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What we want to investigate?

aabbcddc

aaaabaaaaaabaaaabaaaaaabaaaabaaaaaab

(aaaabaaaaaab)

Figure: An injective morphism mapping primitive word to a cube. Example by
Saarela (2025).
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The basics

Let v ∈ Σ+, n ∈ N and r = n
|v | ∈ Q.

Then by v r we denote the prefix of length n of the infinite word
vvv · · · .
For example, (aba)

7
3 = abaabaa.

Morphisms are maps with the rule h(uv) = h(u)h(v). Thus
morphisms are defined by the images of letters.

Injectivity of morphism means injectivity on finite words. I will ignore
the fact that it is sometimes hard to check injectivity.

For binary morphism h, h is injective iff {h(a), h(b)} ̸⊂ v∗ for any v
(defect effect).
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Exponents of words

Definition (The (fractional) exponent and the integer exponent)

Let v ∈ Σ∗. Then it has two exponent values:

E(v) = max{r ∈ Q | ∃u ∈ Σ+ : v = ur},
IE(v) = max{n ∈ N | ∃u ∈ Σ+ : v = un}.

Definition (Critical exponent and asymptotic critical exponent)

Let w ∈ ΣN. Then it has two exponent values:

CE(w) = sup{E(v) | v ∈ Fact+(w)},
ACE(w) = lim sup

n→∞
{E(v) | v ∈ Factn(w)}.
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Earlier results on Asymptotic Critical Exponent

Theorem (R. Entringer, D. Jackson, and J. Schatz, 1974)

There exists an infinite binary word having no squares of length > 4.

Theorem (J. Beck, 1984 (or J. Cassaigne, 2008))

There exists an (effectively constructed) infinite binary word u with
ACE(u) = 1.
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Our point of interest

We ask the following:

Given a word, can we design a morphism that maps the word to a
large repetition? Which words have an upper bound on the
exponent(s) after mapping via morphisms?

These questions are trivial if the morphisms are not restricted in any
way, since we can map all words to unitary alphabet. However, if we
focus on injective morphisms, these questions become interesting.
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New “exponents”

Definition (Mapped exponents)

EI(u) = sup{E(h(u)) | h ∈ I},
IEI(u) = sup{IE(h(u)) | h ∈ I} [Saarela, 2025],

ACEI(w) = sup{ACE(h(w)) | h ∈ I},

where I is the set of all injective morphisms.

We could also define CEI , but that would be infinite for all infinite words
by h(a) = an. (There might be interesting additional or alternative
restrictions on morphisms such that CE could also be studied.)
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Example of an infinite IEI and EI

Examples

Let u = abaaba = (aba)2.
Let hk ∈ I be morphisms defined by hk(a) = a and hk(b) = b(aab)k for
all k ∈ N.
Then hk(u) = (a b(aab)k a)2 = ((aba)k+1)2 = (aba)2k+2. Thus
IEI(u) = EI(u) = ∞.
Let w = abaab = ua−1. A theorem in the next slide tells that IEI(w) = 1.
However, since hk(w)a = hk(u) = (aba)2k+2, we have

hk(w) = (aba)2k+2− 1
3 . Thus EI(w) = ∞.
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Finite IEI

Theorem (J. Spehner, 1976)

Let w ∈ {a, b}∗ be a primitive (IE(w) = 1) word. Then

IEI(w) < ∞ ⇐⇒ IEI(w) = 1 ⇐⇒ |w |a ≥ 2 and |w |b ≥ 2.

Theorem (A. Saarela, 2025)

Let w ∈ Σ∗ be a primitive word. Then

IEI(w) < ∞ ⇐⇒ IEI(w) < |w | ⇐⇒ |w |a ≥ 2 for all a ∈ alph(w).
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Low EI

Short words often have infinite EI . The following Theorem shows that
EI(ababba) = 3, and that there exists words with the EI being arbitrarily
close to 1.

Theorem

For all n ≥ 2 we have EI((ab)
nba) = 1 + 2

n−1 .

The only thing we need for this Theorem is the theorem of Fine and Wilf
(or maybe trivial version of it).

Theorem (N. Fine and H. Wilf, 1965)

If a repetition of u and a repetition of v have a common prefix of length
|u|+ |v | − gcd(|u|, |v |), then u and v are integer powers of a common
word.
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Proof of low EI Theorem

First, EI((ab)
nba) ≤ 1 + 2

n−1 .

Let u = (ab)nba and h ∈ I such that h(u) = v r for some primitive v .
Now a repetition of h(ab) and a repetition of v have a common prefix
of length |h(ab)n|.
If this prefix is of long enough length (≥ |h(ab)|+ |v |), then Theorem
of Fine and Wilf states that words h(ab) and v are integer powers of
a common word. By primitivity of v , h(ab) = vm.

By the above equality and the assumptions, h(u) = vnmh(ba) = v r .

After canceling vnm, h(ba) = v r−mn = vq for some q ∈ Q.

