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Subwords

Let w be a finite word over the alphabet {0, 1}.

For n a non-negative integer, let sw (n) be the number of occurrences
of w as a scattered subword of the binary expansion of n.

Likewise, ew (n) counts the number of occurrences of w as a
consecutive subword of the binary expansion of n.

Example

Consider w = 10, n = 26. The binary expansion of 26 is 11010. Hence,
s10(26) = 5 and e10(26) = 2.

We call
(
(−1)sw (n)

)
n≥0

a subword-counting sequence and
(
(−1)ew (n)

)
n≥0

a factor-counting sequence.
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The goal

We wish to explore when w satisfies the following.

Property P

There exist ϵ > 0 such that

N∑
n=0

(−1)sw (n) = O
(
N1−ϵ

)
.

In the literature, similar questions have been explored for factor-counting
sequences since the 1980s. However, subword-counting sequences have
been relatively unexplored in this context. Work on subword counting
includes that of Narad Rampersad and Jean-Paul Allouche, among others.
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A recurrence relation

For n ≥ 1, it is easy to see that

sw0(2n) = sw0(n) + sw (n) and

sw0(2n + 1) = sw0(n).

Likewise,

sw1(2n) = sw1(n) and

sw1(2n + 1) = sw1(n) + sw (n).

Caution: Some of the above recurrences fail for n = 0.
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An alternate formulation

For a ∈ {0, 1} and n ≥ 2, we have

swa(n) =

{
swa

(⌊
n
2

⌋)
+ sw

(⌊
n
2

⌋)
n ≡ a (mod 2);

swa
(⌊

n
2

⌋)
n ̸≡ a (mod 2)

.

For subword-counting sequences, this yields

(−1)swa(n) =

{
(−1)swa(⌊

n
2⌋)+sw(⌊ n

2⌋) n ≡ a (mod 2);

(−1)swa(⌊
n
2⌋) n ̸≡ a (mod 2)

.

Remark: The analogous recurrence for factor-counting sequences does not
involve a product of multiple factor-counting sequences (unlike the above).
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w = 01

Consider w = 01, and let

SN =
N∑

n=0

(−1)sw (n).

We have

S2N+1 =
N∑

n=0

(−1)s 01(2n) +
N∑

n=0

(−1)s 01(2n+1)

= 2 +
N∑

n=1

(−1)s 01(n) +
N∑

n=1

(−1)s 01(n)+s 0(n)

= 2 + SN +
N∑

n=0

(−1)s 01(n)+s 0(n).

Call this new sum TN , so that S2N+1 = 2 + SN + TN .
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w = 01 (contd.)

S2N+1 = 2 + SN + TN . (1)

One can do a similar calculation for T2N+1 using

s 01(2n) + s 0(2n) ≡ s 01(n) + s 0(n) + 1 (mod 2) and

s 01(2n + 1) + s 0(2n + 1) ≡ s 01(n) (mod 2)

to obtain
T2N+1 = −2 + SN − TN . (2)
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w = 01 (contd.)

S2N+1 = 2 + SN + TN . (1)

T2N+1 = −2 + SN − TN . (2)

Now, (1) + (2) yields

S4N+3 − 2 = S2N+1 + T2N+1 = 2SN .

From here, it is not hard to see that SN = O(
√
N) (roughly, quadrupling

N leads to doubling SN). In particular, 01 has Property P.

By considering (1)− (2), one similarly obtains that TN = O(
√
N), i.e.,

N∑
n=0

(−1)s 01(n)+s 0(n) = O
(√

N
)
.
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The big picture for w = 01

For w = 01, we had to use the recurrence relation twice: the first
application was on SN , which produced a new summation TN , and the
second application was on TN .

The application on TN did not produce any new summations, so the
resulting system of the two equations

S2N+1 = 2 + SN + TN and

T2N+1 = −2 + SN − TN

in the two unknowns SN and TN was sufficient for our purposes.
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w = 011

The preceding example contains most of our main ideas, but the case of
w = 011 will make them more explicit.

Applying the recurrence relation on
∑N

n=0(−1)s 011(n) produces four
equations

S2N+1 = SN + TN , T2N+1 = 2 + TN + UN ,

U2N+1 = −UN + VN , and V2N+1 = −2 + VN − SN

in four unknowns

SN =
N∑

n=0

(−1)s 011(n), TN =
N∑

n=0

(−1)s 011(n)+s 01(n),

UN =
N∑

n=0

(−1)s 011(n)+s 0(n), and VN =
N∑

n=0

(−1)s 011(n)+s 01(n)+s 0(n).
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w = 011 (contd.)

