Base positions

Nested periodic structure

https://arxiv.org/abs/2410.12714

Palindromic length of infinite aperiodic words

Josef Rukavicka

Department of Mathematics, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague

February 2025

Preliminaries

Base positions

Nested periodic structure

Finite and Infinite Words

 Σ - alphabet with $|\Sigma| < \infty$ finite.

- Σ alphabet with $|\Sigma| < \infty$ finite.
- A *finite word* of length *n* is a sequence $u_1u_2 \cdots u_n$ with $u_i \in \Sigma$.

- Σ alphabet with $|\Sigma| < \infty$ finite.
- A *finite word* of length *n* is a sequence $u_1u_2 \cdots u_n$ with $u_i \in \Sigma$.
- An *infinite word* is a sequence $u_1u_2\cdots$ with $u_i \in \Sigma$.

 Σ - *alphabet* with $|\Sigma| < \infty$ finite.

A *finite word* of length *n* is a sequence $u_1u_2 \cdots u_n$ with $u_i \in \Sigma$.

An *infinite word* is a sequence $u_1u_2\cdots$ with $u_i \in \Sigma$.

Let $u = u_1 u_2 \cdots u_n$ be a nonempty word of length n, where u_i are letters and $i \in \{1, 2, \dots, n\}$. We say that u is a *palindrome* if $u_1 u_2 \cdots u_n = u_n u_{n-1} \cdots u_1$.

 Σ - *alphabet* with $|\Sigma| < \infty$ finite.

A *finite word* of length *n* is a sequence $u_1u_2 \cdots u_n$ with $u_i \in \Sigma$.

An *infinite word* is a sequence $u_1u_2\cdots$ with $u_i \in \Sigma$.

Let $u = u_1 u_2 \cdots u_n$ be a nonempty word of length n, where u_i are letters and $i \in \{1, 2, \dots, n\}$. We say that u is a *palindrome* if $u_1 u_2 \cdots u_n = u_n u_{n-1} \cdots u_1$.

For example, the words "noon" and "level" are palindromes.

Example: Palindromic length of 001001 is 2.

Example: Palindromic length of 001001 is 2.

Conjecture

If x is an infinite word and k is an integer such that $PL(u) \le k$ for every factor u of x then x is ultimately periodic.

Example: Palindromic length of 001001 is 2.

Conjecture

If x is an infinite word and k is an integer such that $PL(u) \le k$ for every factor u of x then x is ultimately periodic.

[Frid, Puzynina, Zamboni: *On palindromic factorization of words*, Adv. Appl. Math., 2013.]

We say that a palindrome $p \in \Sigma^+$ is *non-periodic* if order(p) < 2.

We say that a palindrome $p \in \Sigma^+$ is *non-periodic* if order(p) < 2.

Given a word $t \in \Sigma^+$, let NPP(t) denote the set of all nonempty non-periodic palindromic prefixes of t.

We say that a palindrome $p \in \Sigma^+$ is *non-periodic* if order(p) < 2.

Given a word $t \in \Sigma^+$, let NPP(t) denote the set of all nonempty non-periodic palindromic prefixes of t.

We say that a word $t \in \Sigma^+$ is *ordinary* if for every factor u of t we have that $|NPP(t)| \ge |NPP(u)|$.

Let *z* be an (ordinary) factor with NPP(*z*) = *h*. Let $\{z_1, z_2, \ldots, z_h\} = \text{NPP}(z), z = z_h, \text{ and } |z_1| < |z_2| < \cdots < |z_h|$. Let $\hat{z}_1, \hat{z}_2, \ldots, \hat{z}_{h-1} \in \text{Pal}^+$ be such that $z_{i+1} = z_i \hat{z}_i z_i$, where $i \in \{1, 2, \ldots, h-1\}$.

Let *z* be an (ordinary) factor with NPP(*z*) = *h*. Let $\{z_1, z_2, \ldots, z_h\} = \text{NPP}(z), z = z_h, \text{ and } |z_1| < |z_2| < \cdots < |z_h|$. Let $\hat{z}_1, \hat{z}_2, \ldots, \hat{z}_{h-1} \in \text{Pal}^+$ be such that $z_{i+1} = z_i \hat{z}_i z_i$, where $i \in \{1, 2, \ldots, h-1\}$.

Definition

Let
$$B_1 = \{(1, 1)\}$$
. Given $j \in \mathbb{N}(2, h)$, let
 $\widehat{B}_j = \{(g, \overline{e}) \mid (g, e) \in B_{j-1} \text{ and } \overline{e} = e + |z_{j-1}\widehat{z}_{j-1}|\}$ and
 $B_j = \widehat{B}_j \cup B_{j-1} \cup \{(j, 1)\}.$
Let $B = B_h$ and let $\widetilde{B} = \{e \mid (g, e) \in B\}.$

If $(g, e) \in B$ then we say that *e* is a *base position* of z_g .

