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Example I
Let A = {0, 1} and consider a substitution of length 2

φ(0) = 01 φ(1) = 00

with its 2-automatic fixed point

x = 01000101 . . .

Let

Xφ = {z ∈ AN | all words appearing in z appear in x}.

In other words

Xφ = O(x) = {Tn(x) | n ∈ N},

where T(x0x1x2 . . . ) = x1x2 . . .

Put a total order on A = {0 < 1} and ask how the
lexicographically minimal sequence z ∈ Xφ looks like.
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Example I & theorem

One can show (Currie, Rampersad, Saari, Zamboni, 2013) that
lexicographically minimal z ∈ Xφ is the unique solution to

φ2(z) = 01z;

in particular, z is again 2-automatic.

Theorem
Let φ : A → A∗ be a substitution and τ : A → B a coding. Fix
some total order on B and let b ∈ B. Let z ∈ τ(Xφ) be the
lexicographically smallest among sequences starting with b.
1 (Allouche, Rampersad, Shallit, 2009) If φ is of constant
length k, then z is k-automatic.

2 (Currie, Rampersad, Saari, Zamboni, 2013) If φ is
primitive, then z is substitutive (=morphic).

As far as I know open in general.

Elżbieta Krawczyk Quasi-fixed points of substitutions



Example I & theorem

One can show (Currie, Rampersad, Saari, Zamboni, 2013) that
lexicographically minimal z ∈ Xφ is the unique solution to

φ2(z) = 01z;

in particular, z is again 2-automatic.

Theorem
Let φ : A → A∗ be a substitution and τ : A → B a coding. Fix
some total order on B and let b ∈ B. Let z ∈ τ(Xφ) be the
lexicographically smallest among sequences starting with b.

1 (Allouche, Rampersad, Shallit, 2009) If φ is of constant
length k, then z is k-automatic.

2 (Currie, Rampersad, Saari, Zamboni, 2013) If φ is
primitive, then z is substitutive (=morphic).

As far as I know open in general.

Elżbieta Krawczyk Quasi-fixed points of substitutions



Example I & theorem

One can show (Currie, Rampersad, Saari, Zamboni, 2013) that
lexicographically minimal z ∈ Xφ is the unique solution to

φ2(z) = 01z;

in particular, z is again 2-automatic.

Theorem
Let φ : A → A∗ be a substitution and τ : A → B a coding. Fix
some total order on B and let b ∈ B. Let z ∈ τ(Xφ) be the
lexicographically smallest among sequences starting with b.
1 (Allouche, Rampersad, Shallit, 2009) If φ is of constant
length k, then z is k-automatic.

2 (Currie, Rampersad, Saari, Zamboni, 2013) If φ is
primitive, then z is substitutive (=morphic).

As far as I know open in general.

Elżbieta Krawczyk Quasi-fixed points of substitutions



Example I & theorem

One can show (Currie, Rampersad, Saari, Zamboni, 2013) that
lexicographically minimal z ∈ Xφ is the unique solution to

φ2(z) = 01z;

in particular, z is again 2-automatic.

Theorem
Let φ : A → A∗ be a substitution and τ : A → B a coding. Fix
some total order on B and let b ∈ B. Let z ∈ τ(Xφ) be the
lexicographically smallest among sequences starting with b.
1 (Allouche, Rampersad, Shallit, 2009) If φ is of constant
length k, then z is k-automatic.

2 (Currie, Rampersad, Saari, Zamboni, 2013) If φ is
primitive, then z is substitutive (=morphic).

As far as I know open in general.

Elżbieta Krawczyk Quasi-fixed points of substitutions



Example I & theorem

One can show (Currie, Rampersad, Saari, Zamboni, 2013) that
lexicographically minimal z ∈ Xφ is the unique solution to

φ2(z) = 01z;

in particular, z is again 2-automatic.

Theorem
Let φ : A → A∗ be a substitution and τ : A → B a coding. Fix
some total order on B and let b ∈ B. Let z ∈ τ(Xφ) be the
lexicographically smallest among sequences starting with b.
1 (Allouche, Rampersad, Shallit, 2009) If φ is of constant
length k, then z is k-automatic.

