00001 and β(1) = 01101, so Mβ =

[
5 0
1 2

]
.

▶ Then σ⃗(h(W )) = Mhσ⃗(W ).

▶ Condition 2: Mh is invertible, so that

σ⃗(W ) = M−1
h σ⃗(h(W )).
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Finding Parents

These first two conditions allow us to find all possible parents of a
given template.
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Finding Parents

These first two conditions allow us to find all possible parents of a
given template.

difference d⃗

a0 w0 a1 w1 a2

h(A0) h(W0) h(A1) h(W1) h(A2)

h−1

A0 W0 A1 W1 A2

difference D⃗ determined by d⃗ and the choice/position of the h(Ai )’s



The Third Condition

▶ Now that we can compute the parents of a given template t,
we want to compute the set of all ancestors of t (parents,
grandparents, great-grandparents, etc.)

▶ How do we know that this set is finite?

▶ We need a condition which guarantees that for any ancestor
T = [A0,A1,A2, D⃗], the difference D⃗ is not too large.

▶ Condition 3: All eigenvalues of Mh are larger than 1 in
absolute value.
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The Last Condition

▶ Condition 4: h is strictly growing.

▶ So taking preimages makes words shorter!

▶ Thus, if hω(0) contains an instance of a template t, then
hω(0) contains a short instance of some ancestor of t.
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Description of the Algorithm

Suppose that h satisfies these four conditions.

▶ Consider the template t = [ε, ε, ε, 0⃗].
▶ An instance of t is an additive square.

▶ We enumerate all ancestors of t.
▶ This set is finite!

▶ If hω(0) contains an additive square, then it must contain a
short instance of one of these ancestors.
▶ These are our potential “seed words”.

▶ We enumerate all short factors of hω(0), and check to see if
any of them is an instance of an ancestor of t.
▶ If so, then hω(0) contains an additive square.
▶ If not, then hω(0) is additive square-free!
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Outlook

Open Problem: Is there an infinite additive square-free word over
some finite subset of Z?

Open Problem: Is there an infinite additive cube-free rich word
over some finite subset of Z?

Open Problem: Is there an infinite additive 4-power-free rich word
over every subset of Z of size 3?
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Thank you!
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