Figure: Base positions

Let $\mathbb{N}(n_1, n_2) = \{n \in \mathbb{N}_0 \mid n_1 \leq n \leq n_2\}.$

Let
$$\mathbb{N}(n_1, n_2) = \{n \in \mathbb{N}_0 \mid n_1 \le n \le n_2\}.$$

$$\begin{aligned} \mathsf{UC} &= \{ S \subseteq \mathbb{N}(1, |z|) \mid \text{ if } \mu_1 \leq \mu_2 \in \mathbb{N}(1, |z|) \text{ and} \\ \xi \in \mathsf{Period}(z[\mu_1, \mu_2]) \\ \text{then there is } E \subseteq \mathbb{N}(\mu_1, \mu_2) \text{ such that } |E| \leq c_2 \\ \text{and } S \cap \bigcup_{\delta \in E} \mathbb{N}(\delta, \delta + \xi - 1) = S \cap \mathbb{N}(\mu_1, \mu_2) \}. \end{aligned}$$

Let
$$\mathbb{N}(n_1, n_2) = \{n \in \mathbb{N}_0 \mid n_1 \le n \le n_2\}.$$

$$\begin{aligned} \mathsf{UC} &= \{ S \subseteq \mathbb{N}(1, |z|) \mid \text{ if } \mu_1 \leq \mu_2 \in \mathbb{N}(1, |z|) \text{ and} \\ \xi \in \mathsf{Period}(z[\mu_1, \mu_2]) \\ \text{then there is } E \subseteq \mathbb{N}(\mu_1, \mu_2) \text{ such that } |E| \leq c_2 \\ \text{and } S \cap \bigcup_{\delta \in E} \mathbb{N}(\delta, \delta + \xi - 1) = S \cap \mathbb{N}(\mu_1, \mu_2) \}. \end{aligned}$$

Proposition

We have that $\widetilde{B} \in UC$.

Suppose $n_1 < n_2 \in \mathbb{N}(1, |z|)$. Let

- $B(n_1, n_2) = \{(g, e) \in B \mid n_1 \le e \le e + |z_g| 1 \le n_2\},\$
- If $B(n_1, n_2) \neq \emptyset$ then let height $(n_1, n_2) = \max\{g \mid (g, e) \in B(n_1, n_2)\}$ and width $(n_1, n_2) = \max\{e_1 + |z_{g_1}| - e_2 \mid (g_1, e_1), (g_2, e_2) \in B(n_1, n_2)\}.$
- If $B(n_1, n_2) = \emptyset$ then let width $(n_1, n_2) = \text{height}(n_1, n_2) = 0$.

We call height (n_1, n_2) and width (n_1, n_2) the *height* and the *width* of (n_1, n_2) , respectively.

Figure: Height of (n_1, n_2)

Given an infinite word $x_0 \in \Sigma_0^\infty$, let $pad(x_0) = x \in \Sigma^\infty$ be such that x[2i-1] = b and $x[2i] = x_0[i]$, where $i \in \mathbb{N}_1$.

Given an infinite word $x_0 \in \Sigma_0^\infty$, let $pad(x_0) = x \in \Sigma^\infty$ be such that x[2i-1] = b and $x[2i] = x_0[i]$, where $i \in \mathbb{N}_1$.

Given a finite word $u \in \Sigma_0^+$, let $pad(u) = u_1 b u_2 b \dots b u_n \in \Sigma^+$, where $u = u_1 u_2 \dots u_n$, n = |u|, and $u_1, u_2, \dots, u_n \in \Sigma_0$.

Given an infinite word $x_0 \in \Sigma_0^\infty$, let $pad(x_0) = x \in \Sigma^\infty$ be such that x[2i-1] = b and $x[2i] = x_0[i]$, where $i \in \mathbb{N}_1$.

Given a finite word $u \in \Sigma_0^+$, let $pad(u) = u_1 b u_2 b \dots b u_n \in \Sigma^+$, where $u = u_1 u_2 \dots u_n$, n = |u|, and $u_1, u_2, \dots, u_n \in \Sigma_0$.

We call $pad(x_0)$ and pad(u) padded words. Note that every second letter in padded words is the letter *b*.

For $u \in \text{pad}(\Sigma_0^+)$ we define the *padded palindromic length* PPL(u) to be the minimal number *k* such that $u = p_1 b p_2 b \cdots b p_k$, where $p_1, p_2, \ldots, p_k \in \Sigma^+$ are palindromes.

For $u \in pad(\Sigma_0^+)$ we define the *padded palindromic length* PPL(u) to be the minimal number k such that $u = p_1 b p_2 b \cdots b p_k$, where $p_1, p_2, \ldots, p_k \in \Sigma^+$ are palindromes.

