Quasi-fixed points of substitutions

Elżbieta Krawczyk IPA:/ɛlʒ'bjɛ.ta 'kraf.t͡ʃɪk/

University of Vienna & Jagiellonian University

One World Combinatorics on Words Seminar 15th July 2025

Let $\mathcal{A}=\{0,1\}$ and consider a substitution of length 2

$$\varphi(0) = 01 \quad \varphi(1) = 00$$

with its **2-automatic** fixed point

x = 01000101...

Let $\mathcal{A}=\{0,1\}$ and consider a substitution of length 2

$$\varphi(0) = 01 \quad \varphi(1) = 00$$

with its 2-automatic fixed point

x = 01000101...

Let

 $X_{\varphi} = \{ z \in \mathcal{A}^{\mathbb{N}} \mid \text{ all words appearing in } z \text{ appear in } x \}.$

Let $\mathcal{A}=\{0,1\}$ and consider a substitution of length 2

$$\varphi(0) = 01 \quad \varphi(1) = 00$$

with its 2-automatic fixed point

x = 01000101...

Let

 $X_{\varphi}=\{z\in\mathcal{R}^{\mathbb{N}}\mid \text{ all words appearing in }z\text{ appear in }x\}.$ In other words

$$\mathbf{X}_{\varphi} = \overline{\mathcal{O}(\mathbf{x})} = \overline{\{\mathbf{T}^{\mathbf{n}}(\mathbf{x}) \mid \mathbf{n} \in \mathbb{N}\}},$$

where $T(x_0x_1x_2...) = x_1x_2...$

Let $\mathcal{A}=\{0,1\}$ and consider a substitution of length 2

$$\varphi(0) = 01 \quad \varphi(1) = 00$$

with its **2-automatic** fixed point

x = 01000101...

Let

 $X_{\varphi} = \{z \in \mathcal{R}^{\mathbb{N}} \mid \text{ all words appearing in } z \text{ appear in } x\}.$ In other words

$$X_{\varphi} = \overline{O(x)} = \overline{\{T^n(x) \mid n \in \mathbb{N}\}}$$

where $T(x_0x_1x_2...) = x_1x_2...$

Put a total order on $\mathcal{A} = \{0 < 1\}$ and ask how the lexicographically minimal sequence $z \in X_{\varphi}$ looks like.

One can show (Currie, Rampersad, Saari, Zamboni, 2013) that lexicographically minimal $z \in X_{\varphi}$ is the unique solution to

 $\varphi^2(z) = 01z;$

in particular, z is again 2-automatic.

One can show (Currie, Rampersad, Saari, Zamboni, 2013) that lexicographically minimal $z \in X_{\varphi}$ is the unique solution to

 $\varphi^2(z) = 01z;$

in particular, z is again 2-automatic.

Theorem

Let $\varphi \colon \mathcal{A} \to \mathcal{A}^*$ be a substitution and $\tau \colon \mathcal{A} \to \mathcal{B}$ a coding. Fix some total order on \mathcal{B} and let $b \in \mathcal{B}$. Let $z \in \tau(X_{\varphi})$ be the lexicographically smallest among sequences starting with b.

One can show (Currie, Rampersad, Saari, Zamboni, 2013) that lexicographically minimal $z \in X_{\varphi}$ is the unique solution to

 $\varphi^2(z) = 01z;$

in particular, z is again 2-automatic.

Theorem

Let $\varphi \colon \mathcal{A} \to \mathcal{A}^*$ be a substitution and $\tau \colon \mathcal{A} \to \mathcal{B}$ a coding. Fix some total order on \mathcal{B} and let $b \in \mathcal{B}$. Let $z \in \tau(X_{\varphi})$ be the lexicographically smallest among sequences starting with b.

• (Allouche, Rampersad, Shallit, 2009) If φ is of constant length k, then z is k-automatic.

One can show (Currie, Rampersad, Saari, Zamboni, 2013) that lexicographically minimal $z \in X_{\varphi}$ is the unique solution to

 $\varphi^2(z) = 01z;$

in particular, z is again 2-automatic.

Theorem

Let $\varphi \colon \mathcal{A} \to \mathcal{A}^*$ be a substitution and $\tau \colon \mathcal{A} \to \mathcal{B}$ a coding. Fix some total order on \mathcal{B} and let $b \in \mathcal{B}$. Let $z \in \tau(X_{\varphi})$ be the lexicographically smallest among sequences starting with b.

- (Allouche, Rampersad, Shallit, 2009) If φ is of constant length k, then z is k-automatic.
- **2** (Currie, Rampersad, Saari, Zamboni, 2013) If φ is primitive, then z is substitutive (=morphic).

< 回 ト く ヨ ト く ヨ ト

One can show (Currie, Rampersad, Saari, Zamboni, 2013) that lexicographically minimal $z \in X_{\varphi}$ is the unique solution to

 $\varphi^2(z) = 01z;$

in particular, z is again 2-automatic.

Theorem

Let $\varphi \colon \mathcal{A} \to \mathcal{A}^*$ be a substitution and $\tau \colon \mathcal{A} \to \mathcal{B}$ a coding. Fix some total order on \mathcal{B} and let $b \in \mathcal{B}$. Let $z \in \tau(X_{\varphi})$ be the lexicographically smallest among sequences starting with b.

- (Allouche, Rampersad, Shallit, 2009) If φ is of constant length k, then z is k-automatic.
- **2** (Currie, Rampersad, Saari, Zamboni, 2013) If φ is primitive, then z is substitutive (=morphic).

As far as I know open in general.

