Net occurrences in Fibonacci and Thue-Morse Words

Kaisei Kishi¹,

Peaker Guo^{2,3}

1 Kyushu University

2 Institute of Science Tokyo

3 The University of Melbourne

Fibonacci words

Definition

The *k*-th Fibonacci words F_k over $\Sigma = \{a, b\}$ is defined as follows:

- $ightharpoonup F_1 = b, \quad F_2 = a,$
- $ightharpoonup F_k = F_{k-1} \cdot F_{k-2} \ (k \ge 3)$

Let $f_k = |F_k|$. (k-th Fibonacci number)

e.g.
$$F_3 = a \ b$$
,

 $F_4 = a b a$

 $F_5 = a b a a b$,

 $F_6 = a b a a b a b a$

Fibonacci words

Definition

The *k*-th Fibonacci words F_k over $\Sigma = \{a, b\}$ is defined as follows:

- $ightharpoonup F_1 = b, \quad F_2 = a,$
- $ightharpoonup F_k = F_{k-1} \cdot F_{k-2} \ (k \ge 3)$

Let $f_k = |F_k|$. (k-th Fibonacci number)

e.g.
$$F_3 = a \ b$$
,
 $F_4 = a \ b \ a$,
 $F_5 = a \ b \ a \ a \ b$,
 $F_6 = a \ b \ a \ a \ b \ a \ b$

Thue-Morse words

```
Definition
The k-th Thue-Morse word TM_k over \Sigma = \{a, b\} is defined as follows:

We get \overline{TM_j} by replacing all a and b in TM_j

Let \tau_k = |TM_k|.
```

Thue-Morse words

```
Definition
The k-th Thue-Morse word TM_k over \Sigma = \{a, b\} is defined as follows:

We get \overline{TM_j} by replacing all a and b in TM_j

Let \tau_k = |TM_k|.
```

Net occurrence

Definition

In a string T, an occurrence of a substring S = T[i ... j] is a net occurrence if S is repeated, while both left extension T[i - 1 ... j] and right extension T[i ... j + 1] are unique in T.

e.g.
$$T =$$
the theoretical theme

There are three occurrences of "the" in T.

Net occurrence

Definition

In a string T, an occurrence of a substring S = T[i ... j] is a net occurrence if S is repeated, while both left extension T[i-1... j] and right extension T[i... j+1] are unique in T.

These two occurrences of "the" are not net occurrences in T.

Net occurrence

Definition

In a string T, an occurrence of a substring S = T[i ... j] is a net occurrence if S is repeated, while both left extension T[i - 1 ... j] and right extension T[i ... j + 1] are unique in T.

e.g.
$$T = the$$
 theoretical theme

The only net occurrence of "the", since both left extension and right extension are unique.

Note. In this talk, we assume that occurrence T[0 ... j] and T[i ... |T| + 1] to be unique in T.

Net Frequency

Definition

In a string T, Net Frequency(NF) of a substring S = T[i ... j] is the number of net occurrence of in T.

There are three occurrence of "the" in T, but NF of "the" is one.

Net Frequency

Definition

In a string T, Net Frequency(NF) of a substring S = T[i ... j] is the number of net occurrence of in T.

There are three occurrence of "the" in T, but NF of "the" is one.

Only the is used as a definite article, while the other the are prefixes of other words, which are "theoretical" and "theme".

Net Frequency

Definition

In a string T, Net Frequency(NF) of a substring S = T[i ... j] is the number of net occurrence of in T.

There are three occurrence of "the" in T, but NF of "the" is one.

Only the is used as a definite article, while the other the are prefixes of other words, which are "theoretical" and "theme".

Originally, NF is motivated by Chinese natural language processing tasks. [Lin and Yu, 2001]

Recent works

► There are some algorithms which compute the NF.

Offline settings: [Guo et al., CPM 2024], [Ohlebusch et al., SPIRE 2024]

Online settings: [Guo et al., SPIRE 2024] [Inenaga, ArXiv 2024]

[Mieno and Inenaga, CPM 2025]

Also, Mieno and Inenaga (2025) characterized net occurrences in terms of the minimal unique substrings (MUSs).

