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Avoiding squares

Words A, B and C are called factors of a word W = ABC.
Additionally, A is called a prefix, and C — a suffix of W .

couscous hotshots

The word W is called square-free, if it does not contain any square
factor.

mathematics filology

• Squares are unavoidable in binary words of length greater than 3.
• There exist arbitrarily long square-free ternary words. (Thue,

1906)
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Tangrams

Tangram is a word in which each letter appears an even number of
times.

The word tangram is not a tangram.

Some English tangrams:

anna appall bilabial bonbon
boob bulbul cancan coco
couscous dada deed dodo
gaga hallah horseshoer mama
murmur noon papa peep
poop reappear senescence succus
tartar tattletale teammate toot
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Is it possible to avoid tangrams in
long words?

Let A = {a1, a2, . . . , ar} be a fixed alphabet.

Every word of length 2r over A contains a tangram factor.

• Let us consider a word W = w1w2 · · · w2r .

• For every prefix Pi with length i (0 ⩽ i ⩽ 2r) of the word W we
assign a binary vector −→vi = [vi(1), vi(2), . . . , vi(r)] such that
vi(j) determines the number of occurrences modulo 2 of the
letter aj w Pi.

• The number of vectors is 2r + 1, the number of different vectors
is at most 2r, so there exists a pair of prefixes Pa, Pb
(0 ⩽ a < b ⩽ 2r) such that −→va = −→vb

, so the factor

wawa+1 · · · wb−1

is a tangram.
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Cutting number

Every tangram can be decomposed into factors that can be used to
produce two identical words.

If the given tangram is a square, the decomposition is straightforward:

coco

co|co

↙ ↘

co co
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Cutting number µ(T ) of non-empty tangram T is the least number
k ⩾ 1 such that

T = F1F2 · · ·Fk+1,

where Fi are non-empty words such that

Fσ(1) · · ·Fσ(j) = Fσ(j+1) · · ·Fσ(k+1)

for some permutation σ of {1, 2, . . . , k + 1} and for some 1 ⩽ j ⩽ k.

It is convenient to state that µ(W ) =∞ if W is not a tangram.
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Let |W | = n be a length of the word W = w1w2 · · · wn.

Let us notice that for every non-empty tangram T , we have

1 ⩽ µ(T ) ⩽ |T | − 1.

Non-empty word W is a square if and only if µ(W ) = 1.
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deed

de︸︷︷︸
F1

| e︸︷︷︸
F2

| d︸︷︷︸
F3

F1 = F3F2 de = de

µ(deed) =

2

tattletale

tat︸︷︷︸
F1

| tle︸︷︷︸
F2

| ta︸︷︷︸
F3

| le︸︷︷︸
F4

F1F4 = F3F2 tatle = tatle

µ(tattletale) =

3

8 / 28



Words
Avoiding
Tangrams

Bartłomiej
Pawlik

Avoiding
tangrams

Abelian case

Cutting shuffle
squares

deed

de︸︷︷︸
F1

| e︸︷︷︸
F2

| d︸︷︷︸
F3

F1 = F3F2 de = de

µ(deed) =

2

tattletale

tat︸︷︷︸
F1

| tle︸︷︷︸
F2

| ta︸︷︷︸
F3

| le︸︷︷︸
F4

F1F4 = F3F2 tatle = tatle

µ(tattletale) =

3

8 / 28



Words
Avoiding
Tangrams

Bartłomiej
Pawlik

Avoiding
tangrams

Abelian case

Cutting shuffle
squares

deed

de︸︷︷︸
F1

| e︸︷︷︸
F2

| d︸︷︷︸
F3

F1 = F3F2 de = de

µ(deed) = 2

tattletale

tat︸︷︷︸
F1

| tle︸︷︷︸
F2

| ta︸︷︷︸
F3

| le︸︷︷︸
F4

F1F4 = F3F2 tatle = tatle

µ(tattletale) =

3

8 / 28



Words
Avoiding
Tangrams

Bartłomiej
Pawlik

Avoiding
tangrams

Abelian case

Cutting shuffle
squares

deed

de︸︷︷︸
F1

| e︸︷︷︸
F2

| d︸︷︷︸
F3

F1 = F3F2 de = de

µ(deed) = 2

tattletale

tat︸︷︷︸
F1

| tle︸︷︷︸
F2

| ta︸︷︷︸
F3

| le︸︷︷︸
F4

F1F4 = F3F2 tatle = tatle

µ(tattletale) =

3

8 / 28



Words
Avoiding
Tangrams

Bartłomiej
Pawlik

Avoiding
tangrams

Abelian case

Cutting shuffle
squares

deed

de︸︷︷︸
F1

| e︸︷︷︸
F2

| d︸︷︷︸
F3

F1 = F3F2 de = de

µ(deed) = 2

tattletale

tat︸︷︷︸
F1

| tle︸︷︷︸
F2

| ta︸︷︷︸
F3

| le︸︷︷︸
F4

F1F4 = F3F2 tatle = tatle

µ(tattletale) = 3

8 / 28



Words
Avoiding
Tangrams

Bartłomiej
Pawlik

Avoiding
tangrams

Abelian case

Cutting shuffle
squares

µ(T ) = 1 for:
bonbon, bulbul, cancan, coco, couscous, dada, dodo, gaga,
mama, murmur, papa, tartar