Let $\mathcal{A}=\{0,1,2,3\}$ and let $\tau\colon\mathcal{A}\to\mathcal{A}^*$ be the substitution given by

 $\tau(0) = 01023, \quad \tau(1) = 12, \quad \tau(2) = 22, \quad \tau(3) = 33.$

・ 同 ト ・ ヨ ト ・ ヨ ト …

æ

Let $\mathcal{A}=\{0,1,2,3\}$ and let $\tau\colon\mathcal{A}\to\mathcal{A}^*$ be the substitution given by

$$\tau(0) = 01023, \quad \tau(1) = 12, \quad \tau(2) = 22, \quad \tau(3) = 33.$$

A subsystem $Y \subset X_{\tau}$ is transitive if there exists a sequence y that generates it, that is

 $Y = \{z \in X_\tau \mid all words appearing in z appear in y\} = \overline{O(y)}$

Let $\mathcal{A} = \{0, 1, 2, 3\}$ and let $\tau \colon \mathcal{A} \to \mathcal{A}^*$ be the substitution given by

$$\tau(0) = 01023, \quad \tau(1) = 12, \quad \tau(2) = 22, \quad \tau(3) = 33.$$

A subsystem $Y \subset X_{\tau}$ is transitive if there exists a sequence y that generates it, that is

 $\mathbf{Y} = \{\mathbf{z} \in \mathbf{X}_\tau \mid \text{ all words appearing in } \mathbf{z} \text{ appear in } \mathbf{y}\} = \overline{O(\mathbf{y})}$

How do transitive subsystems of X_{τ} look like?

Let $\mathcal{A} = \{0, 1, 2, 3\}$ and let $\tau \colon \mathcal{A} \to \mathcal{A}^*$ be the substitution given by

$$\tau(0) = 01023, \quad \tau(1) = 12, \quad \tau(2) = 22, \quad \tau(3) = 33.$$

A subsystem $Y \subset X_{\tau}$ is transitive if there exists a sequence y that generates it, that is

 $\mathbf{Y} = \{\mathbf{z} \in \mathbf{X}_\tau \mid \text{ all words appearing in } \mathbf{z} \text{ appear in } \mathbf{y}\} = \overline{O(\mathbf{y})}$

How do transitive subsystems of X_{τ} look like? Write v = 01 and w = 23. Consider

$$z = \cdots \tau^{2}(v)\tau(v)v.0w\tau(w)\tau^{2}(w)\cdots$$

and for any n consider the suffix $z_{[n,\infty)} = z_n z_{n+1} \cdots$ of z and $Z_n = \overline{O(z_{[n,\infty)})} \subset X_{\tau}$. We have

$$Z_n = \textit{O}(z_{[n,\infty)}) \cup \{3^k 2^\omega \mid k \ge 0\} \cup \{2^k 3^\omega \mid k \ge 0\}.$$

Let $\mathcal{A}=\{0,1,2,3\}$ and let $\tau\colon\mathcal{A}\to\mathcal{A}^*$ be the substitution given by

$$\tau(0) = 01023, \quad \tau(1) = 12, \quad \tau(2) = 22, \quad \tau(3) = 33.$$

A subsystem $Y \subset X_{\tau}$ is transitive if there exists a sequence y that generates it, that is

 $\mathbf{Y} = \{\mathbf{z} \in \mathbf{X}_\tau \mid \text{ all words appearing in } \mathbf{z} \text{ appear in } \mathbf{y}\} = \overline{O(\mathbf{y})}$

How do transitive subsystems of X_{τ} look like? Write v = 01 and w = 23. Consider

$$z = \cdots \tau^2(v)\tau(v)v.0w\tau(w)\tau^2(w)\cdots.$$

and for any n consider the suffix $z_{[n,\infty)} = z_n z_{n+1} \cdots$ of z and $Z_n = \overline{O(z_{[n,\infty)})} \subset X_{\tau}$. We have

$$Z_n=\textit{O}(z_{[n,\,\infty)})\cup\{3^k2^\omega\mid k\geq 0\}\cup\{2^k3^\omega\mid k\geq 0\}.$$

Note that $z = T^2 \tau(z)$.

Let $\varphi \colon \mathcal{A} \to \mathcal{A}^*$ be a substitution (for simplicity assumed to be growing, i.e. $|\varphi^n(\mathbf{a})| \to \infty$ for all $\mathbf{a} \in \mathcal{A}$.)

Definition

A sequence z in $\mathcal{A}^{\mathbb{Z}}$ or $\mathcal{A}^{\mathbb{N}}$ is called a quasi-fixed point of φ if there exist k > 0 and $m \in \mathbb{Z}$ such that

$$T^m(\varphi^k(z))=z.$$

If $\mathbf{x} \in \mathcal{A}^{\mathbb{N}}$ and $\mathbf{m} < 0$ this means

$$\varphi^{\rm k}(z)={\rm T}^{-\rm m}z$$

• The set of quasi-fixed points of φ is closed under the left and right shifts and φ .

- Solution The set of quasi-fixed points of φ is closed under the left and right shifts and φ.
- **2** Every quasi-fixed point of φ is substitutive.

- The set of quasi-fixed points of φ is closed under the left and right shifts and φ.
- **2** Every quasi-fixed point of φ is substitutive.
- **3** If φ is of constant length k, then every quasi-fixed point of φ is k-automatic.

- The set of quasi-fixed points of φ is closed under the left and right shifts and φ.
- **2** Every quasi-fixed point of φ is substitutive.
- **3** If φ is of constant length k, then every quasi-fixed point of φ is k-automatic.

Byszewski, Konieczny, K.

Let $\varphi \colon \mathcal{A} \to \mathcal{A}^*$ be a substitution. Any transitive subsystem $Y \subset X_{\varphi}$ is generated by some quasi-fixed point of φ .