Net occurrence in Fibonacci words

F_{i}										
F_{i-2}	F_{i} .	-2	F_{i-5} F_{i-4}			-4				
F_{i-2}	F_{i-3}		F_{i-2}							
F_{i-2}	F_{i-2}			Q_i		Δ'				
F_{i-2}	Q_i	Δ	F_{i-4}	Q	\mathbf{e}_{i}	Δ'				

$$Q_i := F_{i-3}[1 .. |F_{i-3}| - 2]$$

We proved:

- (1) All three colored occurrences are Net occurrences.
- (2) Other occurrences are not Net occurrences.

Net occurrence in Thue-Morse words

\mathcal{T}_i										
\mathcal{T}_{i-2}	1	$\overline{\mathcal{T}_{i-3}}$	\mathcal{T}_{i}	-2 5	\mathcal{T}_{i-3}	\mathcal{T}_i	-2 9			
T_{i-3} $\overline{\tau_{i-}}$	\mathcal{T}_i	$-3^{2} \tau_{i-4}$	\mathcal{T}_i .	-2	τ_{i-4} τ_{i-4}	\mathcal{T}_{i-3} 8	$\overline{\mathcal{T}_{i-3}}$			
T_{i-3} $\overline{\tau_{i-}}$	τ_{i-4}	$\overline{\mathcal{T}_{i-3}}$ 3	\mathcal{T}_i	-2	$\overline{\mathcal{T}_{i-4}}$ $\overline{\mathcal{T}_{i}}$	-3^{7} τ_{i-4}	$\overline{\mathcal{T}_{i-3}}$			
\mathcal{T}_{i-2}		$\overline{\mathcal{T}_i}$	${-2}$ 4	$\overline{\mathcal{T}_{i}}$	-2 6	\mathcal{T}_i	-2			

$$\mathcal{T}_i := TM_i$$

We proved:

- (1) All nine colored occurrences are Net occurrences.
- (2) Other occurrences are not Net occurrences.

Basic properties of Net occurrences 1/2

Lemma 1

In a string T, if an occurrence of string S' is a proper **super**-occurrence of a net occurrence of string S in T, then occurrence of S' is not a net occurrence.

An occurrence of "the_" is not a net occurrence since it must be unique in T.

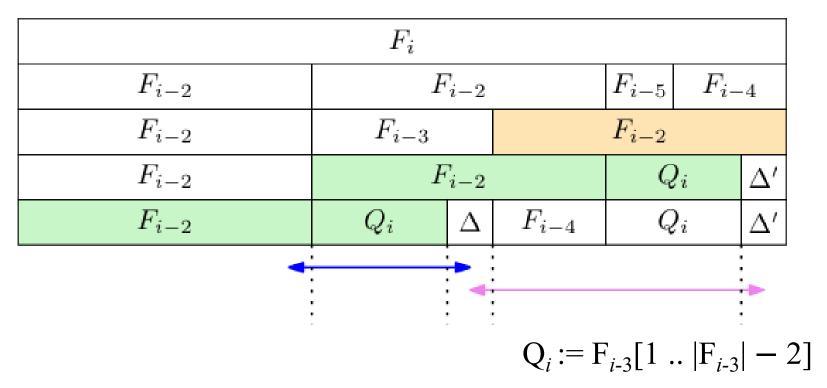
Basic properties of Net occurrences 2/2

Lemma 2

In a string T, if an occurrence of string S' is a proper **sub**-occurrence of a net occurrence of string S in T, then occurrence of S' is not a net occurrence.

An occurrence of "he" is not a net occurrence since it must be repeated in T, but left or right extension is also repeated in T.