Naturally, the best way to capture this information is using vectors and
matrices. Let

vN =
[
SN TN UN VN

]T
and

M =


1 1 0 0
0 1 1 0
0 0 −1 1
1 0 0 −1

 ,

so that
v2N+1 = MvN + c (3)

(for some constant c ∈ R4).
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w = 011 (contd.)

v2N+1 = MvN + c . (3)

(3) can be used to bound ∥vN∥, and hence SN , as follows. First, suppose
N = a0 · 20 + a1 · 21 + . . . (for ai ∈ {0, 1}). Hence,⌊

N

2k

⌋
= 2

⌊
N

2k+1

⌋
+ ak .

Let xk = v⌊ N

2k

⌋ and ∆k = xk − (Mxk+1 + c), so that ∥∆k∥ ≤ 2 (by (3)).

Hence,
vN = x0 = Mx1 + c +∆0

= M2x2 + (M + I )c + (M∆1 +∆0)

= M3x3 + (M2 +M + I )c + (M2∆2 +M∆1 +∆0)

· · ·
If all eigenvalues of M have absolute value < 2, then ∥vN∥ = O(N1−ϵ) for
some ϵ > 0. In particular, 011 would have Property P in this case.
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N = a0 · 20 + a1 · 21 + . . . (for ai ∈ {0, 1}). Hence,⌊

N

2k

⌋
= 2

⌊
N

2k+1

⌋
+ ak .

Let xk = v⌊ N

2k

⌋ and ∆k = xk − (Mxk+1 + c), so that ∥∆k∥ ≤ 2 (by (3)).

Hence,
vN = x0 = Mx1 + c +∆0

= M2x2 + (M + I )c + (M∆1 +∆0)

= M3x3 + (M2 +M + I )c + (M2∆2 +M∆1 +∆0)

· · ·
If all eigenvalues of M have absolute value < 2, then ∥vN∥ = O(N1−ϵ) for
some ϵ > 0. In particular, 011 would have Property P in this case.
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w = 011 (eigenvalues of M)

It turns out that we do not need to explicitly find the eigenvalues of M for
showing this. M can be written as a sum of two “signed” permutation
matrices:

M =


1 1 0 0
0 1 1 0
0 0 −1 1
1 0 0 −1

 =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1


︸ ︷︷ ︸

A

+


0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0


︸ ︷︷ ︸

B

.

Since ∥Ax∥ = ∥Bx∥ = ∥x∥ for all x ∈ R4, we can have ∥Mx0∥ ≥ 2∥x0∥
(for some x0) if and only if Ax0 = Bx0. Hence, if x0 is an eigenvector of M
with eigenvalue λ ∈ C satisfying |λ| ≥ 2, then x0 is an eigenvector of both
A and B with eigenvalue λ

2 . This is not possible!
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w = 011 (conclusion)

To recap:

vN =
[
SN TN UN VN

]T
,

v2N+1 = MvN + c, and

all eigenvalues of M have absolute value < 2.

Hence,

∥vN∥ = O
(
N1−ϵ

)
.

In particular, SN = O(N1−ϵ) and 011 has Property P. We also get that
TN ,UN ,VN = O(N1−ϵ) ‘for free’.

Remark: If λ is the eigenvalue of M with largest absolute value, then
ϵ < 1− log2 |λ| works. The eigenvalues of M are 0, 0,±

√
2, so ϵ = 1

2
works in the present case.
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Some definitions

Let w be a word on {0, 1} of length |w | = ℓ ≥ 2.

For u ∈ {0, 1}ℓ and n ≥ 0, define[
w
u

]
: N → {0, 1}; n 7→

ℓ∑
i=1
ui=1

sw1...wi (n) (mod 2)

≡
ℓ∑

i=1

ui · sw1...wi (n) (mod 2).

During this presentation, I will call these maps ‘subword counters’.

For example, [
abcd
0101

]
(n) ≡ sab(n) + sabcd(n) (mod 2).
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Capturing the recurrence

Let a ∈ {0, 1}. Applying the recurrence for sw (n) to subword counters, we
obtain a word Sa(w)(u) ∈ {0, 1}ℓ and a bit Ta(w)(u) ∈ {0, 1} such that[

w
u

]
(2n + a) ≡

[
w

Sa(w)(u)

]
(n) + Ta(w)(u) (mod 2).

Example [
01
01

]
(2n + 1) ≡

[
01
11

]
(n) + 0 (mod 2) and[

01
11

]
(2n + 0) ≡

[
01
11

]
(n) + 1 (mod 2).

We will call Sa(w) : {0, 1}ℓ → {0, 1}ℓ an ‘a-split function’ (for reasons
that will be clear soon) and Ta(w) : {0, 1}ℓ → {0, 1} an ‘a-carry function’.
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Capturing the recurrence (contd.)[
w
u

]
(2n + a) ≡

[
w

Sa(w)(u)

]
(n) + Ta(w)(u) (mod 2).

Here’s how to calculate Sa(w)(u):

In short, each 1 appearing under an a ‘splits to the left’.

