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What we want to investigate?
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Figure: An injective morphism mapping primitive word to a cube. Example by
Saarela (2025).
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° LethZﬂnGNandr:ﬁeQ.

@ Then by v" we denote the prefix of length n of the infinite word
VVV ...

@ For example, (aba)% = abaabaa.

@ Morphisms are maps with the rule h(uv) = h(u)h(v). Thus
morphisms are defined by the images of letters.

@ Injectivity of morphism means injectivity on finite words. | will ignore
the fact that it is sometimes hard to check injectivity.

@ For binary morphism h, h is injective iff {h(a), h(b)} ¢ v* for any v
(defect effect).
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Exponents of words

Definition (The (fractional) exponent and the integer exponent)

Let v € *. Then it has two exponent values:

E(v)=max{reQ|IueX :v=u},
IE(v)=max{neN|Jue Xt :v=u"}.

Definition (Critical exponent and asymptotic critical exponent)

Let w € XN, Then it has two exponent values:

CE(w) = sup{E(v) | v € Facty(w)},
ACE(w) = Ii,r7n_>solip{E(v) | v € Factp(w)}.
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Earlier results on Asymptotic Critical Exponent

Theorem (R. Entringer, D. Jackson, and J. Schatz, 1974)

There exists an infinite binary word having no squares of length > 4.

Theorem (J. Beck, 1984 (or J. Cassaigne, 2008))
There exists an (effectively constructed) infinite binary word u with
ACE(u) =1.
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Our point of interest

We ask the following:
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Our point of interest

We ask the following:

@ Given a word, can we design a morphism that maps the word to a
large repetition? Which words have an upper bound on the
exponent(s) after mapping via morphisms?
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Our point of interest

We ask the following:

@ Given a word, can we design a morphism that maps the word to a
large repetition? Which words have an upper bound on the
exponent(s) after mapping via morphisms?

@ These questions are trivial if the morphisms are not restricted in any
way, since we can map all words to unitary alphabet. However, if we
focus on injective morphisms, these questions become interesting.
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New “exponents”

Definition (Mapped exponents)

Ez(u) = sup{E(h(v)) | h € T},
IEz(u) = sup{IE(h(u)) | h € T} [Saarela, 2025],
ACEz(w) = sup{ACE(h(w)) | h € I},

where Z is the set of all injective morphisms.
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New “exponents”

Definition (Mapped exponents)

Ez(u) = sup{E(h(v)) | h € T},
IEz(u) = sup{IE(h(u)) | h € T} [Saarela, 2025],
ACEz(w) = sup{ACE(h(w)) | h € I},

where Z is the set of all injective morphisms.

We could also define CEz, but that would be infinite for all infinite words
by h(a) = a". (There might be interesting additional or alternative
restrictions on morphisms such that CE could also be studied.)
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Example of an infinite IE7 and E7

Let u = abaaba = (aba)?.

Let hx € Z be morphisms defined by hx(a) = a and hy(b) = b(aab) for
all k e N.

Then hi(u) = (a b(aab)¥ a)? = ((aba)**1)? = (aba)? 2. Thus

[Ez(u) = Ez(u) = oc.

Let w = abaab = ua~!. A theorem in the next slide tells that IEz(w) = 1.
However, since hx(w)a = hi(u) = (aba)?**2, we have

he(w) = (aba)zk"’z_%. Thus Ez(w) = oc.
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Theorem (J. Spehner, 1976)

Let w € {a, b}* be a primitive (IE(w) = 1) word. Then

IEz(w) < 00 <= IEz(w) =1 < |w|, > 2 and |w|, > 2.

Theorem (A. Saarela, 2025)
Let w € ¥* be a primitive word. Then

IEz(w) < 00 <= IEz(w) < |w| <= |w|; > 2 for all a € alph(w).
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Short words often have infinite Ez. The following Theorem shows that
Ez(ababba) = 3, and that there exists words with the Ez being arbitrarily
close to 1.

For all n > 2 we have Ez((ab)"ba) = 1+ —2;.

A. Vanhatalo (University of Turku) Mapped Exponents of Words OWCoW 12/33



Short words often have infinite Ez. The following Theorem shows that
Ez(ababba) = 3, and that there exists words with the Ez being arbitrarily
close to 1.

