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A generalization of the Thue-Morse word

The binary numeration system is based on the linear
recurrence sequence given by U0 = 1 and Un = Un−1 + Un−1
for all n ≥ 1. Any natural number can be written uniquely as a
sum Uiℓ−1 + Uiℓ−2 . . .+ U0 where ℓ depends on n and
ij ≥ ij−1 + 1 for all j .
The Thue-Morse word t is given by tn = ℓ(n) mod 2.

0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1

1 2 4 8 16

· · ·
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A generalization of the Thue-Morse word

The Zeckendorf numeration system is based on the linear
recurrence sequence given by U0 = 1,U1 = 2 and
Un = Un−1 + Un−2 for all n ≥ 2. Any natural number can be
written uniquely as a sum Uiℓ−1 + Uiℓ−2 . . .+ U0 where ℓ
depends on n and ij ≥ ij−1 + 2 for all j .
The Fibonacci-Thue-Morse word f is given by fn = ℓ(n) mod 2.

0 1 1 1 0 1 0 0 1 0 0 0 1 1 0 0 0

1 2 3 5 8 13

· · ·
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A generalization of the Thue-Morse word

The Narayana numeration system is based on the linear
recurrence sequence given by U0 = 1,U1 = 2,U2 = 3 and
Un = Un−1 + Un−3 for all n ≥ 3. Any natural number can be
written uniquely as a sum Uiℓ−1 + Uiℓ−2 . . .+ U0 where ℓ
depends on n and ij ≥ ij−1 + 3 for all j .
The Allouche-Johnson (’96) word a is given by an = ℓ(n) mod 2.

0 1 1 1 1 0 1 0 0 1 0 0 0 1 0 0 0

1 2 3 4 6 9 13

· · ·
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The word xk

Consider the numeration system based on the recurrence
relation Un = Un−1 + Un−k and U0, . . . ,Uk−1 = 1, . . . , k . Define
xk by

(xk )n = | repU(n)|1 mod 2.

This word is U-automatic, in the sense that there exists an
automaton that outputs (xk )n when reading repU(n).

k = 41/0

2/1

3/1

4/1

5/1

6/0

7/0

8/0

1

0 0

0

1

00

0

0 0
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The word xk

We know that U-automatic words in exotic numeration systems
are morphic (Shallit ’88 in this case, later Rigo ’00).
We may define xk as the projection π(uk ) where uk is the fixed
point ξωk (0), with

ξk :

0 → 01 0′ → 0′1′

1 → 2 1′ → 2′

2 → 3 2′ → 3′

... ,
...

(k − 2) → (k − 1) (k − 2)′ → (k − 1)′

(k − 1) → 0′ (k − 1)′ → 0.

(1)

and

π(a) =

{
0, if a = 0 or a ∈ {1′, 2′, . . . , (k − 1)′};
1, if a = 0′ or a ∈ {1, 2, . . . , k − 1}.

(2)
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The word x4

0 1 2 3 0′ 0′ 1′ 0′ 1′ 2′ 0′ 1′ 2′ 3′ 0′ 1′ 2′ 3′ 0 0′ 1′ 2′ 3′ 0 0 1

0 1 1 1 1 1 0 1 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1

· · ·u4

· · · x4

In a March 2025 preprint, J. Shallit used Walnut to investigate
properties of the sequence x3, as well as the sequence
obtained from u3 by deleting the ′s (This sequence is linked to
Hofstadter functions, see the March 11 One World talk by P.
Letouzey). He formulated two conjectures on words in the
family xk , but these cannot be verified for all k using just
Walnut as the underlying automaton depends on k .
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Two conjectures

The critical exponent of a sequence x is defined as

E(x) = sup{r ∈ Q : ur is a non-empty factor of x} .

For instance, since the Thue-Morse word t contains squares
but no overlaps, E(t) = 2.
The asymptotic version is called the asymptotic critical
exponent, denoted E∗(x). If E(x) = ∞, then E∗(x) = ∞.
Otherwise, it is defined as

E∗(x) = lim
n→∞

sup{r ∈ Q : ur is a non-empty factor of period ≥ n of x} .