Ta(w)(u) captures the split which ‘spills over’ from the leftmost digit of u.
In the above example, T0(w)(u) = 0 and T1(w)(u) = 1. An explicit
formula:

Ta(w)(u)Sa(w)(u) =
[(

aℓ ⊕ w
)
0 ∧ u0

]
⊕ 0u.
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Basic properties of splits and carries

Sa(w)(u ⊕ u′) = Sa(w)(u)⊕ Sa(w)(u′) and likewise for Ta(w) —
split and carry functions are group homomorphisms.

If w ′ is is a suffix of w and u′ is a suffix of u with |w ′| = |u′|, then
Sa(w

′)(u′) is a suffix of Sa(w)(u).

Sa(w) : {0, 1}ℓ → {0, 1}ℓ is a bijection.

For a word h ∈ {0, 1}∗ of length |h| = r , define

Sh(w)(u) = Sh1(w) ◦ . . . ◦ Shr (w)(u).

In light of the last point above,

{Sh(w) | h ∈ {0, 1}∗}

is a group. Let Ow (u) be the orbit of u under this group. Special
emphasis is given to the case of u = 0ℓ−11 by defining Ow := Ow (0

ℓ−1).
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The 01 and 011 cases

O01 = {01, 11}

SN =
N∑

n=0

(−1)

01
01

(n)

TN =
N∑

n=0

(−1)

01
11

(n)

O011 = {001, 011, 101, 111}

SN =
N∑

n=0

(−1)

011
001

(n)

TN =
N∑

n=0

(−1)

011
011

(n)

UN =
N∑

n=0

(−1)

011
101

(n)

VN =
N∑

n=0

(−1)

011
111

(n)
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Matrices and vectors

Let v(w , u)(n) be the |Ow (u)|-dimensional column vector, with entries
indexed by Ow (u), whose u′-th entry is

(−1)

w
u′

(n)
.

For a ∈ {0, 1}, let Ma(w , u) be the matrix of size |Ow (u)| × |Ow (u)|, with
entries indexed by Ow (u)×Ow (u), whose (u′, u′′)-th entry is

Ma(w , u)[u′, u′′] :=

{
(−1)Ta(w)(u′) if Sa(w)(u′) = u′′;

0 otherwise
.

Let M(w , u) = M0(w , u) +M1(w , u). It should be no surprise that we
obtain the following recurrence for v(w , u):

v(w , u)(2n + a) = Ma(w , u) v(w , u)(n)

for n ≥ 1.
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Matrices and vectors (contd.)

Now, define

V (w , u)(N) =
N∑

n=0

v(w , u)(n).

The recurrence for v(w , u)(n) yields

V (w , u)(2N + 1) = M(w , u)V (w , u) + c

for some constant vector c (which can be determined explicitly). Hence,

∥V (w , u)(N)∥ = O
(
N1−ϵ

)
(4)

if all eigenvalues of M(w , u) have absolute value < 2. We say that the
pair (w , u) has Property Q if (4) holds. If (w , 0ℓ−11) has Property Q, then
w has Property P.
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The 01 and 011 cases

Previously, we showed that (01, 01) and (011, 001) have Property Q, and
hence concluded that 01 and 011 have Property P.

V (01, 01)(N) =
01 SN
11 TN

[ ]

M(01, 01) =
01 01

01 1 1
11 1 −1

[ ]

V (001, 011)(N) =

001 SN
011 TN

101 UN

111 VN




M(011, 001) =

001 011 101 111
001 1 1 0 0
011 0 1 1 0
101 0 0 −1 1
111 1 0 0 −1




In the old notation, vN = V (011, 001)(N),
M = M(011, 001), A = M0(011, 001), and
B = M1(011, 001).
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Basic properties of M(w , u)

M(w , u) is a sum of two signed permutation matrices M0(w , u) and
M1(w , u).

If x is an eigenvector of M(w , u) with eigenvalue λ satisfying |λ| ≥ 2,
then

|λ| = 2,
x is an eigenvector of M0(w , u) and M1(w , u) with eigenvalue λ

2 , and
all entries of x are non-zero.

The overarching strategy in our work is to convert these linear-algebraic
statements into combinatorial ones. This leads to a sufficient condition for
(w , u) to satisfy Property Q, and hence for w to satisfy Property P.

Pranjal Jain (IISER Pune) Partial Sums of Subword-Counting Sequences May 2025 30 / 40



Basic properties of M(w , u)

M(w , u) is a sum of two signed permutation matrices M0(w , u) and
M1(w , u).

If x is an eigenvector of M(w , u) with eigenvalue λ satisfying |λ| ≥ 2,
then

|λ| = 2,
x is an eigenvector of M0(w , u) and M1(w , u) with eigenvalue λ

2 , and
all entries of x are non-zero.