For all n > 2 we have Ez((ab)"ba) = 1+ —2;.

The only thing we need for this Theorem is the theorem of Fine and Wilf
(or maybe trivial version of it).

Theorem (N. Fine and H. Wilf, 1965)

If a repetition of u and a repetition of v have a common prefix of length
|u| + |v| — ged(|ul, |v|), then u and v are integer powers of a common
word.
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Proof of low Ez Theorem

First, Ez((ab)"ba) < 1 + -2

n—1-
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Proof of low Ez Theorem

First, Ez((ab)"ba) < 1 + -2;.
o Let u= (ab)"ba and h € Z such that h(u) = v" for some primitive v.

Now a repetition of h(ab) and a repetition of v have a common prefix
of length |h(ab)"|.
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Proof of low Ez Theorem

First, Ez((ab)"ba) <1+ %

o Let u= (ab)"ba and h € Z such that h(u) = v" for some primitive v.
Now a repetition of h(ab) and a repetition of v have a common prefix
of length |h(ab)"|.

o If this prefix is of long enough length (> |h(ab)| + |v|), then Theorem
of Fine and Wilf states that words h(ab) and v are integer powers of
a common word. By primitivity of v, h(ab) = v.
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Proof of low Ez Theorem

First, Ez((ab)"ba) <1+ %

o Let u= (ab)"ba and h € Z such that h(u) = v" for some primitive v.
Now a repetition of h(ab) and a repetition of v have a common prefix
of length |h(ab)"|.

o If this prefix is of long enough length (> |h(ab)| + |v|), then Theorem
of Fine and Wilf states that words h(ab) and v are integer powers of
a common word. By primitivity of v, h(ab) = v.

@ By the above equality and the assumptions, h(u) = v"™h(ba) = v".
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Proof of low Ez Theorem

First, Ez((ab)"ba) < 1 + -2;.

o Let u= (ab)"ba and h € Z such that h(u) = v" for some primitive v.
Now a repetition of h(ab) and a repetition of v have a common prefix
of length |h(ab)"|.

o If this prefix is of long enough length (> |h(ab)| + |v|), then Theorem
of Fine and Wilf states that words h(ab) and v are integer powers of
a common word. By primitivity of v, h(ab) = v.

@ By the above equality and the assumptions, h(u) = v"™h(ba) = v".

o After canceling v"™, h(ba) = v'~™" = v9 for some q € Q.
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Proof of low Ez Theorem

First, Ez((ab)"ba) < 1 + -2;.

o Let u= (ab)"ba and h € Z such that h(u) = v" for some primitive v.
Now a repetition of h(ab) and a repetition of v have a common prefix
of length |h(ab)"|.

o If this prefix is of long enough length (> |h(ab)| + |v|), then Theorem
of Fine and Wilf states that words h(ab) and v are integer powers of
a common word. By primitivity of v, h(ab) = v.

@ By the above equality and the assumptions, h(u) = v"™h(ba) = v".

o After canceling v"™, h(ba) = v'~™" = v9 for some q € Q.

@ Since |h(ba)| = |h(ab)|, h(ba) = v™ = h(ab), a contradiction with
hel.
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Proof of low Ez Theorem

First, Ez((ab)"ba) < 1 + -2;.

Let u = (ab)"ba and h € T such that h(u) = v" for some primitive v.
Now a repetition of h(ab) and a repetition of v have a common prefix
of length |h(ab)"|.

If this prefix is of long enough length (> |h(ab)| + |v|), then Theorem
of Fine and Wilf states that words h(ab) and v are integer powers of
a common word. By primitivity of v, h(ab) = v.

@ By the above equality and the assumptions, h(u) = v"™h(ba) = v".
o After canceling v"™, h(ba) = v'~™" = v9 for some q € Q.
@ Since |h(ba)| = |h(ab)|, h(ba) = v™ = h(ab), a contradiction with

hel.
To avoid this contradiction, we must have |h(ab)"| < |h(ab)| + |v]|,
and thus (n — 1)|h(ab)| < |v|. We then have

_ [h()l _ (n+1)|h(ab)| 2

RGeS eSS

r
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Proof of low Ez Theorem

Next, Ez((ab)"ba) > 1 + —2-.
o Let h; be a morphism defined by hy(a) = (ab)*a and hi(b) = ba.