Byszewski, Konieczny, K.

Let $\varphi \colon \mathcal{A} \to \mathcal{A}^*$ be a substitution. Any transitive subsystem $Y \subset X_{\varphi}$ is generated by some quasi-fixed point of φ .

In particular, any transitive subsystem of a substitutive (resp. k-automatic) system is again substitutive (resp. k-automatic).

Let $\varphi \colon \mathcal{A} \to \mathcal{A}^*$ be a substitution and let $\mathbf{x} \in \mathcal{A}^{\mathbb{Z}}$.

通 と く ヨ と く ヨ と

Let $\varphi \colon \mathcal{A} \to \mathcal{A}^*$ be a substitution and let $x \in \mathcal{A}^Z$. Then $x = T^m \varphi(x)$ for some $m \in \mathbb{Z}$ if and only if x is a shift of a point y that is of one of the following forms:

Quasi-fixed points of substitutions

Theorem (Shallit, Wang & Béal, Perrin, Restivo)

Let $\varphi \colon \mathcal{A} \to \mathcal{A}^*$ be a substitution and let $x \in \mathcal{A}^Z$. Then $x = T^m \varphi(x)$ for some $m \in \mathbb{Z}$ if and only if x is a shift of a point y that is of one of the following forms:

 $\ \, {\bf y}={}^{\omega}\varphi(\mathbf{a}).\varphi^{\omega}(\mathbf{b}) \ \, {\rm is \ a \ fixed \ point \ of } \varphi,$

Quasi-fixed points of substitutions

Theorem (Shallit, Wang & Béal, Perrin, Restivo)

Let $\varphi \colon \mathcal{A} \to \mathcal{A}^*$ be a substitution and let $x \in \mathcal{A}^Z$. Then $x = T^m \varphi(x)$ for some $m \in \mathbb{Z}$ if and only if x is a shift of a point y that is of one of the following forms:

() $y = {}^{\omega}\varphi(a).\varphi^{\omega}(b)$ is a fixed point of φ , or

② there exist a ∈ \mathcal{A} , nonempty v, v' ∈ \mathcal{A}^* such that $\varphi(a) = vav'$, and $y = \dots \varphi^2(v)\varphi(v)v.av'\varphi(v')\varphi^2(v')\dots$

Let $\varphi \colon \mathcal{A} \to \mathcal{A}^*$ be a substitution and let $x \in \mathcal{A}^Z$. Then $x = T^m \varphi(x)$ for some $m \in \mathbb{Z}$ if and only if x is a shift of a point y that is of one of the following forms:

() $y = {}^{\omega}\varphi(a).\varphi^{\omega}(b)$ is a fixed point of φ , or

② there exist a ∈ \mathcal{A} , nonempty v, v' ∈ \mathcal{A}^* such that $\varphi(a) = vav'$, and $y = \dots \varphi^2(v)\varphi(v)v.av'\varphi(v')\varphi^2(v')\dots$

Changing φ to φ^k gives a description of all two-sided quasi-fixed points of φ .

Let $\varphi \colon \mathcal{A} \to \mathcal{A}^*$ be a substitution and let $x \in \mathcal{A}^Z$. Then $x = T^m \varphi(x)$ for some $m \in \mathbb{Z}$ if and only if x is a shift of a point y that is of one of the following forms:

() $y = {}^{\omega}\varphi(a).\varphi^{\omega}(b)$ is a fixed point of φ , or

② there exist a ∈ \mathcal{A} , nonempty v, v' ∈ \mathcal{A}^* such that $\varphi(a) = vav'$, and $y = \dots \varphi^2(v)\varphi(v)v.av'\varphi(v')\varphi^2(v')\dots$

Changing φ to φ^k gives a description of all two-sided quasi-fixed points of φ .

In (1), $y \in X_{\varphi}$ if and only if $ab \in \mathcal{L}(X_{\varphi})$.

Let $\varphi \colon \mathcal{A} \to \mathcal{A}^*$ be a substitution and let $x \in \mathcal{A}^Z$. Then $x = T^m \varphi(x)$ for some $m \in \mathbb{Z}$ if and only if x is a shift of a point y that is of one of the following forms:

() $y = {}^{\omega}\varphi(a).\varphi^{\omega}(b)$ is a fixed point of φ , or

② there exist a ∈ \mathcal{A} , nonempty v, v' ∈ \mathcal{A}^* such that $\varphi(a) = vav'$, and $y = \dots \varphi^2(v)\varphi(v)v.av'\varphi(v')\varphi^2(v')\dots$

Changing φ to φ^k gives a description of all two-sided quasi-fixed points of φ .

In (1), $y \in X_{\varphi}$ if and only if $ab \in \mathcal{L}(X_{\varphi})$.

A one-sided sequence is a quasi-fixed point of φ if and only if it is a suffix of two-sided quasi-fixed point.

Let φ be a substitution (resp. a substitution of constant length). Characterize the set of substitutive/automatic sequences in X.

Let φ be a substitution (resp. a substitution of constant length). Characterize the set of substitutive/automatic sequences in X.

Remarks:

Let φ be a substitution (resp. a substitution of constant length). Characterize the set of substitutive/automatic sequences in X.

Remarks:

• most systems generated by substitutions have uncountably many points (e.g. Thue–Morse system) and there are only countably many substitutive sequences;

Let φ be a substitution (resp. a substitution of constant length). Characterize the set of substitutive/automatic sequences in X.