The overarching strategy in our work is to convert these linear-algebraic
statements into combinatorial ones. This leads to a sufficient condition for
(w , u) to satisfy Property Q, and hence for w to satisfy Property P.

Pranjal Jain (IISER Pune) Partial Sums of Subword-Counting Sequences May 2025 30 / 40



Basic properties of M(w , u)

M(w , u) is a sum of two signed permutation matrices M0(w , u) and
M1(w , u).

If x is an eigenvector of M(w , u) with eigenvalue λ satisfying |λ| ≥ 2,
then

|λ| = 2,
x is an eigenvector of M0(w , u) and M1(w , u) with eigenvalue λ

2 , and
all entries of x are non-zero.

The overarching strategy in our work is to convert these linear-algebraic
statements into combinatorial ones. This leads to a sufficient condition for
(w , u) to satisfy Property Q, and hence for w to satisfy Property P.

Pranjal Jain (IISER Pune) Partial Sums of Subword-Counting Sequences May 2025 30 / 40



Table of Contents

1 Introduction

2 A recurrence relation

3 Two examples

4 The general framework

5 Results

6 Further directions

Pranjal Jain (IISER Pune) Partial Sums of Subword-Counting Sequences May 2025 31 / 40



One run

Theorem

Let a ∈ {0, 1}. Property P is satisfied by aℓ if and only if ℓ is a power of 2.
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Two runs

Theorem

Let a ∈ {0, 1} and j , k ≥ 1. Property P is satisfied by ajak . More
generally, for u ∈ {0, 1}k (u ̸= 0k), Property Q is satisfied by (ajak , 0ju).

This includes the cases of 01 and 011 from before!
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A surprising example of Property Q

Theorem

Let a ∈ {0, 1} and w ∈ {0, 1}∗ (possibly with |w | < 2). Let k > 1 be a
power of 2 and 1 < j ≤ k . The pair

(
akwaaj−1, 0k−110|w |+j−11

)
satisfies

Property Q.

Example

Set a = 1 and k = j = 2. Let v = 11w01. By the theorem,
(
v , 010|w |+11

)
satisfies Property Q. In particular,

N∑
n=0

(−1)sv (n)+s 01(n) = O
(
N1−ϵ

)
for some ϵ > 0.
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Long first run

Theorem

Let a ∈ {0, 1}, w ∈ {0, 1}∗ (possibly with |w | < 2), and k be a power of 2
such that ak is not a factor of w . Property P is satisfied by akaw .

More generally, if u ∈ {0, 1}|w |, u ̸= 0|w |, and b ∈ {0, 1} such that
Sb(w)(u) = u and Tb(w)(u) = 0, then

(
akaw , 0k+1u

)
satisfies Property

Q.

Can you see why the second statement implies the first?

Example

110010 satisfies Property P.
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Limitations

Necessary and sufficient conditions: Our main techniques are not
applicable for showing that a given word w does not satisfy property
P. This is a major hindrance when it comes to obtaining a necessary
and sufficient condition for Property P to be satisfied. Perhaps our
proof of the ‘one run’ theorem could be used as a jumping-off point.

Property P without Property Q: In principle, it is possible for there
to exist a word w such that w satisfies Property P but (w , 0|w |−11)
does not satisfy Property Q. Our method cannot detect such a case.

Eigenvalues may not be enough: In principle, it is possible for
there to exist a pair (w , u) such that (w , u) satisfies Property Q but
M(w , u) has an eigenvalue of absolute value 2. Our method cannot
detect such a case.
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Generalizing to other bases

Fix an integer b ≥ 2. For n ≥ 0 and a word w ∈ {0, . . . , b − 1}∗, let sbw (n)
be the number of occurrences of w as a scattered subword of the base-b
expansion of n. When do we have

N∑
n=0

(−1)s
b
w (n) = O

(
N1−ϵ

)
for some ϵ > 0?

Our linear-algebraic framework readily generalizes to explore the above
question (now, instead of just 0- and 1-splits, we’ll have i-splits for all
i ∈ {0, . . . , b − 1}). However, we have not tried to extend our results to
this case in order to avoid distracting from the essential ideas.
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Generalizing even further

Fix a positive integer d . Let ζd = e
2πi
d . When do we have

N∑
n=0

ζ
sbw (n)
d = O

(
N1−ϵ

)
(5)

for some ϵ > 0?

To generalize our framework to this setup, we must replace signed
permutation matrices by matrices which have exactly one d-th root of
unity in each row and each column, and all other entries are 0 (signed
permutation matrices are the d = 2 case).

Remark: For d = 3, we can loosely interpret (5) analogously to the d = 2
case — the probability that sbw (n) ≡ r (mod 3) (for ‘randomly chosen’ n
and r) is 1

3 .
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Thank you!
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