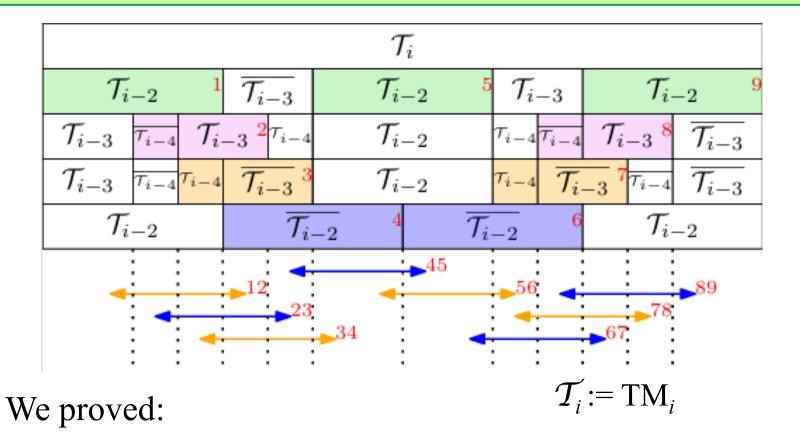
Net occurrence in Fibonacci words (restate)



We proved:

- (1) All three colored occurrences are Net occurrences.
- (2)' All of occurrences, which are shown in colored arrow are not Net occurrences.

Net occurrence in Thue-Morse words(restate)



- (1) All nine colored occurrences are Net occurrences.
- (2)' All of occurrences, which are shown in colored arrow are not Net occurrences.

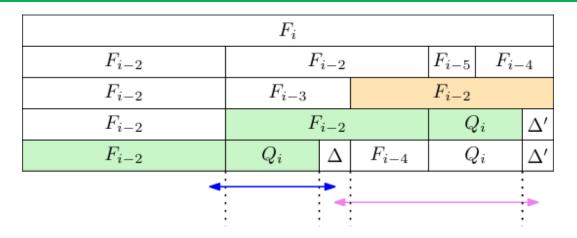
How to find Net occurrences?

To confirm an occurrence of substring T[i ... j] is a net occurrences in T, we have to prove

- 1. T[i ... j] is repeated in T.
- 2. $T[i 1 \dots j]$ is unique in T.
- 3. T[i ... j + 1] is unique in T.

If we can count the number of occurrences of all of the substrings T[i ... j] in T, we can prove the above and find all of the Net occurrences in T.

Sketch of the proof of the Net occurrence in Fibonacci and Thue-Morse words

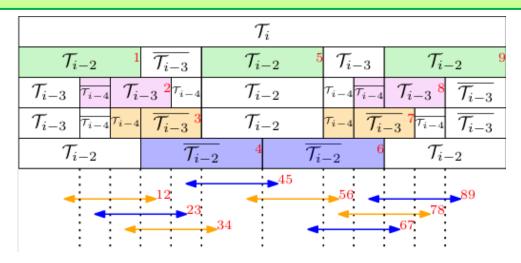


We proved:

- (1) All colored occurrences are Net occurrences.
- (2)' All of occurrences, which are shown in colored arrow are Net occurrences.

We proved the above by counting the number of occurrences of substrings in F_i and TM_i carefully.

Sketch of the proof of the Net occurrence in Fibonacci and Thue-Morse words



We proved:

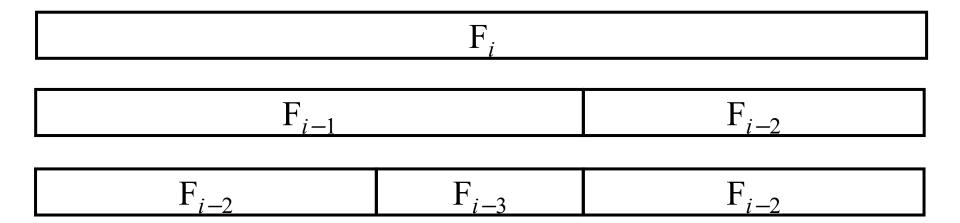
- (1) All colored occurrences are Net occurrences.
- (2)' All of occurrences, which are shown in colored arrow are Net occurrences.