Conjecture (Shallit ’25)

Let k ≥ 1. The sequence xk has critical exponent k + 1, which
is attained by the words 0k+1 and 1k+1. It contains no factor of
length 2n + k and period n, and therefore has asymptotic
critical exponent equal to 2.
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Two conjectures

The factor complexity of x is given by px(n) = |Fac(x) ∩ An|.
Its first difference is ∆px(n) = px(n + 1)− px(n).

Conjecture (Shallit ’25)

Let k ≥ 1. The first difference of factor complexity of xk , for n
large enough, takes the values 4k − 2 and 4k only.

Main result (Dvořáková, K., Pelantová ’25)

Both conjectures are true.
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Elementary considerations

0 1 2 3 0′ 0′ 1′ 0′ 1′ 2′ 0′ 1′ 2′ 3′ 0′ 1′ 2′ 3′ 0 0′ 1′ 2′ 3′ 0 0 1

We can make some elementary remarks about uk by observing
its Rauzy graphs of small order.
If w is a factor of uk , we call twin of w the word obtained by
swapping j and j ′ for all j in {0, . . . , k − 1} (e.g. 3′00′ ↔ 30′0).
The twin of w is also a factor of uk .

The letter j ∈ {1, . . . , k − 1} only appears in uk as a suffix of the
word 01 · · · j , and 0′ when followed by 0 or 0′ can only occur as
a suffix of 01 · · · (k − 1)0′. The projections of these k words and
their twins form the set {01ℓ : 1 ≤ ℓ ≤ k} ∪ {10ℓ : 1 ≤ ℓ ≤ k},
which is a suffix code.
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Bispecial factors

The study of bispecial factors will be our angle of attack for both
conjectures.

Definition
Let w ∈ Aω. A factor y of w is

left-special if there exist a ̸= b ∈ A such that ay and by are
both factors of w.
right-special if there exist a ̸= b ∈ A such that ya and yb
are both factors of w.
bispecial if it is both left- and right-special.

0 1 2 3 0′ 0′ 1′ 0′ 1′ 2′ 0′ 1′ 2′ 3′ 0′ 1′ 2′ 3′ 0 0′ 1′ 2′ 3′ 0 0 1

0 1 1 1 1 1 0 1 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1

· · ·u4

· · · x4
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Bispecial factors for our purposes

Proposition

In a recurrent binary sequence, ∆px(n) is the number of
left-special factors of length n of x.
In an aperiodic sequence, every left-special factor of x is a
prefix of exactly one shortest bispecial factor of x.

w
0

1
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Bispecial factors for our purposes

Recall that a return word to w in x is a word r such that rw
starts and ends with w and contains no other occurrence of w .

w w w
w

r r

Proposition (Dolce, Dvořáková, Pelantová ’23)

Let u be a uniformly recurrent aperiodic sequence. Let (wn)n∈N
be the sequence of all bispecial factors in u ordered by length.
For every n ∈ N, let rn be the shortest return word to the
bispecial factor wn in u. Then

E(u) = 1+sup

{
|wn|
|rn|

: n ∈ N
}

and E∗(u) = 1+lim sup
n→∞

|wn|
|rn|

.

15



Klouda’s method for bispecial factors

In a 2012 article, Klouda describes a method to find the
bispecial factors within a circular non-pushy morphic word. The
word uk fits this framework. We illustrate this method with u4.

Idea: we aim to derive from ξ4 a transformation Ξ4 that maps
bispecial factors to longer bispecial factors. However, we must
work with bispecial triplets: a bispecial factor together with a
pair of left- and right-extensions.

Every bispecial factor will then be obtained within a triplet
(Ξ4)

n(t) where t is in a set of well-chosen initial triplets and n is
a natural number.
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Method sketch

ξ4 : 0 7→ 01, 1 7→ 2, 2 7→ 3, 3 7→ 0′, . . .

0 1 2 3 0′ 0′ 1′ 0′ 1′ 2′ 0′ 1′ 2′ 3′ 0′ 1′ 2′ 3′ 0 0′ 1′ 2′ 3′ 0 0 1 0′ 1′ 2′ 3′ 0 0 1 0 1 2 0′ u4

0 1
2
0

2
0′

0 1 2
3
1

3

0′

0 1 2 3
0′

2
0′

0′ /

0 1 2 3 0′0′

2

/

1′

0 1 2
3
1

3 0′

0′

0 1 2 3 0′0′

2
0′ 1′

1′

We must carefully select pairs of left- and right-extensions. This
will be formalized by the notion of (left-/right-)forky sets.
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What is a forky set?