Remarks:

- most systems generated by substitutions have uncountably many points (e.g. Thue–Morse system) and there are only countably many substitutive sequences;
- there are substitutive sequences in X other than x (e.g. all the shifts of x);

Let φ be a substitution (resp. a substitution of constant length). Characterize the set of substitutive/automatic sequences in X.

Remarks:

- most systems generated by substitutions have uncountably many points (e.g. Thue–Morse system) and there are only countably many substitutive sequences;
- there are substitutive sequences in X other than x (e.g. all the shifts of x);

Some solutions

▶ ★ 差 ▶ ★

-

æ

Theorem

Let φ be a substitution of length k. Let $\pi: X_{\varphi} \to Y$ be a factor map onto some subshift Y. The following hold.

/⊒ ▶ ∢ ∃ ▶
Let φ be a substitution of length k. Let $\pi: X_{\varphi} \to Y$ be a factor map onto some subshift Y. The following hold.

• A sequence $y \in Y$ is k-automatic if and only if $y = \pi(x)$ for some quasi-fixed point x of φ .

Let φ be a substitution of length k. Let $\pi: X_{\varphi} \to Y$ be a factor map onto some subshift Y. The following hold.

- A sequence $y \in Y$ is k-automatic if and only if $y = \pi(x)$ for some quasi-fixed point x of φ .
- If y ∈ Y is k-automatic and nonperiodic, then all points in π⁻¹(y) are quasi-fixed points of φ.

Let φ be a substitution of length k. Let $\pi: X_{\varphi} \to Y$ be a factor map onto some subshift Y. The following hold.

- A sequence $y \in Y$ is k-automatic if and only if $y = \pi(x)$ for some quasi-fixed point x of φ .
- If y ∈ Y is k-automatic and nonperiodic, then all points in π⁻¹(y) are quasi-fixed points of φ.

The characterisation holds for invertible and noninvertible systems.

Let φ be a substitution of length k. Let $\pi: X_{\varphi} \to Y$ be a factor map onto some subshift Y. The following hold.

- A sequence $y \in Y$ is k-automatic if and only if $y = \pi(x)$ for some quasi-fixed point x of φ .
- If y ∈ Y is k-automatic and nonperiodic, then all points in π⁻¹(y) are quasi-fixed points of φ.

The characterisation holds for invertible and noninvertible systems.

```
If \mathbf{y} \in \mathbf{Y} is substitutive, then it is k-automatic.
```

Theorem (Holton, Zamboni, 2001)

Let $\varphi \colon \mathcal{A} \to \mathcal{A}^*$ be a primitive substitution, let $\tau \colon \mathcal{A} \to \mathcal{B}$ be a coding, and let $Y = \tau(X_{\varphi})$. Assume that Y is infinite. Then, $\pi(x) \in Y$ is substitutive if and only if x is a quasi-fixed point of φ .

Conjecture

Let φ be a general substitution. Let $\pi: X_{\varphi} \to Y$ be a factor map onto some subshift Y. The following hold.

- A sequence y ∈ Y is substitutive if and only if y = π(x) for some quasi-fixed point x of φ.
- If y ∈ Y is substitutive and nonperiodic, then all points in π⁻¹(y) are quasi-fixed points of φ.

Let φ be a primitive substitution of constant length k and let τ be a coding (or a factor map).

Let φ be a primitive substitution of constant length k and let τ be a coding (or a factor map). Let

$$\mathbb{Z}_{k} = \varprojlim \mathbb{Z}/k^{n}\mathbb{Z} \equiv \prod_{p|k} \mathbb{Z}_{p}$$

be the ring of k-adic integers.

Let φ be a primitive substitution of constant length k and let τ be a coding (or a factor map). Let

$$\mathbb{Z}_{k} = \varprojlim \mathbb{Z}/k^{n}\mathbb{Z} \equiv \prod_{p|k} \mathbb{Z}_{p}$$

be the ring of k-adic integers.

Assuming that $Y = \tau(X_{\varphi})$ is infinite, one has a continuous onto map $\kappa: Y \to \mathbb{Z}_k$ such that

Let φ be a primitive substitution of constant length k and let τ be a coding (or a factor map). Let

$$\mathbb{Z}_{k} = \varprojlim \mathbb{Z}/k^{n}\mathbb{Z} \equiv \prod_{p|k} \mathbb{Z}_{p}$$

be the ring of k-adic integers.

Assuming that $Y = \tau(X_{\varphi})$ is infinite, one has a continuous onto map $\kappa: Y \to \mathbb{Z}_k$ such that

- $\kappa(\tau(\varphi \text{-periodic points})) = 0$,
- $\kappa(Tx) = \kappa(x) + 1$ for any $x \in X$.
- $\kappa(\tau(\varphi(\mathbf{x}))) = \mathbf{k} \cdot \kappa(\mathbf{x})$ for any $\mathbf{x} \in \mathbf{X}$.

Let φ be a primitive substitution of constant length k and let τ be a coding (or a factor map). Let

$$\mathbb{Z}_k = \varprojlim \mathbb{Z}/k^n \mathbb{Z} \equiv \prod_{p \mid k} \mathbb{Z}_p$$

be the ring of k-adic integers.

Assuming that $Y = \tau(X_{\varphi})$ is infinite, one has a continuous onto map $\kappa: Y \to \mathbb{Z}_k$ such that

- $\kappa(\tau(\varphi \text{-periodic points})) = 0$,
- $\kappa(Tx) = \kappa(x) + 1$ for any $x \in X$.
- $\kappa(\tau(\varphi(\mathbf{x}))) = \mathbf{k} \cdot \kappa(\mathbf{x})$ for any $\mathbf{x} \in \mathbf{X}$.