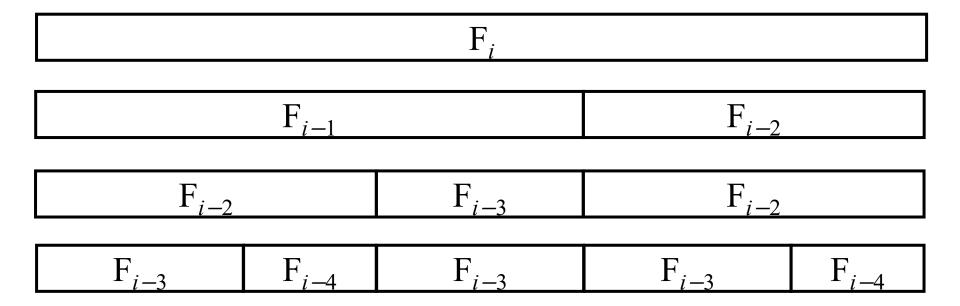
We proved the above by counting the number of occurrences of substrings in F_i and TM_i carefully.

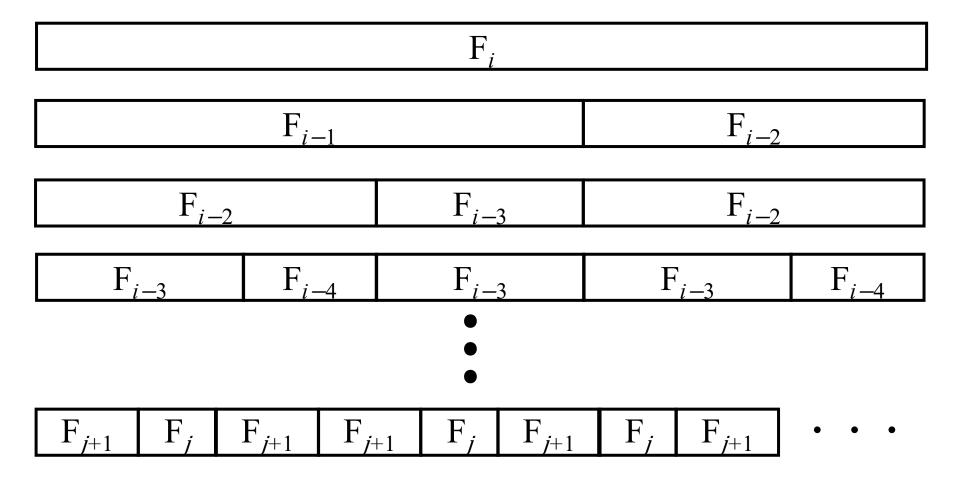
To count these substrings, we characterized the occurrences of in F_j and TM_j in F_i and TM_i where $j \le i$.

