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Our results

Theorem

Sequences arising as coding of hypercubic billiards are not balanced on all factors. (for
cubes of dimension at least 3)

Theorem

Cubic (dimension 3) billiard sequences are not balanced on factors of length 2.

▶ To be defined: billiard sequences; subshifts; balance.

▶ Assumptions: irrational direction.

▶ A topological surprise: cohomology.
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The plan

1. Define billiard sequences and subshifts;

2. Define balance;

3. (show the results again)

4. Define cohomology for subshifts;

5. “What does cohomology got to do with it?”: some ideas of the proof.
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The object of our results

Our results deal with:

▶ billiard sequences in higher dimension

▶ still a line trajectory in a (d + 1)-dimensional cube

▶ code the trajectory by the d-faces it meets

How we choose to see it:

▶ Cut-and-project sequences

▶ Rd+1 = Lθ ⊕ L⊥θ
▶ Which points of (Zd+1 +m) land in a strip [0; 1]d+1 + Lθ?

Assume: the trajectory is irrational, meaning θ = (1, θ1, . . . , θd) are rationally
independents.
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Why it’s useful

The cut-and-project framing can be useful.

m

W

ex0

Use (Z2 +m) instead of Z2.
Parameter m: starting point of the billiard trajectory.
Sufficient to take m in a window W = π⊥([0; 1]d+1).
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Why it’s useful, II

A good grip on the window gives insight on the language of the sequence.
Below, for a cubic billiard.

ab

ac

ba

ca cb

bc

bb

Partition of the window encoding the first two letters of the billiard trajectory.
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Frequency and balance

Given a word · · · x−1x0x1 · · · ∈ AZ,
The frequency of the letter a ∈ A is

µa =
1

n
· lim
n→+∞

(
number of a in x0 · · · xn−1

)
if it exists. For billiard sequences, it exists.

How fast does it converge? If

|(number of a in x0 . . . xn−1)− n · µa| < C

independently of n, we say that the word is balanced on a.
Can define balance for any letter or finite factor.
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Cohomology for a graph

Consider a cell-complex (in dimension 1: a graph).

▶ Vertices

▶ Oriented edges

▶ A boundary function: if e goes from v0 to v1, then ∂e = v1 − v0.

A cocycle is a function defined on edges with values (for example) in R.

▶ A cocycle φ pairs with paths (e1, . . . , en): φ(e1, . . . , en) =
∑

i φ(ei ).

▶ A cocycle is a coboundary if it derives from a potential: φ(e) = b(e+)− b(e−) for
a function b defined on vertices.



Cohomology for a graph

Consider a cell-complex (in dimension 1: a graph).

▶ Vertices

▶ Oriented edges

▶ A boundary function: if e goes from v0 to v1, then ∂e = v1 − v0.

A cocycle is a function defined on edges with values (for example) in R.
▶ A cocycle φ pairs with paths (e1, . . . , en): φ(e1, . . . , en) =

∑
i φ(ei ).

▶ A cocycle is a coboundary if it derives from a potential: φ(e) = b(e+)− b(e−) for
a function b defined on vertices.
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Consider the following graph decomposition of a line.

· · · • • • • • • · · ·

All cocycles derive from a potential.
The cohomology group H1 = {cocycles}/{coboundaries} is trivial.
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Less silly example

Consider the following graph decomposition of a line associated with an infinite word x .

· · · • • • • • • · · ·a
x−1

b
x0

a
x1

a
x2

b
x3

Additional constraint:

▶ Not all cocycles are accepted.

▶ φ(xi ) should only depend on a finite number of past and future coordinates.

▶ Acceptable coboundaries (potential functions on vertices) are defined similarly.

Example: φ(xi ) = 1 if the letter is a, 0 otherwise.

The result: pattern-equivariant cohomology (or Cech cohomology of the subshift).
Also called strong cohomology.
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An old example of using cohomology

· · · • • • • • • · · ·a
x−1

b
x0

a
x1

a
x2

b
x3

Given such a cocycle with positive values, it can be used to define the length of the
“tiles”.
Simplest example: one length for a, one length for b.
Can be used to define a suspension of the subshift and study flow equivalence.
See:

▶ Parry & Sullivan, A topological invariant of flows on 1-dimensional spaces, 1975.

▶ Parry & Tuncel, Classification problems in ergodic theory, 1982.



What does it have to do with balance?

How does cohomology help studying balance properties?
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Letter-counting functions are cocycles. So are pattern-counting functions. Above, the
counting function φab.
The word x is balanced for the factor ab if:

|φab(x0x1 · · · xn−1)− µab1(x0 · · · xn−1)|

is bounded uniformly in n.
(1 is the cocycle which is 1 on all letters).
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Balance and cohomology

A word x is balanced on the factor w if there exists C such that

|φw (x0x1 · · · xn−1)− µw1(x0 · · · xn−1)| < C

Gottshalk-Hedlund’s theorem (assuming minimality): this is equivalent to φw − µw1

being a weak coboundary.

(Meaning: this cocycle derives from a potential; the potential function does not only
depend on finitely many past and future coordinates, but it can be approximated by
such functions)



Balance on letters

Sturmian sequences are balanced on letters: it means

φa(x0x1 · · · xn−1)− µa1(x0 · · · xn−1)

is a difference of potential b(v0)− b(vn).



Sturmian, continued

The dimension of H1 for Sturmian sequences is 2: generated by the letter-counting
function 1 and the a-discrepancy function φa − µa1.
Any other factor-discrepancy function is a combination of these two (up to a coboundary).
By a frequency argument, one shows that it is a multiple of φa − µa1 (up to a coboundary).
Therefore, Sturmian sequences are balanced on all factors.



In higher dimensions

For higher-dimensional billiards,

1. The cohomology group H1 is generated by the factor-counting functions φw ;

2. The dimension of the cohomology group H1 is infinite
(Forest–Hunton–Kellendonk);
(there can be a lot of independent discrepancy functions)

3. The subspace of H1 generated by weak coboundaries is of finite dimension
(Kellendonk–Sadun);

4. Not all discrepancy functions can be bounded: billiard sequences can’t be
balanced on all factors.
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