An alternative description for minimal automatic systems

Under the above assumptions, automatic sequences in Y correspond to rational numbers in \mathbb{Z}_k via the map κ , i.e.

 $\{z \in Y \mid z \text{ is k-automatic}\} = \kappa^{-1}(\mathbb{Z}_k \cap \mathbb{Q}).$

Let φ be a substitution of constant length k. Let $\pi: X_{\varphi} \to Y$ be a factor map onto some subshift Y. The following hold.

- A sequence y ∈ Y is automatic if and only if y = π(x) for some quasi-fixed point x of φ.
- If y ∈ Y is automatic and nonperiodic, then all points in π⁻¹(y) are quasi-fixed points of φ.

Let φ be a substitution of constant length k. Let $\pi: X_{\varphi} \to Y$ be a factor map onto some subshift Y. The following hold.

- A sequence y ∈ Y is automatic if and only if y = π(x) for some quasi-fixed point x of φ.
- If y ∈ Y is automatic and nonperiodic, then all points in π⁻¹(y) are quasi-fixed points of φ.

We need to show all automatic sequences in Y are of the required form.

Theorem (Fagnot, 1997)

Let X be a k-automatic system. If $z \in X$ is automatic, then it is k-automatic.

Theorem (Fagnot, 1997)

Let X be a k-automatic system. If $z \in X$ is automatic, then it is k-automatic.

From my work with Müllner it will follow that if z is substitutive, then it is, in fact, k-automatic.

Proposition

Let φ be a substitution of constant length k. There exists $K \ge 1$ such that every factor map $\pi: X_{\varphi} \to Y$ is K-to-1 on nonperiodic points, i.e. $|\pi^{-1}(y)| \le K$ for all nonperiodic $y \in Y$.

Proposition

Let φ be a substitution of constant length k. There exists $K \ge 1$ such that every factor map $\pi \colon X_{\varphi} \to Y$ is K-to-1 on nonperiodic points, i.e. $|\pi^{-1}(y)| \le K$ for all nonperiodic $y \in Y$.

Handles the factor map/coding π .

For automatic sequences we have the following nice "inherent" finitary characterisation.

For automatic sequences we have the following nice "inherent" finitary characterisation.

Kernel characterisation of automaticity

A sequence $y = (y_n)_n$ is k-automatic if and only if its k-kernel

 $K_k(y) = \{(y_{i+k^mn})_n \mid m \geq 0, 0 \leq i < k^m\}$

is finite.

For automatic sequences we have the following nice "inherent" finitary characterisation.

Kernel characterisation of automaticity

A sequence $y = (y_n)_n$ is k-automatic if and only if its k-kernel

 $K_k(y) = \{(y_{i+k^mn})_n \mid m \geq 0, 0 \leq i < k^m\}$

is finite.

One assumes that $z \in X_{\varphi}$ is k-automatic, so its k-kernel is finite.

For automatic sequences we have the following nice "inherent" finitary characterisation.

Kernel characterisation of automaticity

A sequence $y = (y_n)_n$ is k-automatic if and only if its k-kernel

 $K_k(y) = \{(y_{i+k^mn})_n \mid m \geq 0, 0 \leq i < k^m\}$

is finite.

One assumes that $z \in X_{\varphi}$ is k-automatic, so its k-kernel is finite. One can write down this kernel in terms of the (constant length k) substitution φ .

For automatic sequences we have the following nice "inherent" finitary characterisation.

Kernel characterisation of automaticity

A sequence $y = (y_n)_n$ is k-automatic if and only if its k-kernel

$$K_k(y) = \{(y_{i+k^mn})_n \mid m \ge 0, 0 \le i < k^m\}$$

is finite.

One assumes that $z \in X_{\varphi}$ is k-automatic, so its k-kernel is finite. One can write down this kernel in terms of the (constant length k) substitution φ .

Using finiteness of the kernel, Critical Factorisation Theorem, and some counting arguments one shows that z has to be a quasi-fixed point of φ .

Critical factorisation theorem/recognizability

Elżbieta Krawczyk Quasi-fixed points of substitutions

Critical Factorisation Theorem

Let \mathcal{A} be an alphabet and let $W \subset \mathcal{A}^*$ be a finite set of nonempty words of size d. Let $x \in \mathcal{A}^{\mathbb{Z}}$ be nonperiodic. Then, x has at most d W-factorisations with pairwise disjoint cuts.

Critical Factorisation Theorem

Let \mathcal{A} be an alphabet and let $W \subset \mathcal{A}^*$ be a finite set of nonempty words of size d. Let $x \in \mathcal{A}^{\mathbb{Z}}$ be nonperiodic. Then, x has at most d W-factorisations with pairwise disjoint cuts.

Related result for substitutive system is recognizability

Theorem (Berthé, Steiner, Thuswaldner, Yassawi, 2017)

Let φ be a substitution. For any nonperiodic point $x \in X_{\varphi}$ there exist a unique $x' \in X_{\varphi}$ and a unique $0 \le n < |\varphi(x'_0)|$ such that $x = T^n(\varphi(x'))$.

Theorem (Holton, Zamboni

Let $\varphi \colon \mathcal{A} \to \mathcal{A}^*$ be a primitive substitution, let $\tau \colon \mathcal{A} \to \mathcal{B}$ be a coding, and let $Y = \tau(X_{\varphi})$. Then

- A sequence y ∈ Y is substitutive if and only if y = π(x) for some quasi-fixed point x of φ.
- If y ∈ Y is substitutive and nonperiodic, then all points in π⁻¹(y) are quasi-fixed points of φ.

One could assume that the "base" of the sequence $y \in Y$ is the same as that of the substitutin φ , but it is not needed (more about bases later).