 F_i

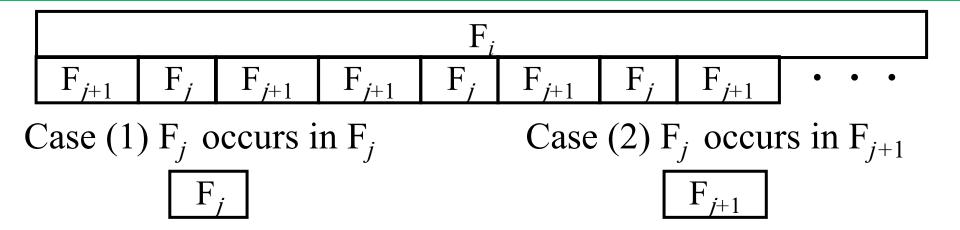
 \mathbf{F}_{i}







Occurrences of Fibonacci Words of smaller order

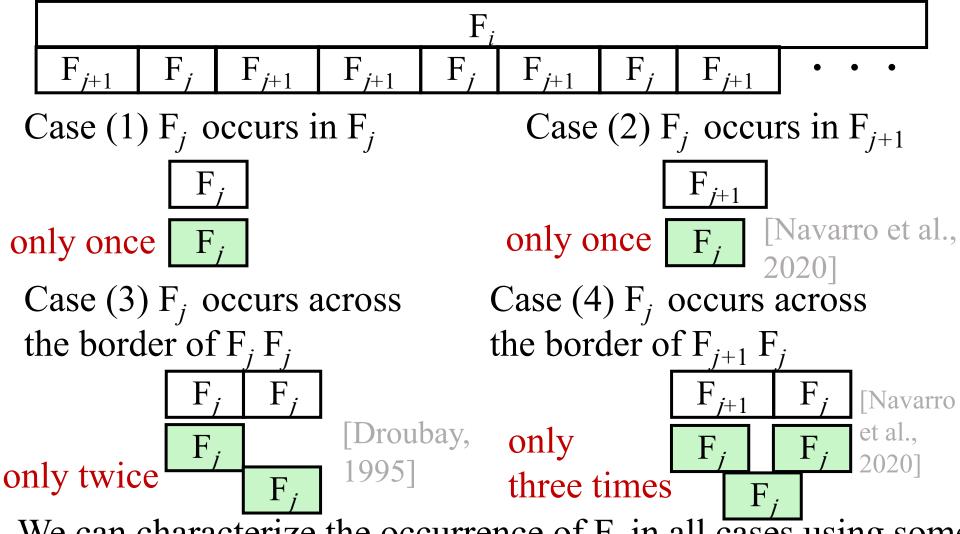


Case (3) F_i occurs across the border of F. F.

Case (4) F_i occurs across the border of F_{j+1} F_j

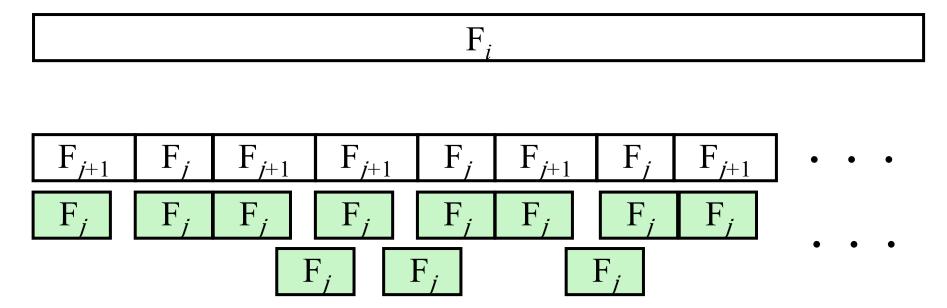
Since $f_i < f_{i+1}$, there are only four cases where F_i , occurs in F_i .

Occurrences of Fibonacci Words of smaller order



We can characterize the occurrence of F_j in all cases using some theorem about Fibonacci words.

Occurrences of Fibonacci Words of smaller order



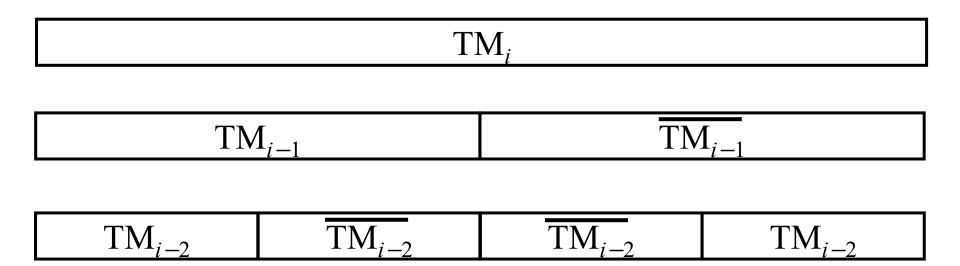
Therefore, we can characterize all the occurrence of F_i in F_i .