Since |h(ba)| = |h(ab)|, h(ba) = vm = h(ab), a contradiction with
h ∈ I.
To avoid this contradiction, we must have |h(ab)n| < |h(ab)|+ |v |,
and thus (n − 1)|h(ab)| < |v |. We then have

r =
|h(u)|
|v |

<
(n + 1)|h(ab)|
(n − 1)|h(ab)|

= 1 +
2

n − 1
.
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Proof of low EI Theorem

Next, EI((ab)
nba) ≥ 1 + 2

n−1 .

Let hk be a morphism defined by hk(a) = (ab)ka and hk(b) = ba.

It can then verified that hk(u) = [((ab)kaba)n−1ab]
1+ 4k+4

(2k+3)(n−1)+2 .

Thus EI(u) ≥ limk→∞ 1 + 4k+4
(n−1)(2k+3)+2 = 1 + 2

n−1 .

Theorem

For all n ≥ 2 we have EI((ab)
nba) = 1 + 2

n−1 .
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Charaterizing words with infinite EI

Motivated by Saarela’s characterization of the words with IEI = ∞, we
wanted to find the language (over infinite alphabet)

L = {w | EI(w) = ∞}.

However, it turns out that unlike in the case of IEI , (we think) there is a
need to separately consider different alphabet sizes.

A. Vanhatalo (University of Turku) Mapped Exponents of Words OWCoW 15 / 33



Charaterizing words with infinite EI

We proved that EI(w) = ∞ implies that some letter in the word w must
have a fixed factor between every two occurrences of it.

proof sketch.

If ∃h ∈ I such that h(w) = x r for some r > |w | and primitive x , then
∃a ∈ alph(w) such that |h(a)| > |x |.
A conjugate of a primitive word x can be a factor of x r in only
obvious ways.

This implies that each h(a) has a fixed “place” within the repetition
of x .

So if u is in-between word for two occurrences of h(a), then h(a)u is
a whole-number repetition of some (fixed) conjugate of x .

In the preimage side, if there is two different words between
consecutive a’s, then we can construct words that contradict the
injectivity of h.
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Figure of the proof

h(a) h(a) h(a) h(a)

a a a

h(a a ) aah( )=

Image:

Preimage:

a-free
a-free

Figure: When h(w) = xn and |h(a)| ≥ |x |, then yellow and purple factors must be
the same.
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Charaterizing words with infinite EI

An easy case where we have a fixed factor between every occurrence of the
letter a is a word of the type

uavuavua · · · = (uav)r

for some a-free words u, v and r ≥ 1.
Define hk for all k ∈ N by hk(a) = a(vua)k and fixing all other letters.
Then it is easy to see that

hk((uav)
r ) = (uav)R

for some R > k .
So all words of the type (uav)r have infinite EI .
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Charaterizing words with infinite EI

We can extend previous easy case to words w = w1(aw2)
kaw3 where

w1,w2 and w3 all commute and are a-free. Then let h(a) = w3aw1 and
fix all other letters. Then

h(w) = w1(w3aw1w2)
kw3aw1w3

= (w1w3aw2)
kw1w3aw1w3

= (w1w3aw2)
k+1w−1

2 w1w3

=∗ (w1w3aw2)
k+1+

|w1w3|−|w2|
|w1w3aw2|

Since we can combine two injective morphisms to a single injective
morphism, this case also gives infinite EI by the previous slide.
∗This holds since w1,w2,w3 ∈ v∗ for some word v .
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Binary case

Over the binary alphabet these easy cases are the full story:

Theorem

L2 = {w ∈ {a, b}∗ | EI(w) = ∞} =
⋃
k∈N

b∗a(bka)∗b∗ + a∗b(akb)∗a∗.

The shortest interesting binary word is aabb (G. Fici, 2024). To map this
word to arbitrary high powers with injective morphisms, we could first map

b → baa and fix the letter a, obtaining aabb → aabaabaa = (aab)
8
3 . Then

we map b → b(aab)k , fixing the letter a again.

We obtain aabb → (aab)
8
3 → (aab)

8
3
+2k .
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Main theorem on finite words

Theorem

For a word w ∈ Σ+, the following are equivalent:

1 EI(w) = ∞.

2 EI(w) > |w |.
3 There exists an injective morphism h ∈ I and a letter a ∈ alph(w)

such that h(w) = x r for some primitive x ∈ Γ∗, r ∈ Q and
|h(a)| ≥ |x |.

4 There exists an integer k ≥ 0, a letter a ∈ Σ, words
w1,w2,w3 ∈ (Σ∖ {a})∗, and an injective morphism h such that
w = w1(aw2)

kaw3, h(w1) and h(w2) are suffix-comparable, and h(w2)
and h(w3) are prefix-comparable.

