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Problem setting

We fix

▶ an alphabet Σ

▶ a set of forbidden factors F ⊆ Σ+

We care about

▶ the language L of words avoiding F (that is, every w ∈ L
does not contain any factor from F)

We do not consider

▶ finite F since the language can be recognized by an
automaton (rich theory there).

In this talk, we mostly consider F containing

▶ squares

▶ the results of other sets are briefly mentioned

THREE (similar) ideas will be presented. (The first already known,
the two latter extend the first.)



Submultiplicativity (and an upper bound)

For any set F of forbidden factors, the number Cn of words
avoiding F with length n is submultiplicative:

Cℓ+m ≤ CℓCm.

By Fekete’s lemma, the limit of the growth rate exists and is:

α = lim
n→∞

n
√
Cn = inf n

√
Cn.

In other words, we have an upper bound on α: For every n,

α ≤ n
√

Cn.



A second way to upper bound the growth rate α

▶ Any finite subset of the forbidden factors induces an superset
of the language, which can be formulated by an automaton.

▶ The larger the subset, the closer the upper bound is, and it
converges to α.



How to get a lower bound α ≥??

Do almost the same as the upper bound:

▶ take a finite subset F ′ of forbidden factors

▶ consider the corresponding automaton

and

▶ (roughly) upper bound the number of words that are F ′-free
but not F-free by the corresponding number of F ′-free words.

▶ subtract these upper bounds to get a lower bound on the
number of F-free words.



Case study with F containing all squares1

▶ suppose the alphabet Σ has 4 letters
▶ let Cn denote the number of square-free words of length n

Suppose Cm ≥ 2Cm−1 for every m ≤ n, we prove

Cn+1 ≥ 2Cn.

If v is square-free and c ∈ Σ but vc is not square-free, then

vc = uyy

for some square yy , say of period p = |y |. Hence,

Cn+1 ≥ Cn|Σ| −
∑
p≥1

Cn+1−p

≥ 4Cn −
∑
p≥1

Cn

2p−1

= Cn

(
4− (20 + 2−1 + 2−2 + . . . )

)
≥ 2Cn.

1Rosenfeld’s example



Improve the bound?

In total, we want to conclude the existence of β so that

Cn+1 ≥ βCn

for every n.
We can integrate an automata (more context of suffix) into
counting to improve β, or simply increase |Σ| if we just want to
prove some proof of concept.
Note that Cn+1 ≥ βCn is different and stronger than

Cn ≥ βn.

We will see how they make a difference later.



A second way to obtain lower bounds on α, in terms of Cn

itself instead of an automata
▶ Submultiplicativity gives an upper bound on α in terms of Cn.

▶ What if we can prove a form of supermultiplicativity, say by
start with

Cℓ+m ≥ CℓCm −# invalid concatenations?

Pick a square-free word u of length ℓ and a square-free word v of
length m. If u · v is not square-free, then

u · v = xy ⊙ yz ,

where |xy | ≤ ℓ or |xy | > ℓ (depending on the relative positions of ·
to ⊙). Hence,

Cℓ+m ≥ CℓCm −
∑
p≥1

(
p−1∑
i=0

Cℓ−iCm−(p−i) +

p−1∑
i=1

Cℓ−iCm−(p−i)

)
.



A second way to obtain lower bounds on α ... (cont.)

Cℓ+m ≥ CℓCm −
∑
p≥1

(
p−1∑
i=0

Cℓ−iCm−(p−i) +

p−1∑
i=1

Cℓ−iCm−(p−i)

)
Remember

Cn+1 ≥ βCn,

which means

Cℓ−iCm−(p−i) ≤
Cℓ

βi

Cm

βp−i
= β−pCℓCm.

In total,

Cℓ+m ≥ CℓCm

1−
∑
p≥1

(
p−1∑
i=0

β−p +

p−1∑
i=1

β−p

) = f (β)CℓCm,

where
f (β) = 1−

∑
p≥1

(2p − 1)β−p.



A second way to obtain lower bounds on α... (cont.)

Cℓ+m ≥

1−
∑
p≥1

(2p − 1)β−p

CℓCm = f (β)CℓCm.

|Σ| large enough
=⇒ β large enough =⇒ f (β) > 0 =⇒ Cn supermultiplicative.

For |Σ| ≥ 5, let β =
|Σ|+

√
|Σ|2−4|Σ|
2 . Then Cn is supermultiplicative

with

Cℓ+m ≥
(
1− 1 + β

(β − 1)2

)
CℓCm.



A bit of summarization
▶ The first problem.

Concatenation of a square-free word and a letter: A square
may appear at the end only, with the conclusion

Cn+1 ≥ βCn.

▶ The second problem.
Concatenation of a square-free word and a square-free word:
A square may appear at the boundary between two words
only, with the conclusion

Cℓ+m ≥ constCℓCm.