µ(T ) = 2 for:
anna, boob, deed, noon, peep, poop, toot

µ(T ) = 3 for
appall, bilabial, hallah, reappear, succus, tattletale,
teammate

µ(T ) = 4 for
horseshoer, senescence

9 / 28



Words
Avoiding
Tangrams

Bartłomiej
Pawlik

Avoiding
tangrams

Abelian case

Cutting shuffle
squares

The word W is k-tangram-free, if it does not contain a factor F such
that µ(F ) ⩽ k.

For example, the word W is 1-tangram-free if and only if it is
square-free.

The smallest size of the alphabet for which there exists an arbitrarily
long k-tangram-free word is called the tangram-free size and is
denoted by t(k).

• t(1) =

3

• t(2) =

3
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t(2) = 3
Let W be the infinite ternary square-free word.

Let us assume that T is a tangram factor of W such that µ(T ) = 2

,
so

T = F1F2F3

for some non-empty factors F1, F2, F3 that satisfy a certain equation.

We show that for every possible equation between segments, a square
appears in T , which gives us a contradiction with the fact that there
are no squares in the word W .

eq. T XX
F1 = F2F3 F2F3F2F3 F2F3F2F3
F1 = F3F2 F3F2F2F3 F2F2
F2 = F1F3 F1F1F3F3 F1F1, F3F3
F2 = F3F1 F1F3F1F3 F1F3F1F3
F3 = F1F2 F1F2F1F2 F1F2F1F2
F3 = F2F1 F1F2F2F1 F2F2

11 / 28
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• t(1) = t(2) = 3 (Thue’s theorem)
• t(3) = t(4) = 4 (P. Ochem, T. Pierron, 2025+)
• t(k) =?

Theorem 2 (Dębski, Grytczuk, Przybyło, P., Śleszyńska-Nowak, 2024)

For every k ⩾ 4 we have

t(k) ⩽ k + 1.
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t(k) ⩽ k + 1
In the word

reappear,

the distance between the factors app and pear is 2.

Theorem 1 is a consequence of the following facts:

Theorem (Dejean conjecture, 1972-2009)

For every r ⩾ 5 there is an arbitrarily long word D (the Dejean word)
over the alphabet of size r such that the distance between two
consecutive occurences of F in D is at least (r − 1)|F |.

Theorem (Dębski, Grytczuk, P., Przybyło, Śleszyńska-Nowak, 2024)

Every factor F in the Dejean word D over the alphabet of the size
r ⩾ 5 satisfies µ(F ) ⩾ r.

13 / 28
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t(k) = O(log2 k)

For every k > 20 478, we have a better estimate for t(k):

Theorem 1 (Dębski, Grytczuk, P., Przybyło, Śleszyńska-Nowak, 2024)

For every k ⩾ 3, we have t(k) ⩽ 1024 · ⌈log2 k + log2 log2 k + 1⌉.
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t(k) = Θ(log2 k)

Proposition (Dębski, Grytczuk, P., Przybyło, Śleszyńska-Nowak, 2024)

For every k ⩾ 1, we have t(k) ⩾ log2(k + 2).

• Suppose that t(k) < log2(k + 2).
• Thus, there exists an arbitrarily long word W over an alphabet

of size t(k) = q < log2(k + 2), such that all factors F of W
satisfy µ(F ) ⩾ k + 1.
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Question: Constant C

We already know that t(k) = Θ(log2 k). How close is actually t(k) to
the function log2 k?

Problem 1
Is there a constant C such that t(k) ⩽ log2 k + C?
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Abelian case

The word W is an abelian square if W = XX ′, where X ′ is
an anagram of X.

Every square is an abelian square.

intestines teammate signings

What is the minimum size of an alphabet such that there exists an
arbitrarily long word without abelian squares as factors?