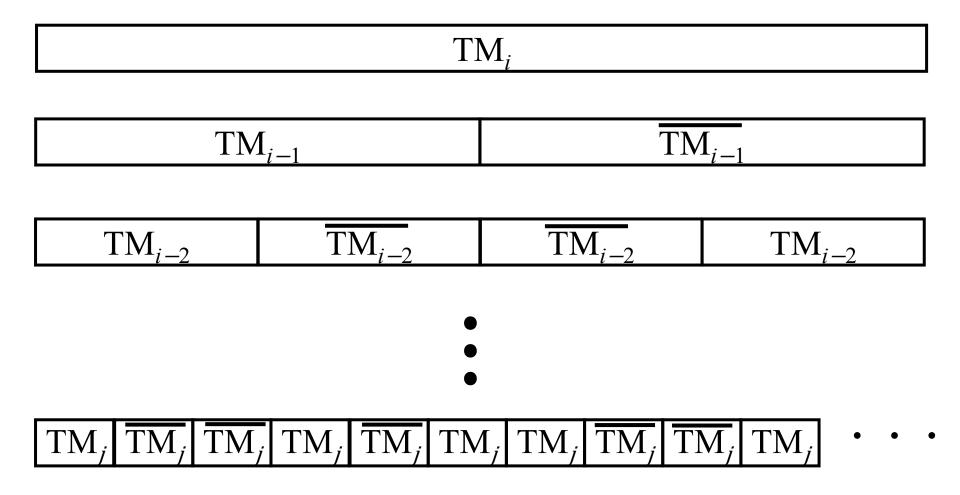
Note: This is also proved in [Iliopoulos et al., 1997] and [Rytter, 2006] in a different way.

 TM_i

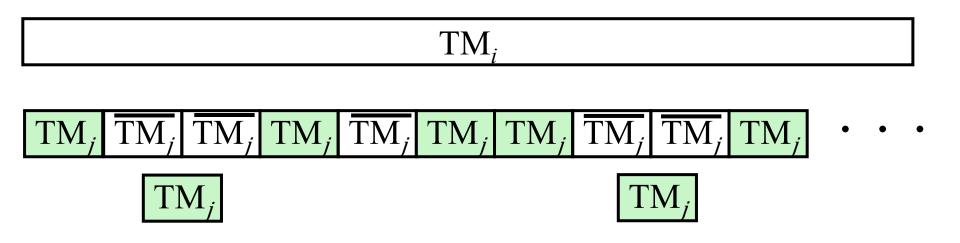
 TM_i

 $\overline{\mathsf{TM}}_{i-1}$





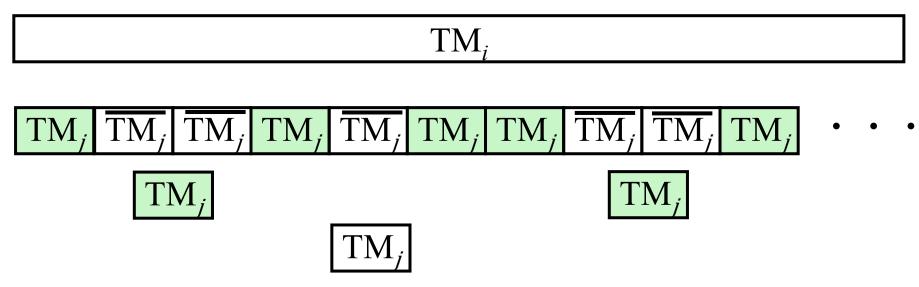
Theorem [Lothaire, 1997]
TM_i has no overlapping occurrences of the same string.



Since Thue-Morse words is overlapping free and TM_j occurs only once in $\overline{TM_j}$ $\overline{TM_j}$, we can characterize all of the occurrences of TM_j in TM_i . Note: This is also proved in [Radoszewski and Rytter, 2012] in

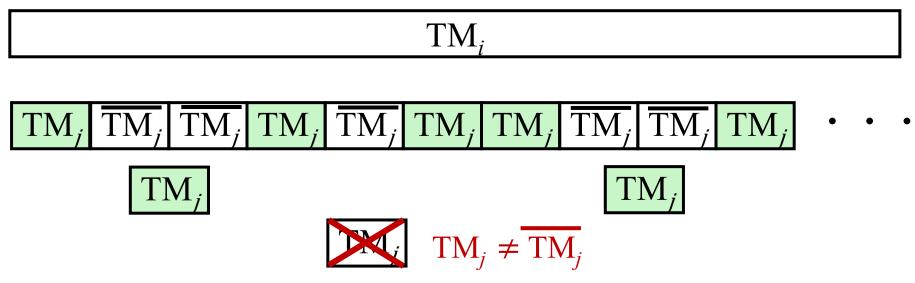
a different way.