The additional condition on fourth statement is necessary. The word
bbccabcbca has finite EI . Here w1 = bbcc and w2 = cbcb prevent the
letter a to map to large word compared to primitive root of the image.
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Note on the words of length 6

The shortest words with a finite EI are of length 6, all binary. Here six are
shown. One obtains the complete list by flipping a’s and b’s.

w EI(w)

aabbab 3
abaabb 3
ababba 3
abbaba 3
aababb 2
abbaab 1.5
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Definition of ACEI

ACEI(w) = sup{ACE(h(w)) | h ∈ I}
=sup

h∈I

(
lim sup
n→∞

{E(f ) | f ∈ Factn(h(w))}
)
.

It is a bit more difficult to get a feel for this definition compared to its
finite counterparts, as any finite part of the infinite word tells nothing
about ACEI .
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An example where ACE increases under injective morphism

Let w = u1u2u3 · · · ∈ {a, b}N be a word with ACE(w) = 1, factored so
that |ui | = i . Let σ(a) = 0 and σ(b) = 1 and

w ′ =
∞∏
i=1

uiσ(ui )
for example

= a0ab01aba010a · · · .

It is not hard to believe that ACE(w ′) = 1.
Let h(a) = ac , h(b) = bc, h(0) = ca, h(1) = cb. Then

h(ab01) = acbccacb = (acbcc)
8
5 , and in general

h(uiσ(ui )) = (h(ui )c)
4|ui |

2|ui |+1 .

So ACEI(w
′) ≥ 2.
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Bound on ACEI

We wanted to see if we can once again describe the words with
ACEI = ∞. The end result is pleasantly clean. However, the upper
bound we ended up with is quite weak.

Theorem

For infinite word w ∈ ΣN,

ACEI(w) = ∞ ⇐⇒ ACE(w) = ∞.

If ACE(w) < ∞, then

ACEI(w) ≤ |Σ|+ 1 + |Σ|(|Σ|+ 1)(ACE(w) + 1).
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Binary case

Theorem (L. Dvǒráková, P. Ochem and D. Opočenská,2024)

Let h be an injective morphism, u an infinite word with uniform letter
frequencies and L a natural number. If all factors f of h(u) with |f | ≥ L
are synchronizing words of h, then ACE(h(u)) = ACE(u).

Theorem

Let h be an injective morphism, u an infinite word and L a natural
number. If all factors f of h(u) with |f | ≥ L are synchronizing words of h
and ACE(u) ∈ R, then ACE(h(u)) ≤ ⌈ACE(u)⌉.
Moreover, if u is over the binary alphabet and ACE(u) ̸∈ N, then there
exists absolute constant λu > 0 such that for all h and L pairs,
ACE(h(u)) ≤ ⌈ACE(u)⌉ − λu.
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Figure of repetitions with synchronizing words

Image:

Preimage:

Figure: If x is a synchronizing word for h, then we know some letter boundaries
the preimage has just by looking the image. By injectivity, repetitions of x then
imply repetitions in the preimage. The actual situation is a bit more complicated,
here only the basic idea is illustrated.
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Binary synchronizing words

Theorem

Let h be an injective morphism and w an infinite binary word. If there
exists infinite list f1, f2, f3, . . . of factors of h(w) that are not synchronizing
words of h and limi→∞ |fi | = ∞, then ACE(h(w)) = ACE(w) = ∞.

proof sketch.

f1 = ..

f2 = ....

f3 = ......

f4 = ........

f5 = ..........

.

.

By compactness, aligned like in the left, the fac-
tors fi have a two-sided infinite limit word.
By assumptions, this limit word has two disjoint
preimages by the morphism h.
In the case of binary morphisms, this can only
happen if this limit word is periodic by results of
Karhumäki, Maňuch and Plandowski (2003) on
two-sided infinite words and defect effect.
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The binary result

Theorem

Let w be an infinite binary word with ACE(w) ∈ R. If ACE(w) ∈ N or w
has uniform letter frequencies, then ACEI(w) = ACE(w). Otherwise,
ACEI(w) < ⌈ACE(w)⌉.

Proof.

By ACE(w) ∈ R there exists some length after which all factors of h(w)
are synchronizing. Then if the word w has uniform letter frequencies, we
apply the theorem by Dvǒráková, Ochem and Opočenská. If not, we apply
our modification of it.

We also have a construction that shows this upper bound to be exact.

A. Vanhatalo (University of Turku) Mapped Exponents of Words OWCoW 30 / 33



Conclusion

Finite words:

There exists words with EI being arbitrary close to one.

All words with EI = ∞ have a factorization w1a(w2a)
kw3 for some

letter a and a-free words w1,w2 and w3. Words with IEI = ∞ have
k = 0.

This factorization characterizes the binary and the IEI cases
completely.

Infinite words:

ACEI is finite if and only if ACE is finite.

For a binary word w ∈ {a, b}N, ACEI(w) ≤ ⌈ACE(w)⌉ where
equality happens only if ACE(w) ∈ N. This result is optimal.
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