Theorem (V. Keränen, 2005)

Abelian squares are avoidable on 4 letters.
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Goldberg-West Theorem - binary case (1985)

For every binary tangram B, there exist words X,V, Y such that
B = XV Y and the words V and XY have the same number of
occurrences of the symbols 0 and 1.

|

0

|

0

|

1|0|1|1|0|0|0

|

0

|

1

|

0|1|1|1|0|0|1

V XY
number of 0’s
number of 1’s
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The necklace splitting theorem

Suppose a necklace has k · n beads, chosen form t different colors,
and that there are k · ai beads of color i, 1 ⩽ i ⩽ t.

A k-splitting if the necklace is a partition of the necklace into k parts,
each consisting of a finite number of nonoverlapping intervals of
beads, whose union captures precisely ai beads of color i, 1 ⩽ i ⩽ t.

The size of the k-splitting is the number of cuts that form the
intervals of the splitting.

The necklace splitting theorem
Every necklace with k · ai beads of color i, 1 ⩽ i ⩽ t, has a k-splitting
of size at most (k− 1) · t. The number (k− 1) · t is the best possible.
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Avoiding anagrams

Let α(T ) be the least number of cuts needed to decompose given
tangram T into factors that can be made into a pair of anagrams.

α(abcacb) = 1 α(aabbcc) = 3

We have α(T ) ⩽ q.
(q - size of an alphabet, splitting necklace theorem)

Let k-anagram-free word be the word W such that every tangram
factor F of W satisfy α(F ) ⩾ k + 1.

Let a(k) denote the least size of an alphabet needed to construct
arbitrarily long k-anagram-free word.

a(1) = 4 (Theorem of Keränen).

Conjecture (N. Alon, J. Grytczuk, M. Michałek, M. Lasoń, 2009)

For every k ⩾ 1, we have a(k) ⩽ k + 3.
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Cutting shuffle squares
A shuffle square is a finite word that can be formed by self-shuffling
a word.

For instance, the word
acaece

is a shuffle square:
acaece → ace, ace.

Let n ⩾ 1. The word W = w1w2 · · · w2n is a shuffle square, if there
exist index sets

I = {i1, i2, . . . , in}, J = {j1, j2, . . . , jn}

such that
i1 < i2 < . . . < in, j1 < j2 < . . . < jn,

I ∩ J = ∅ and wir = wjr for 1 ⩽ r ⩽ n.
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Not every tangram is a shuffle square!

001100 011110

001100 011110

Binary tangrams with length 6:

000000 010010 111111 101101
000011 010100 111100 101011
000101 011000 111010 100111
000110 100001 111001 011110
001001 100010 110110 011101
001010 100100 110101 011011
001100 101000 110011 010111
010001 110000 101110 001111
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Avoiding shuffle squares

Size of an alphabet on which we can avoid shuffle-squares in
arbitrarily long words:

1040 2014 J. Currie
10 2015 M. Müller
7 2016 G. Guégan, P. Ochem
7 2016 J. Grytczuk, J. Kozik, B. Zaleski
6 2023 L. Bulteau, V. Jugé, S. Vialette

4? 5? 6?
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The words V and W are conjugate if there exist words A and B such
that V = AB and W = BA.

000110 → 001100 111001 → 001111
010001 → 000101 101110 → 111010
011000 → 110000 100111 → 001111
100001 → 000011 011110 → 111100
100010 → 000101 011101 → 111010
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Conjecture 1 (Grytczuk, P., Pleszczyński, 2023)

For every binary tangram W , there exists a shuffle square S such
that W and S are conjugate.

Results:

Proposition (Grytczuk, P., Pleszczyński, 2023)

For every binary tangram W with four 1’s there exists a shuffle
square S such that W and S are conjugate.

Theorem (Grytczuk, P., Pleszczyński, 2023)

Every binary tangram can be decomposed into words A and B such
that A and B are conjugate.

Counterexample:

000001001111000011101111
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square S such that W and S are conjugate.

Theorem (Grytczuk, P., Pleszczyński, 2023)

Every binary tangram can be decomposed into words A and B such
that A and B are conjugate.

Counterexample:

000001001111000011101111
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(False) Conjecture 1 may be stated as follows:

Conjecture 1
Every binary tangram can be cut into two words A and B such that
at least one of two rearrangements of A and B (AB or BA) forms
a shuffle square.

011000 → 011|000 → 000|011
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We state the following

Conjecture 2
Every binary tangram can be cut with two cuts into three words
A,B,C such that at least one of the six possible rearrangements of
A, B, and C forms a shuffle square.

000001001111000011101111

↓

0000|01|001111000011101111

↓

0000|001111000011101111|01

Conjecture 3
Every k-ary tangram can be cut with k cuts into (k + 1) words
A1, A2, . . . , Ak+1 such that at least one of the rearrangements of
A1, . . . , Ak+1 forms a shuffle square.
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Thank you!
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