Both conclusions are stronger than Cn ≥ βn (up to constants).
Note that the second problem uses the first conclusion. The second
conclusion is “qualitatively” stronger than the first conclusion.

▶ What is the third? Maybe a word gets concatenated with
itself? What is the conclusion? Which previous conclusions
does it use?



Circular words

▶ A circular word is a word written on a circle (instead of
writing from left to right).

▶ A word may be a square-free but may not be square-free when
being written on a circle, e.g., “abcdefa”, or more
complicated with a square of period 2 as in “abacdefb”.

▶ Such a square-free word w must be written as

w = ABC

with CA being a square. (Imagine ww = ABCABC contains a
smaller square, relatable to minimal squares.)

▶ Square-free circular words are included in square-free words,
but Shur conjectured both grow at the same exponential rate.



Same growth rate for square-free and circular square-free
words when |Σ| ≥ 5

▶ If w is square-free but not circular square free then w = ABC
with

C · A = y ⊙ y .

▶ Suppose |y | = i . We have ≤ 2i − 1 options for the position of
⊙ in CA. Taking these two, we can recover w from the word
obtained by deleting one of the two y from w .

▶ Let Rn be the number of circular square-free words:

Rn ≥ Cn −
∑
i≥1

2i−1∑
j=1

Cn−i .

▶ It follows from Cn+1 ≥ βCn that

Rn ≥ Cn

1−
∑
i≥1

(2i − 1)β−i

 .



Same growth rate for square-free and circular square-free
words when |Σ| ≥ 5 (cont.)

▶ When |Σ| large enough, we have β large enough, hence

Rn ≥ constCn.

▶ However, it is obvious that

Cn ≥ Rn,

which means both Cn,Rn grow at the same rate.
This partially solves Schur’s conjecture, which asks for every
alphabet size.

▶ Remark: A suffix and a prefix of the same word are
concatenated (instead of different words). This suggests a
relatable observation: The two seem to be independent
enough in long words.



Some results for the general set of forbidden factors F
(first)2

Theorem
Suppose there exists β > 1 such that

|Σ| ≥ β +
∑
f ∈F

β1−|f |,

then for all n ≥ 0, the number Cn of F-free words of length n
satisfies

Cn+1 ≥ βCn.

2This is not exactly new.



Some results for the general set of forbidden factors F
(second)

Theorem
Suppose there exists β > 1 such that

|Σ| > β +
∑
f ∈F

β1−|f | ,

then for every ℓ,m,
Cℓ+m ≥ γCℓCm,

where
γ = 1−

∑
f ∈F

(|f | − 1)β−|f | > 0.



Some results for the general set of forbidden factors F
(third)

Theorem
Suppose there exists β > 1 such that Cn+1 ≥ βCn for all n ≥ 0,
and such that

γ = 1−
∑
f ∈F

(|f | − 1)β−|f | > 0,

then
Cn ≥ Rn ≥ γCn.



Some problems we have not solved (at least yet)

▶ How to manage the states of the automaton when
concatenating the boundaries of two words in the proof of the
supermultiplicativity? (A success would probably reduce
|Σ| ≥ 5 to something smaller!)

▶ How to explain the coincidence that the two conditions

β +
∑
f ∈F

β1−|f | ≤ |Σ|,

1−
∑
f ∈F

(|f | − 1)x−|f | > 0,

one is the derivative of the other? It is not so clear in the
construction of the proof.



Some problems we have not solved (cont.)

▶ The technique always fails when the number of forbidden
factors of length n in F grows at the same rate as Cn. For
example: the language of self-avoiding walks with F being
self-avoiding polygons.
Meanwhile, the problem of square-free words seems to be
relatively easy for the reason that the growth of Cn is the
square of the growth of F being the minimal squares (at least
for |Σ| ≥ 5).



Some cousin (but not quite related) problems

▶ Some number, say the number of F-free words, is naturally
submultiplicative. Proving the other direction of
supermultiplicativity is usually harder. For example: ∥An∥ for
a matrix A is obviously submultiplicative but proving some
form of supermultiplicativity may be tricky. No one knows yet
how to prove something similarly good for self-avoiding walks.

▶ Some numbers are however naturally supermultiplicative (also
with one-line proofs). Proving the submultiplicativity often
asks for something else.
For example, the submultiplicativity of the number of P(n) of
polyominoes on the square lattice can be proved using: For
every n, there exists some ℓ so that (n − 1)/4 ≤ ℓ ≤ n/2 and

P(n) ≤ n3P(ℓ)P(n − ℓ).



Some takeaways

▶ We can bound growth rates by both automaton and the
number of words Cn itself. Just subtract things appropriately.
They seem dual. Good bounds obtained by either ask for
computational power.

▶ Concatenating a letter to the end can be extended to
concatenating another word to the end, and also
concatenating the word itself to the end. They all work
similarly with different consequences.

THANK YOU!