(Klouda ’12)
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Forky sets

A right forky set is a set of pairs of words that represent
right-extensions of bispecial factors. We want:

All possible pairs of extensions to be represented
With no duplicates. (For instance, {10,01} and {1, 012}
cannot both be in a right forky set. In which category would
we put {10, 012}?)
When we apply ξ then factor out the longest common
prefix, the pair we obtain is also seen in the forky set.

Left forky sets are defined similarly. For all circular non-pushy
morphic words, left and right forky sets exist.
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A right forky set for u4

ξ4 : 0 7→ 01, 1 7→ 2, 2 7→ 3, 3 7→ 0′, . . .

0 1 2 3 0′ 0′ 1′ 0′ 1′ 2′ 0′ 1′ 2′ 3′ 0′ 1′ 2′ 3′ 0 0′ 1′ 2′ 3′ 0 0 1 0′ 1′ 2′ 3′ 0 0 1 0 1 2 0′ u4

Pictured is the subset of a right forky set for u4 with all pairs
that have a 0 as prefix of one element. Red arrows indicate
moving to the corresponding twin pair. Arrows are labeled with
the longest common prefix that must be factored out.

{
0
0′

}{
0
3

}{
0
2

}{
0
1

}{
0

3′0

}

{
0

2′0

} {
0

1′0

} {
00′

3′0′

}

{
0

2′3′

} {
0

1′2′

} {
01
3′0′

}

{
0

2′0′

}{
0

1′0′

}{
00
3′0′

}
0

0

0

0

ξ4(0) = 01
ξ4(3′0) = 001

0

The left forky set is simply given by all the pairs of different
letters.

20



Bispecial triplets

A bispecial triplet of u is given by a bispecial factor w , and pairs
of extensions {sL, tL} and {sR, tR} that are in the chosen left
(resp. right) forky set and such that sLwsR and tLwtR are factors
of w (or maybe sLwtR and tLwsR).

w
sL

tL

sR

tR

The bispecial triplet ({sL, tL},w , {sR, tR}) can be transformed
into the triplet(

{s̃L, t̃L}, lcs(ξ(sL), ξ(tL))ξ(w) lcp(ξ(sR), ξ(tR)), {s̃R, t̃R}
)
}

where {s̃L, t̃L} is the pair in the left forky set that is reached
after factoring out the longest common suffix of the images.

ξ(w)lcs lcp
s̃L

t̃L

s̃R

t̃R
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Initial triplets

Naming this transformation Ξ, all bispecial factors can be found
within a bispecial triplet obtained by iterating Ξ from a
well-chosen initial set.

A synchronizing point is a point in a factor of u that always
separates images of letters when desubstituting ξ. For
instance, in the Thue-Morse word, 0 · 0 is a synchronizing point
but 0 · 1 is not.
The initial bispecial factors are those that contain no
synchronizing point.

In the case of u4, there is a synchronizing point to the left of
every letter except 1 and 1′, and to the right of every letter
except 0 and 0′. Therefore, the only initial bispecial triplets are
those for which w = ε.
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Application to u4

{
0
0′

}{
0
3

}{
0
2

}{
0
1

}{
0

3′0

}

{
0

2′0

} {
0

1′0

} {
00′

3′0′

}

{
0

2′3′

} {
0

1′2′

} {
01
3′0′

}

{
0

2′0′

}{
0

1′0′

}{
00
3′0′

}
0

0

0

0

Things only get interesting
when we depart from triplets that have
ε as their factors. Our four starting points
are (from bottom to top on the figure,
a star means any letter can be used):
T1 = ({∗,2′}, ε, {0, 3′0})
T3 = ({3′, 2′}, ε, {00′, 3′0′})
T2 = ({∗,2′}, ε, {01, 3′0′})
T4 = ({3′, 2′}, ε, {00, 3′0′}).
From there, we can obtain all bispecial factors of uk .
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Application to u4

ξ4 : 0 7→ 01, 1 7→ 2, 2 7→ 3, 3 7→ 0′, . . .

