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Framework

Finite alphabet { , }.

(h,w) ∈ Z2
>0.

2-dimensional word W ∈ Wh×w({ , }) (Wh×w for short) is a h ×w
matrix with entries in { , }.

W [i , j] is the entry of W at row i and column j .

Neighborhood of W [i , j] are the entries
W [i − 1, j],W [i + 1, j],W [i , j − 1],W [i , j + 1] if they exist.

For W [i , j] = , its degree is the number of ’s in its neighborhood.

For d ∈ {0,1,2,3,4}, W≤dh×w({ , }) (W≤dh×w for short) the set of all
words in Wh×w such that no entry has degree greater than d .

∣W ∣ (resp. ∣W ∣ ) is the number of (resp. ) entries in W . We
also refer to ∣W ∣ as the area of the word.
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The goal

Let max≤d(h,w) = max{∣W ∣ ∶W ∈ W≤dh×w}

The goal is to find the value of max≤d(h,w) for all possible triplets
(d ,h,w).
max≤d(h,w) =max≤d(w ,h).
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(e)

W ∈ W≤dh×w is d-full: ∣W ∣ = max≤d(h,w).
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Why words?

This problem can be framed as a problem in graph theory, combinatorics
(polyominoes) etc.

We found word theory to be the most natural framing and used a lot of
it’s tools.
It can also be seen as a pattern avoidance problem.

d = 0 ∶ { , }.

d = 1 ∶ { , , . . .}.

d = 2 ∶ { , , . . .}.

d = 3 ∶ { }.

d = 4 ∶ ∅.
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Additional notation

Horizontal concatenation: ⦶ = .

Vertical concatenation: ⊖ = .

Exponential: W = , W 2×7/3 = .
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The easy cases

From now on we’ll assume h ≥ w .

Lemma (d = 0)

max≤0(h,w) = ⌈hw/2⌉ for any (h,w) ∈ Z2
>0. By pigeonhole principle

1

2

3

4

5

6

1 2 3 4 5 6

(a) 18 dominoes, 0 monomino

1

2

3

4

5

1 2 3 4 5

(b) 12 dominoes, 1 monomino
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The easy cases

Lemma (d = 1)

For any (h,w) ∈ J1,hK × J1,wK, where h ≥ w,

max≤1(h,w) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

hw/2, if (h,w) ≡2 (0,0);

(h − 1)w/2 + ⌈2w/3⌉, if (h,w) ≡2 (1,0);

h(w − 1)/2 + ⌈2h/3⌉, otherwise.

By pigeonhole principle

1
2
3
4
5
6
7
8

1 2 3 4 5 6

(8,6)

1
2
3
4
5
6
7

1 2 3 4 5 6 7 8

(7,8)
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A detour on dominating sets

Definition

Dominating set of a graph Let G = (V ,E) be a graph. S ⊂ V is a
dominating set of G if for each v ∈ V , either v ∈ S or there exist s ∈ S such
that (v , s) ∈ E .

Figure: Dominating set

We say a dominating set S is minimal if there exists no dominating set of
cardinality less than S .
The domination number γ(G) of a graph G is the cardinality of a minimal
dominating set.
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d = 3 with dominating sets

Example

Constructing a 3-full word.

Lemma

max≤3(h,w) =
⎧⎪⎪
⎨
⎪⎪⎩

hw , if 1 ≤ w ≤ 2;

hw − γ(Gh−2,w−2), otherwise,

where Gk,l is the grid graph of dimensions k × l .

Blondin Massé et al. Maximal 2-D words of bounded degree January 6, 2026 9 / 24



d = 3 with dominating sets

Example

Constructing a 3-full word.

Lemma

max≤3(h,w) =
⎧⎪⎪
⎨
⎪⎪⎩

hw , if 1 ≤ w ≤ 2;

hw − γ(Gh−2,w−2), otherwise,

where Gk,l is the grid graph of dimensions k × l .
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Domination number of grid graphs

The problem of finding the domination number of grid graphs was
solved in 2011 by Gonçalves, Pinlou, Rao, Thomassé [7].

This feat was achieved mainly through the use of computer programs
based on dynamic programming.

This suggests that uniform and elegant proofs are hard to find for this
kind of problem.
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d = 2 and excess

h
w

1 2 3 4 5 6 7 8 9

1 1 2 3 4 5 6 7 8 9

2 2 4 5 6 8 9 11 12 14

3 3 5 8 10 12 14 16 18 20

4 4 6 10 12 14 17 20 22 25

5 5 8 12 14 18 21 24 28 31

6 6 9 14 17 21 26 29 33 38

7 7 11 16 20 24 29 34 38 43

8 8 12 18 22 28 33 38 44 49

9 9 14 20 25 31 38 43 49 56

Definition (Excess)