2 (Currie, Rampersad, Saari, Zamboni, 2013) If φ is
primitive, then z is substitutive (=morphic).

As far as I know open in general.

Elżbieta Krawczyk Quasi-fixed points of substitutions



Example II
Let A = {0, 1, 2, 3} and let τ : A → A∗ be the substitution given
by

τ(0) = 01023, τ(1) = 12, τ(2) = 22, τ(3) = 33.

A subsystem Y ⊂ Xτ is transitive if there exists a sequence y
that generates it, that is

Y = {z ∈ Xτ | all words appearing in z appear in y} = O(y)

How do transitive subsystems of Xτ look like?
Write v = 01 and w = 23. Consider

z = · · · τ2(v)τ(v)v.0wτ(w)τ2(w) · · · .

and for any n consider the suffix z[n,∞) = znzn+1 · · · of z and
Zn = O(z[n,∞)) ⊂ Xτ. We have

Zn = O(z[n,∞)) ∪ {3k2ω | k ≥ 0} ∪ {2k3ω | k ≥ 0}.

Note that z = T2τ(z).
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A definition

Let φ : A → A∗ be a substitution (for simplicity assumed to be
growing, i.e. |φn(a)| → ∞ for all a ∈ A.)

Definition

A sequence z in AZ or AN is called a quasi-fixed point of φ if
there exist k > 0 and m ∈ Z such that

Tm(φk(z)) = z.

If x ∈ AN and m < 0 this means

φk(z) = T−mz
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Simple closure properties of quasi-fixed points

Let φ : A → A∗ be a substitution.
1 The set of quasi-fixed points of φ is closed under the left
and right shifts and φ.

2 Every quasi-fixed point of φ is substitutive.
3 If φ is of constant length k, then every quasi-fixed point of
φ is k-automatic.
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Example II & theorem

Byszewski, Konieczny, K.

Let φ : A → A∗ be a substitution. Any transitive subsystem
Y ⊂ Xφ is generated by some quasi-fixed point of φ.

In particular, any transitive subsystem of a substitutive (resp.
k-automatic) system is again substitutive (resp. k-automatic).
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Quasi-fixed points of substitutions

Theorem (Shallit, Wang & Béal, Perrin, Restivo)

Let φ : A → A∗ be a substitution and let x ∈ AZ.

Then
x = Tmφ(x) for some m ∈ Z if and only if x is a shift of a point y
that is of one of the following forms:

1 y = ωφ(a).φω(b) is a fixed point of φ, or

2 there exist a ∈ A, nonempty v, v′ ∈ A∗ such that
φ(a) = vav′, and y = . . . φ2(v)φ(v)v.av′φ(v′)φ2(v′) . . ..

Changing φ to φk gives a description of all two-sided quasi-fixed
points of φ.

In (1), y ∈ Xφ if and only if ab ∈ L(Xφ).

A one-sided sequence is a quasi-fixed point of φ if and only if it
is a suffix of two-sided quasi-fixed point.
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Some problems

Problem

Let φ be a substitution (resp. a substitution of constant length).
Characterize the set of substitutive/automatic sequences in X.

Remarks:

most systems generated by substitutions have uncountably
many points (e.g. Thue–Morse system) and there are only
countably many substitutive sequences;

there are substitutive sequences in X other than x (e.g. all
the shifts of x);
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Some solutions

Theorem
Let φ be a substitution of length k. Let π : Xφ → Y be a factor
map onto some subshift Y. The following hold.

1 A sequence y ∈ Y is k-automatic if and only if y = π(x) for
some quasi-fixed point x of φ.

2 If y ∈ Y is k-automatic and nonperiodic, then all points in
π−1(y) are quasi-fixed points of φ.

The characterisation holds for invertible and noninvertible
systems.