Proposition(Durand)

Let φ be a primitive substitution. There exists $K \ge 1$ such that every factor map $\pi \colon X_{\varphi} \to Y$ to an infinite system Y is K-to-1, i.e. $|\pi^{-1}(y)| \le K$ for all $y \in Y$.

Finitary characterisation of primitive substitutivity

Consider the sequence

 $\mathbf{x} = 011|010|0110|01|011|010|01|0110|011|010|01 \dots$

Finitary characterisation of primitive substitutivity

Consider the sequence

 $\mathbf{x} = 011|010|0110|01|011|010|01|0110|011|010|01 \dots$

The return words to prefix u = 01 are 011, 010, 0110, 01.

Consider the sequence

 $\mathbf{x} = 011|010|0110|01|011|010|01|0110|011|010|01 \dots$

The return words to prefix u = 01 are 011, 010, 0110, 01.

The derived sequence of x with respect to prefix u is the sequence over the alphabet $\{0, 1, 2, 3\}$ given by $D_x(u) = 0123013201...$

Consider the sequence

 $\mathbf{x} = 011|010|0110|01|011|010|01|0110|011|010|01 \dots$

The return words to prefix u = 01 are 011, 010, 0110, 01.

The derived sequence of x with respect to prefix u is the sequence over the alphabet $\{0, 1, 2, 3\}$ given by $D_x(u) = 0123013201...$

Characterisation of primitive substitutive sequences in terms of derived sequences (Durand, 2000)

Let x be a uniformly recurrent sequence. Then x is primitive substitutive if and only if the set of derived sequences $D_x(u)$ is finite where u runs over all prefixes of x.

Consider the sequence

 $\mathbf{x} = 011|010|0110|01|011|010|01|0110|011|010|01 \dots$

The return words to prefix u = 01 are 011, 010, 0110, 01.

The derived sequence of x with respect to prefix u is the sequence over the alphabet $\{0, 1, 2, 3\}$ given by $D_x(u) = 0123013201...$

Characterisation of primitive substitutive sequences in terms of derived sequences (Durand, 2000)

Let x be a uniformly recurrent sequence. Then x is primitive substitutive if and only if the set of derived sequences $D_x(u)$ is finite where u runs over all prefixes of x.

Conjecture I

Let $\varphi \colon \mathcal{A} \to \mathcal{A}^*$ be a (growing) substitution, let $\tau \colon \mathcal{A} \to \mathcal{B}$ be a coding, and let $Y = \tau(X_{\varphi})$. Then

- A sequence $y \in Y$ is substitutive if and only if $y = \pi(x)$ for some quasi-fixed point x of φ .
- If y ∈ Y is substitutive and nonperiodic, then all points in π⁻¹(y) are quasi-fixed points of φ.

Conjecture I

Let $\varphi \colon \mathcal{A} \to \mathcal{A}^*$ be a (growing) substitution, let $\tau \colon \mathcal{A} \to \mathcal{B}$ be a coding, and let $Y = \tau(X_{\varphi})$. Then

- A sequence $y \in Y$ is substitutive if and only if $y = \pi(x)$ for some quasi-fixed point x of φ .
- If y ∈ Y is substitutive and nonperiodic, then all points in π⁻¹(y) are quasi-fixed points of φ.

It would be enough to show that any $y \in Y$ which is substitutive and generates Y (i.e. $\mathcal{L}(y) = \mathcal{L}(Y)$) is of required form.

One can reduce to this case using the characterisation of transitive subsystems of X_{φ} .

伺下 イヨト イヨト

Base of substitutive sequences

Let $\varphi \colon \mathcal{A} \to \mathcal{A}^*$ be a substitution.
Let $\varphi \colon \mathcal{A} \to \mathcal{A}^*$ be a substitution. With φ we associate the incidence matrix $M_{\varphi} = [|\varphi(b)|_a]_{a,b \in \mathcal{A}}$,

Let $\varphi \colon \mathcal{A} \to \mathcal{A}^*$ be a substitution. With φ we associate the incidence matrix $M_{\varphi} = [|\varphi(b)|_a]_{a,b \in \mathcal{A}}$, e.g. for

 $\varphi \colon 0 \mapsto 01, \quad 1 \mapsto 00,$

we have

$$\mathbf{M}_{\varphi} = \begin{bmatrix} 1 & 2 \\ 1 & 0 \end{bmatrix}.$$

Let $\varphi \colon \mathcal{A} \to \mathcal{A}^*$ be a substitution. With φ we associate the incidence matrix $M_{\varphi} = [|\varphi(b)|_a]_{a,b \in \mathcal{A}}$, e.g. for

$$\varphi \colon 0 \mapsto 01, \quad 1 \mapsto 00,$$

we have

$$\mathbf{M}_{\varphi} = \begin{bmatrix} 1 & 2\\ 1 & 0 \end{bmatrix}.$$

Let $\alpha \geq 0$ be the dominant eigenvalue of M_{φ} (i.e. $|\gamma| \leq \alpha$ for any other eigenvalue γ). We say that φ is an α -substitution.

Let $\varphi \colon \mathcal{A} \to \mathcal{A}^*$ be a substitution. With φ we associate the incidence matrix $M_{\varphi} = [|\varphi(b)|_a]_{a,b \in \mathcal{A}}$, e.g. for

$$\varphi \colon 0 \mapsto 01, \quad 1 \mapsto 00,$$

we have

$$\mathbf{M}_{\varphi} = \begin{bmatrix} 1 & 2\\ 1 & 0 \end{bmatrix}.$$

Let $\alpha \geq 0$ be the dominant eigenvalue of M_{φ} (i.e. $|\gamma| \leq \alpha$ for any other eigenvalue γ). We say that φ is an α -substitution.