Theorem [Lothaire, 1997]
TM_i has no overlapping occurrences of the same string.



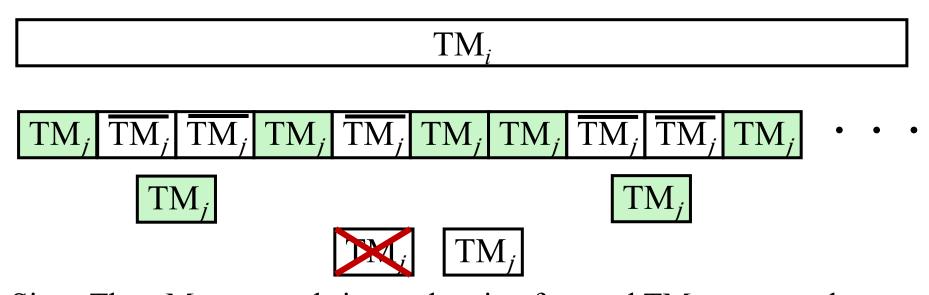
Since Thue-Morse words is overlapping free and TM_j occurs only once in $\overline{TM_j}$ $\overline{TM_j}$, we can characterize all of the occurrences of TM_j in TM_i .

Theorem [Lothaire, 1997] TM_i has no overlapping occurrences of the same string.



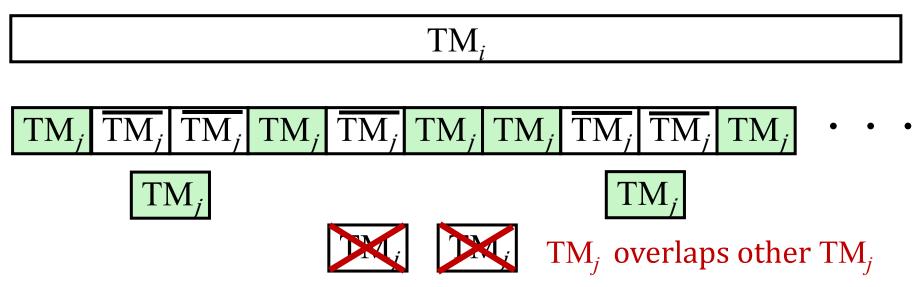
Since Thue-Morse words is overlapping free and TM_j occurs only once in $\overline{TM_j}$ $\overline{TM_j}$, we can characterize all of the occurrences of TM_j in TM_i .

Theorem [Lothaire, 1997] TM_i has no overlapping occurrences of the same string.



Since Thue-Morse words is overlapping free and TM_j occurs only once in $\overline{TM_j}$, we can characterize all of the occurrences of TM_j in TM_i .

Theorem [Lothaire, 1997] TM_i has no overlapping occurrences of the same string.



Since Thue-Morse words is overlapping free and TM_j occurs only once in $\overline{TM_j}$ $\overline{TM_j}$, we can characterize all of the occurrences of TM_j in TM_i .

Conclusion

- ➤ We introduced the net occurrences and its some properties.
- ➤ We showed characterization of occurrences of Fibonacci words and Thue-Morse Words of smaller order.
- ➤ We showed there are only three net occurrences in Fibonacci words and only nine net occurrences in Thue-Morse words.

Walnut and Net Occurrences

- ➤ Walnut is a free software that has been used to prove and disprove many theorems in combinatorics on words.
- ➤ Jeffrey Shallit provided alternative proofs using Walnut for our results on net occurrences in Fibonacci and Thue-Morse words.
- In other automatic sequences.

Future works

► Characterization of smaller-order occurrences of other words.

- Net occurrences of other morphic words,
 - —Such as k-bonacci and Thue-Morse-like words.