Given $x_0 \in \Sigma_0^\infty$, let

 $\max PL(x_0) = \max \{PL(u) \mid u \in \Sigma_0^+ \text{ is a factor of } x_0\} \text{ and } \max PPL(x_0) = \max \{PPL(pad(u)) \mid u \in \Sigma_0^+ \text{ is a factor of } x_0\}.$

For $u \in pad(\Sigma_0^+)$ we define the *padded palindromic length* PPL(u) to be the minimal number k such that $u = p_1 b p_2 b \cdots b p_k$, where $p_1, p_2, \ldots, p_k \in \Sigma^+$ are palindromes.

Given $x_0 \in \Sigma_0^\infty$, let

 $\max PL(x_0) = \max \{PL(u) \mid u \in \Sigma_0^+ \text{ is a factor of } x_0\} \text{ and } \max PPL(x_0) = \max \{PPL(pad(u)) \mid u \in \Sigma_0^+ \text{ is a factor of } x_0\}.$

Obviously $u \in \Sigma_0^+$ is a palindrome if and only if $pad(u) \in \Sigma^+$ is a palindrome.

Lemma

Suppose $x_0 \in \Sigma^{\infty}$. We have that $\max PL(x_0) < \infty$ if and only if $\max PPL(x_0) < \infty$.

Base positions

Nested periodic structure

Suppose $w_0 \in \Sigma_0^\infty$ to be an infinite aperiodic word such that $\max PL(w_0) < \infty$ and $\max PPL(w_0) = k < \infty$. Let $w = pad(w_0) \in \Sigma^\infty$.

Suppose $w_0 \in \Sigma_0^{\infty}$ to be an infinite aperiodic word such that $\max PL(w_0) < \infty$ and $\max PPL(w_0) = k < \infty$. Let $w = pad(w_0) \in \Sigma^{\infty}$.

Let $c_1 = 5$, $c_2 = 8$, and $c_3 = 10$ be constants. Given $h, m \in \mathbb{N}_1$, let $\lambda(h, m) = c_2^m (2c_1c_3h)^{m^2} \in \mathbb{N}_1$ be a function.

Suppose $w_0 \in \Sigma_0^{\infty}$ to be an infinite aperiodic word such that $\max PL(w_0) < \infty$ and $\max PPL(w_0) = k < \infty$. Let $w = pad(w_0) \in \Sigma^{\infty}$.

Let $c_1 = 5$, $c_2 = 8$, and $c_3 = 10$ be constants. Given $h, m \in \mathbb{N}_1$, let $\lambda(h, m) = c_2^m (2c_1c_3h)^{m^2} \in \mathbb{N}_1$ be a function.

Let $h_0 \in \mathbb{N}_1$ be such that if $h \ge h_0$ then

$$2^{h-1} > k(c_3h)^m \lambda(h,m) \text{ for all } m \in \mathbb{N}(1,k). \tag{1}$$

Obviously such h_0 exists, since $\lim_{h\to\infty} \frac{k(c_3h)^k \lambda(h,k)}{2^h} = 0$.

Suppose $w_0 \in \Sigma_0^{\infty}$ to be an infinite aperiodic word such that $\max PL(w_0) < \infty$ and $\max PPL(w_0) = k < \infty$. Let $w = pad(w_0) \in \Sigma^{\infty}$.

Let $c_1 = 5$, $c_2 = 8$, and $c_3 = 10$ be constants. Given $h, m \in \mathbb{N}_1$, let $\lambda(h, m) = c_2^m (2c_1c_3h)^{m^2} \in \mathbb{N}_1$ be a function.

Let $h_0 \in \mathbb{N}_1$ be such that if $h \ge h_0$ then

$$2^{h-1} > k(c_3h)^m \lambda(h,m) \text{ for all } m \in \mathbb{N}(1,k).$$
(1)

Obviously such h_0 exists, since $\lim_{h\to\infty} \frac{k(c_3h)^k \lambda(h,k)}{2^h} = 0$.

We show that *w* contains an ordinary palindromic factor *z* such that *b* is a prefix of *z* and $|NPP(z)| \ge h_0$

Given $m \in \mathbb{N}_1$, let

$$V(m) = \{n \in \mathbb{N}(1, |z|) \mid b = z[n] \text{ and } PPL(z[2, n-1]) = m\}.$$

Given $m \in \mathbb{N}_1$, let

$$V(m) = \{n \in \mathbb{N}(1, |z|) \mid b = z[n] \text{ and } PPL(z[2, n-1]) = m\}.$$

Let $h = |\operatorname{NPP}(z)|$. Given $m \in \mathbb{N}_0$, let $\theta(m) = (2c_1c_3h)^m \in \mathbb{N}_1$ be a function.