. k _1 14 - Ak+4
@ It can then verified that hx(u) = [((ab)*aba)" *ab] " Ek3)(-1)2,

o Thus Ez(u) > limiso 1 + priistdsrrs = 1+ 221

For all n > 2 we have Ez((ab)"ba) = 1 + 2.
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Charaterizing words with infinite E7

Motivated by Saarela’s characterization of the words with IE7 = oo, we
wanted to find the language (over infinite alphabet)

L={w|Ez(w) = oco}.

However, it turns out that unlike in the case of IEz, (we think) there is a
need to separately consider different alphabet sizes.
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Charaterizing words with infinite E7

We proved that Ez(w) = oo implies that some letter in the word w must
have a fixed factor between every two occurrences of it.

proof sketch.

If 3h € Z such that h(w) = x" for some r > |w| and primitive x, then
Jda € alph(w) such that |h(a)| > |x|.

A conjugate of a primitive word x can be a factor of x" in only
obvious ways.

This implies that each h(a) has a fixed “place” within the repetition
of x.

So if u is in-between word for two occurrences of h(a), then h(a)u is
a whole-number repetition of some (fixed) conjugate of x.

In the preimage side, if there is two different words between
consecutive a's, then we can construct words that contradict the
injectivity of h.
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Figure of the proof

Image: h(a) h(a) h(a) h(a)

27 727 2

Preimage: —— a 3 Mg pheddy

h(a 3 whiaammiogs) = h(2 svprpupstnete: g )
\/—\’_‘__/

Figure: When h(w) = x" and |h(a)| > |x|, then yellow and purple factors must be
the same.

A. Vanhatalo (University of Turku) Mapped Exponents of Words OWCoW 17 /33



Charaterizing words with infinite E7

An easy case where we have a fixed factor between every occurrence of the
letter a is a word of the type

vavuavua- - - = (uav)”

for some a-free words u, v and r > 1.
Define hy for all k € N by hi(a) = a(vua)k and fixing all other letters.
Then it is easy to see that

hie((uav)") = (uvav)R

for some R > k.
So all words of the type (uav)" have infinite Ez.
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Charaterizing words with infinite E7

We can extend previous easy case to words w = W1(3W2)kaW3 where
wi, wa and w3 all commute and are a-free. Then let h(a) = wzaw; and
fix all other letters. Then

h(w) = W1(W33W1W2)kW3aw1 w3

= (W1W3aW2)kW1 w3awiws
= (W1W3aW2)k+1W2_1W1W3

[wyws|—|wy|
)k+1+ [wyw3awsy|

=* ( w1 w3awp

Since we can combine two injective morphisms to a single injective
morphism, this case also gives infinite Ez by the previous slide.
*This holds since wy, wo, wz € v* for some word v.
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Binary case

Over the binary alphabet these easy cases are the full story:

Ly = {w € {a,b}" | Ex(w) = oo} = | ] b*a(b*a)"b* + a*b(a*b)*a".
keN

The shortest interesting binary word is aabb (G. Fici, 2024). To map this
word to arbitrary high powers with injective morphisms, we could first map
b — baa and fix the letter a, obtaining aabb — aabaabaa = (aab)g. Then
we map b — b(aab)¥, fixing the letter a again.

We obtain aabb — (aab)3 — (aab)5 2.
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Main theorem on finite words

For a word w € T, the following are equivalent:

o Ez(W) = Q.

Q@ Ez(w) > |w|.

© There exists an injective morphism h € T and a letter a € alph(w)
such that h(w) = x" for some primitive x € ['*, r € Q and
h(a)l = [x].

© There exists an integer k > 0, a letter a € ¥, words
wi, wa, wz € (X N\ {a})*, and an injective morphism h such that
w = wy(awa)¥aws, h(wy) and h(wa) are suffix-comparable, and h(w,)
and h(ws) are prefix-comparable.

The additional condition on fourth statement is necessary. The word
bbccabcbca has finite Ez. Here wy = bbcc and wo = cbceb prevent the
letter a to map to large word compared to primitive root of the image.
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Note on the words of length 6

The shortest words with a finite E7 are of length 6, all binary. Here six are
shown. One obtains the complete list by flipping a's and b's.

w EI(
aabbab 3
abaabb 3
ababba 3

3
2

abbaba
aababb
abbaab 1.5
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Definition of ACE7

ACEz(w) =sup{ACE(h(w)) | he I}
(limsup{E(f) | f € Fact,(h(w))}).