As an example, here are all the bispecial triplets arising from
T1:

T1 = ({∗, 2′}, ε, {0, 3′0})
Ξ4(T1) =

(
{∗, 3′}, 0, {1, 0}

)
Ξ2

4(T1) =
(
{∗, 0}, ξ4(0), {2,0}

)
Ξ3

4(T1) =
(
{∗, 1}, ξ2

4(0), {3,0}
)

Ξ4
4(T1) =

(
{∗, 2}, ξ3

4(0), {0′, 0}
)

...

Therefore, every ξn
4(0) is bispecial in u4, with every letter as a

left extension and two known right extensions.
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Bispecial factors of uk

Proposition

The bispecial factors within uk are the ξn
k (0) for any n and the

ξn+2k−1
k (0)ξn

k (0) for any n, plus their twins. Moreover, ξn
k (0) can

be extended to the left by any of the 2k letters, while
ξn+2k−1

k (0)ξn
k (0) only has two left-extensions.

n 0 1 2 . . .

Left-extensions of ξn+7
4 (0)ξn

4(0) 1′, 2′ 2′, 3′ 3′, 0 . . .

Through a study of the return words to these bispecial factors,
we obtain the following corollary.

Corollary

The word uk is overlap-free.
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Projecting to xk

Bispecial factors in uk and xk do not necessarily match. The
following lemmas bridge the gap between uk and xk .

Lemma (1)

Let u, v ∈ Fac(uk ). If πk (u) = πk (v) and u, v disagree on every
letter, then |u| ≤ k + 1. If furthermore u0, v0 ∈ Fac(uk ), or
u0′, v0′ ∈ Fac(uk ), then |u| ≤ k − 1 and πk (u) = 0|u| or 1|u|.

Lemma (2)

Let w ̸= ε be a bispecial factor of uk . Given two
right-extensions of w, their projections can agree on at most

the first two letters, if w = ξℓk (0) with 0 ≤ ℓ ≤ k − 2.
the first letter, if w = ξℓk (0) with k ≤ ℓ ≤ 2k − 2.
no letters, otherwise.
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Factor complexity

To recall, the first difference of factor complexity ∆pxk (n) is
given by the number of left-special factors of length n in xk .

Lemma (3)

Let w be a left special factor of xk such that |w | is at least
|ξ2k−2(0)|+ k + 2. Then there exist i ∈ N, 1 ≤ i ≤ k, and a left
special factor f of uk such that w or its twin equals
w = 0i−1π(f ).

u

v

w
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Factor complexity

If f is a prefix of ξn
k (0), it can be extended to the left by any

letter. Examining further extensions to the left, we obtain
that all words 0ℓπ(f ) and 1ℓπ(f ) are left-special in xk for
ℓ = 0, . . . , k − 1. Counting words related to the twin of f ,
we find 4k − 2 left-special words for any sufficiently large
length.
If f is instead a prefix of ξn+2k−1

k (0)ξn
k (0) but not of ξn

k (0), it
has only two left extensions. This and its twin sporadically
give an extra 2 left-special factors, with no overlap
between different values of n. Thus we have proven our
first conjecture.

Theorem (Dvořáková, K., Pelantová ’25)

Let k ≥ 1. The first difference of factor complexity of xk , for n
large enough, takes the values 4k − 2 and 4k only.
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Overlaps and asymptotic critical exponent

Assume on the contrary that an overlap exists, i.e. a word of
length 2n + k and period n, and consider one of its preimages.

u

0 k n n + k 2n 2n + k

i j

The shaded areas represent equal words. The leftmost and
rightmost nonshaded areas must be small due to our lemmas,
but the shaded areas cannot overlap since there is no overlap
in uk . This gives strong enough conditions on i and j to exclude
all possibilities by casework.

Theorem (Dvořáková, K., Pelantová ’25)

Let k ≥ 1. The sequence xk contains no factor of length 2n + k
and period n, and therefore has asymptotic critical exponent
equal to 2. Since 0k+1 and 1k+1 are factors of xk , the critical
exponent is k + 1.
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Conclusion

Klouda’s method can identify bispecial factors, and is
especially tractable in words where synchronization points
are abundant.
(some manual casework might still be required)

Thank you for your attention!
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