Definition: base of a substitutive sequence

A sequence $\mathbf{x} \in \mathcal{R}^{\mathbb{N}}$ is called α -substitutive if there exist

Let $\varphi \colon \mathcal{A} \to \mathcal{A}^*$ be a substitution. With φ we associate the incidence matrix $M_{\varphi} = [|\varphi(b)|_a]_{a,b \in \mathcal{A}}$, e.g. for

$$\varphi \colon 0 \mapsto 01, \quad 1 \mapsto 00,$$

we have

$$\mathbf{M}_{\varphi} = \begin{bmatrix} 1 & 2 \\ 1 & 0 \end{bmatrix}.$$

Let $\alpha \geq 0$ be the dominant eigenvalue of M_{φ} (i.e. $|\gamma| \leq \alpha$ for any other eigenvalue γ). We say that φ is an α -substitution.

Definition: base of a substitutive sequence

- A sequence $\mathbf{x} \in \mathcal{R}^{\mathbb{N}}$ is called α -substitutive if there exist
 - an α -substitution $\varphi \colon \mathcal{B} \to \mathcal{B}^*$,

Let $\varphi \colon \mathcal{A} \to \mathcal{A}^*$ be a substitution. With φ we associate the incidence matrix $M_{\varphi} = [|\varphi(b)|_a]_{a,b \in \mathcal{A}}$, e.g. for

$$\varphi \colon 0 \mapsto 01, \quad 1 \mapsto 00,$$

we have

$$\mathbf{M}_{\varphi} = \begin{bmatrix} 1 & 2 \\ 1 & 0 \end{bmatrix}.$$

Let $\alpha \geq 0$ be the dominant eigenvalue of M_{φ} (i.e. $|\gamma| \leq \alpha$ for any other eigenvalue γ). We say that φ is an α -substitution.

Definition: base of a substitutive sequence

- A sequence $\mathbf{x} \in \mathcal{R}^{\mathbb{N}}$ is called α -substitutive if there exist
 - an α -substitution $\varphi \colon \mathcal{B} \to \mathcal{B}^*$,
 - a fixed point y of φ such that all letters from \mathcal{B} appear in y,

Let $\varphi \colon \mathcal{A} \to \mathcal{A}^*$ be a substitution. With φ we associate the incidence matrix $M_{\varphi} = [|\varphi(b)|_a]_{a,b \in \mathcal{A}}$, e.g. for

$$\varphi \colon 0 \mapsto 01, \quad 1 \mapsto 00,$$

we have

$$\mathbf{M}_{\varphi} = \begin{bmatrix} 1 & 2 \\ 1 & 0 \end{bmatrix}.$$

Let $\alpha \geq 0$ be the dominant eigenvalue of M_{φ} (i.e. $|\gamma| \leq \alpha$ for any other eigenvalue γ). We say that φ is an α -substitution.

Definition: base of a substitutive sequence

- A sequence $\mathbf{x} \in \mathcal{R}^{\mathbb{N}}$ is called α -substitutive if there exist
 - an α -substitution $\varphi \colon \mathcal{B} \to \mathcal{B}^*$,
 - a fixed point y of φ such that all letters from $\mathcal B$ appear in y,
 - a coding $\tau \colon \mathcal{B} \to \mathcal{A}$

Let $\varphi \colon \mathcal{A} \to \mathcal{A}^*$ be a substitution. With φ we associate the incidence matrix $M_{\varphi} = [|\varphi(b)|_a]_{a,b \in \mathcal{A}}$, e.g. for

$$\varphi \colon 0 \mapsto 01, \quad 1 \mapsto 00,$$

we have

$$\mathbf{M}_{\varphi} = \begin{bmatrix} 1 & 2\\ 1 & 0 \end{bmatrix}.$$

Let $\alpha \geq 0$ be the dominant eigenvalue of M_{φ} (i.e. $|\gamma| \leq \alpha$ for any other eigenvalue γ). We say that φ is an α -substitution.

Definition: base of a substitutive sequence

- A sequence $\mathbf{x} \in \mathcal{R}^{\mathbb{N}}$ is called α -substitutive if there exist
 - an α -substitution $\varphi \colon \mathcal{B} \to \mathcal{B}^*$,
 - a fixed point y of φ such that all letters from $\mathcal B$ appear in y,
 - a coding $\tau \colon \mathcal{B} \to \mathcal{A}$

such that $x = \tau(y)$.

Let $\varphi \colon \mathcal{A} \to \mathcal{A}^*$ be a substitution. With φ we associate the incidence matrix $M_{\varphi} = [|\varphi(b)|_a]_{a,b \in \mathcal{A}}$, e.g. for

$$\varphi \colon 0 \mapsto 01, \quad 1 \mapsto 00,$$

we have

$$\mathbf{M}_{\varphi} = \begin{bmatrix} 1 & 2\\ 1 & 0 \end{bmatrix}.$$

Let $\alpha \geq 0$ be the dominant eigenvalue of M_{φ} (i.e. $|\gamma| \leq \alpha$ for any other eigenvalue γ). We say that φ is an α -substitution.

Definition: base of a substitutive sequence

- A sequence $\mathbf{x} \in \mathcal{R}^{\mathbb{N}}$ is called α -substitutive if there exist
 - an α -substitution $\varphi \colon \mathcal{B} \to \mathcal{B}^*$,
 - a fixed point y of φ such that all letters from $\mathcal B$ appear in y,
 - a coding $\tau \colon \mathcal{B} \to \mathcal{A}$

such that $x = \tau(y)$.