If y ∈ Y is substitutive, then it is k-automatic.
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Some older results

Theorem (Holton, Zamboni, 2001)

Let φ : A → A∗ be a primitive substitution, let τ : A → B be a
coding, and let Y = τ(Xφ). Assume that Y is infinite. Then,
π(x) ∈ Y is substitutive if and only if x is a quasi-fixed point of
φ.
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Some questions

Conjecture

Let φ be a general substitution. Let π : Xφ → Y be a factor map
onto some subshift Y. The following hold.

1 A sequence y ∈ Y is substitutive if and only if y = π(x) for
some quasi-fixed point x of φ.

2 If y ∈ Y is substitutive and nonperiodic, then all points in
π−1(y) are quasi-fixed points of φ.
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Quasi-fixed points as rational points
Let φ be a primitive substitution of constant length k and let τ
be a coding (or a factor map).

Let
Zk = lim

←−−
Z/knZ ≡

∏
p|k

Zp

be the ring of k-adic integers.
Assuming that Y = τ(Xφ) is infinite, one has a continuous onto
map κ : Y → Zk such that

κ(τ(φ-periodic points)) = 0,
κ(Tx) = κ(x) + 1 for any x ∈ X.
κ(τ(φ(x))) = k · κ(x) for any x ∈ X.

An alternative description for minimal automatic systems

Under the above assumptions, automatic sequences in Y
correspond to rational numbers in Zk via the map κ, i.e.

{z ∈ Y | z is k-automatic} = κ−1(Zk ∩ Q).
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Something about the proof

Theorem
Let φ be a substitution of constant length k. Let π : Xφ → Y be
a factor map onto some subshift Y. The following hold.

1 A sequence y ∈ Y is automatic if and only if y = π(x) for
some quasi-fixed point x of φ.

2 If y ∈ Y is automatic and nonperiodic, then all points in
π−1(y) are quasi-fixed points of φ.

We need to show all automatic sequences in Y are of the
required form.
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We can assume that the base is the same

Theorem (Fagnot, 1997)

Let X be a k-automatic system. If z ∈ X is automatic, then it is
k-automatic.

From my work with Müllner it will follow that if z is
substitutive, then it is, in fact, k-automatic.
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Factor maps are finite-to-one over nonperiodic points

Proposition

Let φ be a substitution of constant length k. There exists K ≥ 1
such that every factor map π : Xφ → Y is K-to-1 on nonperiodic
points, i.e. |π−1(y)| ≤ K for all nonperiodic y ∈ Y.

Handles the factor map/coding π.
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Finitary characterisation of automaticity

For automatic sequences we have the following nice ”inherent”
finitary characterisation.

Kernel characterisation of automaticity

A sequence y = (yn)n is k-automatic if and only if its k-kernel

Kk(y) = {(yi+kmn)n | m ≥ 0, 0 ≤ i < km}

is finite.

One assumes that z ∈ Xφ is k-automatic, so its k-kernel is finite.
One can write down this kernel in terms of the (constant length
k) substitution φ.
Using finiteness of the kernel, Critical Factorisation Theorem,
and some counting arguments one shows that z has to be a
quasi-fixed point of φ.
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Critical factorisation theorem/recognizability

Critical Factorisation Theorem
Let A be an alphabet and let W ⊂ A∗ be a finite set of
nonempty words of size d. Let x ∈ AZ be nonperiodic. Then, x
has at most d W-factorisations with pairwise disjoint cuts.

Related result for substitutive system is recognizability

Theorem (Berthé, Steiner, Thuswaldner, Yassawi, 2017)

Let φ be a substitution. For any nonperiodic point x ∈ Xφ there
exist a unique x′ ∈ Xφ and a unique 0 ≤ n < |φ(x′0)| such that
x = Tn(φ(x′)).
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Primitive substitutions

Theorem (Holton, Zamboni

Let φ : A → A∗ be a primitive substitution, let τ : A → B be a
coding, and let Y = τ(Xφ). Then

1 A sequence y ∈ Y is substitutive if and only if y = π(x) for
some quasi-fixed point x of φ.

2 If y ∈ Y is substitutive and nonperiodic, then all points in
π−1(y) are quasi-fixed points of φ.
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One could assume that the base is the same

