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1% (g) is a polynomial of degree at most |q| and variables x, . .
1% Pg(X1,...,X¢) is independent of g
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Equations

Definition

Let g € 2T and g from a polynomial regular language. Consider the polynomial in

Q[X'h' e 7Xt]

qu?q = Pq(X1,. .. ,Xt) — (g)

Let g = uqv{'uy - - - utv{"us, 1 from a polynomial regular language. For all g € >+, the =
t-uple (y1, ..., 7t) of non-negative integers is a solution of the equation qu7q = 0.

-) Problem reduces: finding a set of queries such that system of equations has
unique integer solution !
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Lemma

Let L = uqviuyVvius be alanguage where vy, v, € X* and uq, Uy, us € X* are given and
Ve~ vg for some coprime integers o, 3 = 1. If there exist a, b € Z such that the

quantity Ve Ve
Ve pluala — [V alualp + ( 2 ) — (]
Wiloluzla — Lozl + (1) ~ (o

is non-zero , then a word in L (of unknown length) can be uniquely reconstructed with
two queries (of length 1 and 2 respectively).
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L— 0 (11000)* 001 (010)*
S=r—t T S e

U1 V1 Uz V1

Eqgo 2x+y—-7 = 0
Eqg, 2y+y—-7 =0
EQgor : 4X2+4xy+2x+y*+4y—-65 = 0
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Let L = uqviuyvius and

® vy~ VZ'B for some coprime integers o, 3 = 1
* k=2

¥ g = uqv{"upv3?us to guess is long enough such that |1 /o] + |72/8] = k
For all queries q such that 2 < |q| < k:
{Eqy, = O} and

{EQuq =0[1<gl <k} = Vviup ~, vy
same sets of solutions

= there exists a largest K such that viup ~k uzvé’) and  V§'Up #g41 uzvg.
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Query for K no short queries

If viup ~ uzvg one can determine a K such that, a word in L (of unknown length) can
be uniquely reconstructed with two queries (of length 1 and K + 1 respectively).
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& system of m equations qu,q/ =0

¢ there exists at least one non-negative integer solution (vq,..., )

Show that
F:N' N X=(X1,...,X) = (Pg,(X),...,Pgn(X))

is injective. O
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Tarski-Seidenberg

F:N' N7,
X=(X1,...,%Xt) — (Pg,(X),...,Pg,(X S
b ) = (Par (%) an(X)) Theorem (Tarski-Seidenberg)
extend the domain to real
numbers

\ 2

A m
G o R?O — RZ(),

For every first-order formula over the real
field, there exists an equivalent
quantifier-free formula. Furthermore,
there is an explicit algorithm to compute
X =(X1,...,Xt) = (Pg,(X),...,Pgn(X)) this quantifier-free formula.

\ 2

t
= (3x1,...,xt,y1,...,yt>0:\/xj7&yj:>G(x1,...,xt)#G(y1,...,yt)).
j=1
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Tarski-Seidenberg

Let

% g1,...,qm be queries

¥ G(x) = (Pg,(X),...,Pg,(x)) be the corresponding polynomial map
quantifier elimination of the any word in the language

formula returns True = can be reconstructed in
a constant number of m queries
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