Cobham's theorem for substitutive sequences

Theorem (Durand, 2011)

Let x be a (one-sided) sequence, let $\alpha, \beta > 1$ be real numbers.

Let x be a (one-sided) sequence, let $\alpha, \beta > 1$ be real numbers. Assume x is both α -substitutive, and β -substitutive.

Let x be a (one-sided) sequence, let $\alpha, \beta > 1$ be real numbers. Assume x is both α -substitutive, and β -substitutive. Then either

Let x be a (one-sided) sequence, let $\alpha, \beta > 1$ be real numbers. Assume x is both α -substitutive, and β -substitutive. Then either

 $\textcircled{0} \ \alpha \ \text{and} \ \beta \ \text{are multiplicatively dependent},$

Let x be a (one-sided) sequence, let $\alpha, \beta > 1$ be real numbers. Assume x is both α -substitutive, and β -substitutive. Then either

- $\textcircled{0} \ \alpha \ \text{and} \ \beta \ \text{are multiplicatively dependent, or}$
- 2 x is ultimately periodic.

Can we assume that the "base" is the same?

Conjecture II: language version of Cobham theorem for substitutive sequences

Let $\alpha, \beta > 1$ be real numbers.

Let $\alpha, \beta > 1$ be real numbers. Let x be an α -substitutive sequence, and let y be a β -substitutive sequence.

Let $\alpha, \beta > 1$ be real numbers. Let x be an α -substitutive sequence, and let y be a β -substitutive sequence. Assume L(x) = L(y).

Let $\alpha, \beta > 1$ be real numbers. Let x be an α -substitutive sequence, and let y be a β -substitutive sequence. Assume L(x) = L(y). Then, either

Let $\alpha, \beta > 1$ be real numbers. Let x be an α -substitutive sequence, and let y be a β -substitutive sequence. Assume L(x) = L(y). Then, either

() α and β are multiplicatively dependent,

Let $\alpha, \beta > 1$ be real numbers. Let x be an α -substitutive sequence, and let y be a β -substitutive sequence. Assume L(x) = L(y). Then, either

- **(**) α and β are multiplicatively dependent, or
- **2** both x and y are ultimately periodic.

Let $\alpha, \beta > 1$ be real numbers. Let x be an α -substitutive sequence, and let y be a β -substitutive sequence. Assume L(x) = L(y). Then, either

- **(**) α and β are multiplicatively dependent, or
- **2** both x and y are ultimately periodic.

Here one cannot only assume $\mathcal{L}(x) \subset \mathcal{L}(y)!$

Let $\alpha, \beta > 1$ be real numbers. Let x be an α -substitutive sequence, and let y be a β -substitutive sequence. Assume L(x) = L(y). Then, either

- **(**) α and β are multiplicatively dependent, or
- **2** both x and y are ultimately periodic.

Here one cannot only assume $\mathcal{L}(x) \subset \mathcal{L}(y)$! Known in the case:

Let $\alpha, \beta > 1$ be real numbers. Let x be an α -substitutive sequence, and let y be a β -substitutive sequence. Assume L(x) = L(y). Then, either

- **(**) α and β are multiplicatively dependent, or
- **2** both x and y are ultimately periodic.

Here one cannot only assume $\mathcal{L}(x) \subset \mathcal{L}(y)$! Known in the case:

• x and y are automatic (Fagnot's theorem),

Let $\alpha, \beta > 1$ be real numbers. Let x be an α -substitutive sequence, and let y be a β -substitutive sequence. Assume L(x) = L(y). Then, either

- **(**) α and β are multiplicatively dependent, or
- **2** both x and y are ultimately periodic.

Here one cannot only assume $\mathcal{L}(x) \subset \mathcal{L}(y)$! Known in the case:

- x and y are automatic (Fagnot's theorem),
- x and y are primitive substitutive (dynamical proof using the structure of ergodic measures on systems generated by x and y).

-

Lemma

Let $\varphi \colon \mathcal{A} \to \mathcal{A}^*$ be an α -substitution. Let $\tau \colon \mathcal{A} \to \mathcal{B}$ be a coding, and let $Y = \tau(X_{\varphi})$.

伺下 イヨト イヨト

Lemma

Let $\varphi \colon \mathcal{A} \to \mathcal{A}^*$ be an α -substitution. Let $\tau \colon \mathcal{A} \to \mathcal{B}$ be a coding, and let $Y = \tau(X_{\varphi})$. Let $x \in X_{\varphi}$ be a one-sided quasi-fixed point of φ , and let $y = \tau(x)$. Assume y generates Y.

Lemma

Let $\varphi \colon \mathcal{A} \to \mathcal{A}^*$ be an α -substitution. Let $\tau \colon \mathcal{A} \to \mathcal{B}$ be a coding, and let $Y = \tau(X_{\varphi})$. Let $x \in X_{\varphi}$ be a one-sided quasi-fixed point of φ , and let $y = \tau(x)$. Assume y generates Y. Then, y is α -substitutive.

Question

Let φ be a general substitution. Let $\pi: X_{\varphi} \to Y$ be a factor map. Does there exist $K \ge 1$ such that π is K-to-1 on nonperiodic points, i.e. $|\pi^{-1}(y)| \le K$ for all nonperiodic $y \in Y$?

Question

Let φ be a general substitution. Let $\pi: X_{\varphi} \to Y$ be a factor map. Does there exist $K \ge 1$ such that π is K-to-1 on nonperiodic points, i.e. $|\pi^{-1}(y)| \le K$ for all nonperiodic $y \in Y$?

Suitable finitary characterisation of substitutivity

???

Elżbieta Krawczyk Quasi-fixed points of substitutions

-