One could assume that the ”base” of the sequence y ∈ Y is the
same as that of the substitutin φ, but it is not needed (more
about bases later).
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Factor maps are finite-to-one over nonperiodic points

Proposition(Durand)

Let φ be a primitive substitution. There exists K ≥ 1 such that
every factor map π : Xφ → Y to an infinite system Y is K-to-1,
i.e. |π−1(y)| ≤ K for all y ∈ Y.
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Finitary characterisation of primitive substitutivity

Consider the sequence

x = 011|010|0110|01|011|010|01|0110|011|010|01 . . .

The return words to prefix u = 01 are 011, 010, 0110, 01.

The derived sequence of x with respect to prefix u is the
sequence over the alphabet {0, 1, 2, 3} given by
Dx(u) = 0123013201 . . . .

Characterisation of primitive substitutive sequences in terms of
derived sequences (Durand, 2000)

Let x be a uniformly recurrent sequence. Then x is primitive
substitutive if and only if the set of derived sequences Dx(u) is
finite where u runs over all prefixes of x.
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How about general (growing?) substitutions?

Conjecture I

Let φ : A → A∗ be a (growing) substitution, let τ : A → B be a
coding, and let Y = τ(Xφ). Then

1 A sequence y ∈ Y is substitutive if and only if y = π(x) for
some quasi-fixed point x of φ.

2 If y ∈ Y is substitutive and nonperiodic, then all points in
π−1(y) are quasi-fixed points of φ.

It would be enough to show that any y ∈ Y which is substitutive
and generates Y (i.e. L(y) = L(Y)) is of required form.

One can reduce to this case using the characterisation of
transitive subsystems of Xφ.
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Base of substitutive sequences
Let φ : A → A∗ be a substitution.

With φ we associate the
incidence matrix Mφ = [|φ(b)|a]a,b∈A, e.g. for

φ : 0 7→ 01, 1 7→ 00,

we have

Mφ =
[
1 2
1 0

]
.

Let α ≥ 0 be the dominant eigenvalue of Mφ (i.e. |γ| ≤ α for any
other eigenvalue γ). We say that φ is an α-substitution.

Definition: base of a substitutive sequence

A sequence x ∈ AN is called α-substitutive if there exist

an α-substitution φ : B → B∗,

a fixed point y of φ such that all letters from B appear in y,

a coding τ : B → A

such that x = τ(y).
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Cobham’s theorem for substitutive sequences

Theorem (Durand, 2011)

Let x be a (one-sided) sequence, let α, β > 1 be real numbers.

Assume x is both α-substitutive, and β-substitutive. Then either
1 α and β are multiplicatively dependent, or
2 x is ultimately periodic.
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Can we assume that the ”base” is the same?

Conjecture II: language version of Cobham theorem for
substitutive sequences

Let α, β > 1 be real numbers. Let x be an α-substitutive
sequence, and let y be a β-substitutive sequence. Assume
L(x) = L(y). Then, either
1 α and β are multiplicatively dependent, or
2 both x and y are ultimately periodic.

Here one cannot only assume L(x) ⊂ L(y)!
Known in the case:
1 x and y are automatic (Fagnot’s theorem),
2 x and y are primitive substitutive (dynamical proof using
the structure of ergodic measures on systems generated by
x and y).
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Conjectures are connected

Conjecture I implies Conjecture II.

Lemma
Let φ : A → A∗ be an α-substitution. Let τ : A → B be a
coding, and let Y = τ(Xφ). Let x ∈ Xφ be a one-sided quasi-fixed
point of φ, and let y = τ(x). Assume y generates Y. Then, y is
α-substitutive.
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Are factor maps finite-to-one over nonperiodic points?

Question

Let φ be a general substitution. Let π : Xφ → Y be a factor
map. Does there exist K ≥ 1 such that π is K-to-1 on
nonperiodic points, i.e. |π−1(y)| ≤ K for all nonperiodic y ∈ Y?
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Suitable finitary characterisation of substitutivity

???
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