=sup
heZl n—o0

It is a bit more difficult to get a feel for this definition compared to its

finite counterparts, as any finite part of the infinite word tells nothing

about ACE7.
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An example where ACE increases under injective morphi

Let w = uyupus - -- € {a, b} be a word with ACE(w) = 1, factored so
that |u;| =i. Let 0(a) =0 and o(b) =1 and
w' =[] wio(ur) ™ =™ 20ab01aba010a - - - .
i=1

It is not hard to believe that ACE(w') = 1.
Let h(a) = ac, h(b) = bc, h(0) = ca, h(1) = cb. Then
h(ab01) = acbccacb = (acbcc)%, and in general

4|uj|

h(uio(ui)) = (h(ui)c) .

So ACEz(w') > 2.
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Bound on ACE7

We wanted to see if we can once again describe the words with

ACEz = 0o. The end result is pleasantly clean. However, the upper
bound we ended up with is quite weak.

For infinite word w € ¥N,

ACEz(w) = 00 <= ACE(w) = 0.
If ACE(w) < oo, then

ACEz(w) < || + 1 + [Z(|Z| + 1)(ACE(w) + 1).
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Binary case

Theorem (L. Dvotékovd, P. Ochem and D. Opo&enska,2024)

Let h be an injective morphism, u an infinite word with uniform letter
frequencies and L a natural number. If all factors f of h(u) with |f| > L
are synchronizing words of h, then ACE(h(u)) = ACE(u).

Let h be an injective morphism, u an infinite word and L a natural
number. If all factors f of h(u) with |f| > L are synchronizing words of h
and ACE(u) € R, then ACE(h(u)) < [ACE(u)].

Moreover, if u is over the binary alphabet and ACE(u) ¢ N, then there
exists absolute constant A, > Q such that for all h and L pairs,
ACE(h(u)) < [ACE(u)] — A4
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Figure of repetitions with synchronizing words

Image: t

e VL \ \ A \

}‘(Lﬁz):ln[tj))zj Y=Y,

Figure: If x is a synchronizing word for h, then we know some letter boundaries
the preimage has just by looking the image. By injectivity, repetitions of x then
imply repetitions in the preimage. The actual situation is a bit more complicated,
here only the basic idea is illustrated.
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Binary synchronizing words

Let h be an injective morphism and w an infinite binary word. If there
exists infinite list fi, f», f3, ... of factors of h(w) that are not synchronizing
words of h and lim;_,« |fi| = oo, then ACE(h(w)) = ACE(w) = cc.

proof sketch.

fi=. By compactness, aligned like in the left, the fac-
tors f; have a two-sided infinite limit word.

n= By assumptions, this limit word has two disjoint
f3= ... preimages by the morphism h.
fa= ... In the case of binary morphisms, this can only
fo = oo, happen if this limit word is periodic by results of

Karhumaki, Mafiuch and Plandowski (2003) on
two-sided infinite words and defect effect.
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The binary result

Let w be an infinite binary word with ACE(w) € R. If ACE(w) € N or w
has uniform letter frequencies, then ACEz(w) = ACE(w). Otherwise,

ACEz(w) < [ACE(w)].

By ACE(w) € R there exists some length after which all factors of h(w)
are synchronizing. Then if the word w has uniform letter frequencies, we
apply the theorem by Dvorakovd, Ochem and Opocenska. If not, we apply

our modification of it. ]

We also have a construction that shows this upper bound to be exact.
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Conclusion

Finite words:
@ There exists words with E7 being arbitrary close to one.

@ All words with Ez = oo have a factorization Wla(wza)kW3 for some
letter a and a-free words wy, wo and ws. Words with IE7z = oo have
k=0.

@ This factorization characterizes the binary and the IEz cases
completely.

Infinite words:
o ACEgz is finite if and only if ACE is finite.

o For a binary word w € {a, b}, ACEz(w) < [ACE(w)] where
equality happens only if ACE(w) € N. This result is optimal.
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