Let W ∈ W≤2h×w . The excess of W (noted e(W )) is defined by
e(W ) = ∣W ∣ − 2hw/3. emax(h,w) = max{e(W ) ∶W ∈ W≤2h×w}.
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Excess

h
w

1 2 3 4 5 6 7 8 9

1 1/3 2/3 1 4/3 5/3 2 7/3 8/3 3

2 2/3 4/3 1 2/3 4/3 1 5/3 4/3 2

3 1 1 2 2 2 2 2 2 2

4 4/3 2/3 2 4/3 2/3 1 4/3 2/3 1

5 5/3 4/3 2 2/3 4/3 1 2/3 4/3 1

6 2 1 2 1 1 2 1 1 2

7 7/3 5/3 2 4/3 2/3 1 4/3 2/3 1

8 8/3 4/3 2 2/3 4/3 1 2/3 4/3 1

9 3 2 2 1 1 2 1 1 2

Periodicity of 6 cases up to symmetry.
Note: excess is additive with respect to concatenation.
Notation: a ≡3 b ⇐⇒ a ≡ b mod 3
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Note: excess is additive with respect to concatenation.
Notation: a ≡3 b ⇐⇒ a ≡ b mod 3
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Base cases for d = 2

The base cases that are taken care of individually:

(h,w) ∈ (Z>0 × {1,2,3,4,5,6}) ∪ (7,7)

(a) A 6-pillar. (b) 2-full 6 × 2 word.
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Base case w = 3 (proof sketch)

We want to prove emax(h,3) = 2 for all values of h ≥ 3.

There exists a word of excess 2 for all values of h:

⋅⋅⋅⋅

Assume W is a minimal counterexample (with regard to h).

Both extremal rows are
forced to be full by min-
imal counterexample

We claim that each in-
ternal row is of excess 0.

Assume this row is the
first from the bottom
with excess ≠ 0.

This row is thus forced
to be full as the excess
is greater or equal to 3.

This configuration is
forced on this row.

0 0 0 This row is then forced
to be empty.

This factor is forced to
have excess equal to
3. Contradiction with
minimal counterexample
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Tiling for the general case

Start in the upper left corner with the tile .

Proceed to tile the rest of the rectangle with the tile , while correcting
for the congruence of h and w modulo 3.
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The general case: strategic cuts

6 cases:

h1 = 3k1 + 1

h2 = 3k2 + 2

(h,w) ≡3 (0,0)
emax(h,w) = 2

h1 = 3k1 + 1

h2 = 3k2 + 1

(h,w) ≡3 (2,2)
emax(h,w) = 4/3

h1 = 3k1 + 2

h2 = 3k2 + 2

(h,w) ≡3 (1,1)
emax(h,w) = 4/3

h1 = h − 4

h2 = 4

(h,w) ≡3 (0,1)
emax(h,w) = 1

h1 = h − 5

h2 = 5

(h,w) ≡3 (0,2)
emax(h,w) = 1

h1 = h − 4

h2 = 4

(h,w) ≡3 (2,1)
emax(h,w) = 2/3
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The general case example

We use minimal counterexample to prove maximal excess of each cases.

Example (Case h ≡3 w ≡3 2)

Let h = 3k1 + 2, w = 3k2 + 2. Assume W ∈ W≤2(3k1+2)×(3k2+2) minimal such

that e(W ) > 4/3.

W =

w = 3k2 + 2

h = 3k1 + 2

h1 = 3k1,1 + 1

h2 = 3k1,2 + 1

e(W1) ≤ 2/3

e(W2) ≤ 2/3

Contradiction!
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Theorem (Blondin Massé, Goupil, L’Heureux, M. 2025+)

Let (h,w) ∈ Z2
>0, then

max≤0(h,w) = ⌈hw/2⌉,

max≤1(h,w) =

⎧
⎪⎪⎪⎪
⎨
⎪⎪⎪⎪
⎩

hw/2, if h,w ≡2 0;

(h − 1)w/2 + ⌈2w/3⌉, if h ≡2 1 and w ≡2 0;

h(w − 1)/2 + ⌈2h/3⌉, otherwise,

max≤2(h,w) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎩

hw , if w = 1 or h = w = 2;

3hw/4 + 1/2, if h ≡2 1, h ≥ 3 and w = 2;

3hw/4, if h ≡2 0, h ≥ 4 and w = 2;

2hw/3 + 2, if w = 3 or h ≡3 w ≡3 0;

2hw/3 + 4/3, if w ≥ 4 and h ≡3 w ≢3 0;

2hw/3 + 1, if w ≥ 4, w ≡3 0 and h ≢3 w;

2hw/3 + 2/3, otherwise,

max≤3(h,w) =

⎧
⎪⎪
⎨
⎪⎪
⎩

hw , if 1 ≤ w ≤ 2;

hw − γ(Gh−2,w−2), otherwise,

max≤4(h,w) = hw .
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Conclusion

The result in case d = 2 can be interpreted as giving the maximal
cardinality of an induced subgraph of the grid graph such that every
connected component is either a cycle or a path.

It also provides an upper bound for the snake polyomino of maximal
area bounded by a rectangle of any dimensions.

A future problem to consider is the enumeration of the maximal
words of bounded degree

Another problem would be to find a statistic analogous to excess for
other lattices. 3D words?
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Thank You!!!!
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