Given $m \in \mathbb{N}_1$, let

$$V(m) = \{n \in \mathbb{N}(1, |z|) \mid b = z[n] \text{ and } PPL(z[2, n-1]) = m\}.$$

Let $h = |\operatorname{NPP}(z)|$. Given $m \in \mathbb{N}_0$, let $\theta(m) = (2c_1c_3h)^m \in \mathbb{N}_1$ be a function.

Let $D \subseteq \mathbb{N}_1, \xi \in \mathbb{N}_1$, and $\overline{D} \subseteq D$. If $\overline{D} = \emptyset$ or max $(\overline{D}) - \min(\overline{D}) + 1 \leq \xi$ then we call \overline{D} a ξ -cut of D.

 $\widetilde{\mathsf{NPS}} = \{(D,\xi) \mid D \subseteq \mathbb{N}(1,|z|) \text{ and } \xi \in \mathbb{N}_1 \text{ and } D \neq \emptyset \text{ and } D = \mathsf{Spread}(D,\xi) \cap \mathsf{Close}(D) \text{ and } \xi \in \mathsf{Period}(z[\mathsf{min}(D),\mathsf{max}(D)])\}.$

 $\widetilde{\mathsf{NPS}} = \{(D,\xi) \mid D \subseteq \mathbb{N}(1,|z|) \text{ and } \xi \in \mathbb{N}_1 \text{ and } D \neq \emptyset \text{ and } D = \mathsf{Spread}(D,\xi) \cap \mathsf{Close}(D) \text{ and } \xi \in \mathsf{Period}(z[\mathsf{min}(D),\mathsf{max}(D)])\}.$

Given
$$(D,\xi) \in \widetilde{\text{NPS}}$$
, let $\varphi(D,\xi) = D$. Given $M \subseteq \widetilde{\text{NPS}}$, let $\varphi(M) = \{\emptyset\} \cup \{D \mid (D,\xi) \in M\}$ and let $\widetilde{\varphi}(M) = \bigcup_{D \in \varphi(M)} D$.

 $\widetilde{\mathsf{NPS}} = \{(D,\xi) \mid D \subseteq \mathbb{N}(1,|z|) \text{ and } \xi \in \mathbb{N}_1 \text{ and } D \neq \emptyset \text{ and } D = \mathsf{Spread}(D,\xi) \cap \mathsf{Close}(D) \text{ and } \xi \in \mathsf{Period}(z[\mathsf{min}(D),\mathsf{max}(D)])\}.$

Given
$$(D,\xi) \in \widetilde{\text{NPS}}$$
, let $\varphi(D,\xi) = D$. Given $M \subseteq \widetilde{\text{NPS}}$, let $\varphi(M) = \{\emptyset\} \cup \{D \mid (D,\xi) \in M\}$ and let $\widetilde{\varphi}(M) = \bigcup_{D \in \varphi(M)} D$.

Given $(D,\xi) \in \widetilde{\text{NPS}}$, let $\text{Cut}(D,\xi) = \{\overline{D} \subseteq D \mid \overline{D} \text{ is a } \xi \text{-cut of } D\}$.

We define the nested periodic structure:

Definition

Let
$$NPS(0) = \{(D, \xi) \in \widetilde{NPS} \mid |D| = 1\}$$
. Given $m \in \mathbb{N}_1$, let

$$\operatorname{NPS}(m) = \{(D,\xi) \in \widetilde{\operatorname{NPS}} \mid \text{ if } \overline{D} \in \operatorname{Cut}(D,\xi) \text{ then there is} \ M \subseteq \operatorname{NPS}(m-1) \ ext{such that } |M| \leq \theta(m) ext{ and } \overline{D} \subseteq \widetilde{\varphi}(M) \subseteq \operatorname{Close}(\overline{D}) \}.$$

We define the nested periodic structure:

Definition Let NPS(0) = { $(D, \xi) \in \widetilde{NPS} | |D| = 1$ }. Given $m \in \mathbb{N}_1$, let NPS(m) = { $(D, \xi) \in \widetilde{NPS} |$ if $\overline{D} \in Cut(D, \xi)$ then there is $M \subseteq NPS(m-1)$ such that $|M| \le \theta(m)$ and $\overline{D} \subseteq \widetilde{\varphi}(M) \subseteq Close(\overline{D})$ }.

We call $(D, \xi) \in NPS(m)$ a nested periodic structure (NPS) of degree *m* and we call *D* an *NPS* cluster of degree *m*.

Base positions

Given $m \in \mathbb{N}_1$, we show that there is $M \subseteq NPS(m)$ such that

$$V(m) \subseteq \bigcup_{(D,\xi)\in M} D \text{ and } |M| \le (c_3 h)^m.$$
 (2)

Figure: Palindromic extensions

Thank you