Coordinatizing MV-Algebras

Philip Scott University of Ottawa & Informatics, U. Edinburgh (Joint work with Mark Lawson)

Philip Scott University of Ottawa & Informatics, U. Edinburgh (J Coordinatizing MV-Algebras

• Mundici in mid-80's connected up MV-algebras (arising from many-valued logics) with G. Elliot's program for classification of AF C*-algebras via countable dimension groups.

Theorem [Mundici, 1986] countable MV algebras \cong

AF C*-algebra with lattice-ordered dimension group $(K_0$ -group).

• In 1990's, the algebraic theory of quantum effects in physics led to *Effect Algebras* developed by Bennett & Foulis, eastern European school: Jencova, Pulmannova, et. al.

Theorem [J & P, 2008] There are three categorical equivalences: unital AF C*-algebras \cong countable dimension effect algebras \cong countable dimension groups. • Find a setting that encompasses both frameworks, based on Inverse Monoid Theory.

• Connect this work up with recent works on noncommutative Stone-Duality, étale groupoids, pseudogroups, tilings, formal language theory, etc. (Lawson, Lenz, Resende, et. al.)

• Generalize AF C*-algebra techniques (Bratteli diagrams) to develop a theory of AF inverse monoids (e.g. the dyadic or CAR Inverse Monoid) and connect it up with effect algebras.

Theorem (Coordinatization Theorem, L-S)

Let A be a countable MV algebra. Then there exists a boolean inverse "coordinatizing" monoid S such that $S/\mathcal{J} \cong A$.

Here \mathcal{J} is the standard relation: $a\mathcal{J}b$ iff SaS = SbS.

Łukasiewicz (1878-1956) introduced many-valued logics in the 1920's. What are they? In brief:

- A logic \mathcal{L} with truth values in [0,1] (also related ones with truth values in $\mathbb{Q} \cap [0,1]$ or $\mathbb{Q}_{\mathsf{Dyad}} \cap [0,1]$).
- Finite Łukasiewicz logics \mathcal{L}_n , with truth values in $\{0, \frac{1}{n-1}, \frac{2}{n-1}, \cdots, \frac{n-2}{n-1}, 1\}.$

Before going into details, let me give a brief history. See also:

- (i) Many-Valued Logic, Stanford Encyclopedia of Philosophy
- (ii) Many papers and works of Daniele Mundici (Milan), e.g.

Algebraic Foundations of Many-valued Reasoning (2000), Cignoli, D'Ottaviano, Mundici.

Lukasiewicz Logics and their Algebras

Łukasiewicz (1878-1956) introduced many-valued logics in the 1920's.

- Studied by Polish logicians in 1920's, including Lesniewski, Tarski (in parallel with Post (1921) in U.S.)
- 1940's & early 1950's: Rosenbloom, Rosser, McNaughton.
- Mid-1950's: major advances by CC. Chang: MV-algebras, Chang Completeness Thm, lattice ordered abelian groups.
- From mid-1980's: large body of work by D. Mundici, et.al.
 - Theory of MV Algebras via lattice-ordered groups & rings
 - MV-Algebras & AF C*-algebras.
 - Connections to works of Elliott, Effros, Handleman: dimension groups and Grothendieck's K_0 functor.
 - States & probability distributions.
- Sheaf Representation Theory of MV-Algebras: Dubuc/Poveda (2010)

What are MV Algebras?

MV algebras are structures $\mathcal{M} = \langle M, \oplus, \neg, 0 \rangle$ satisfying:

- $\langle M, \oplus, 0 \rangle$ is a commutative monoid.
- \neg is an involution: $\neg \neg x = x$, for all $x \in M$.
- $1 := \neg 0$ is absorbing: $x \oplus 1 = 1$, for all $x \in M$.

•
$$\neg(\neg x \oplus y) \oplus y = \neg(\neg y \oplus x) \oplus x.$$

Writing $x \multimap y := \neg x \oplus y$, we can rewrite the last equation:

•
$$(x \multimap y) \multimap y = (y \multimap x) \multimap x$$

Notation: $x \otimes y := \neg (\neg x \oplus \neg y)$ $x \leq y$ iff for some $z, x \oplus z = y$ iff $x \multimap y = 1$

Facts: (i) \leq is a partial order. (ii) \otimes is adjoint to $-\infty$, i.e. $x \otimes y \leq z$ iff $x \leq (y - \infty z)$

Further Facts:

(i) Let
$$x \ominus y := x \otimes \neg y$$
. Then
 $x \leq y$ iff $x \ominus y = 0$ iff $y = x \oplus (y \ominus x)$
(ii) \ominus is left adjoint to \oplus , i.e. $x \ominus z \leq y$ iff $x \leq y \oplus z$

Lattice Structure ("Additives")

The order on an MV algebra determines a distributive lattice structure with 0, 1:

$$\begin{array}{l} x \lor y := (x \otimes \neg y) \oplus y = (x \ominus y) \oplus y \\ x \land y := \neg (\neg x \lor \neg y) \end{array}$$

For $x, y \in [0, 1]$, define:

1
$$\neg x = 1 - x$$

$$x \oplus y = \min(1, x + y)$$

$$x \otimes y = max(0, x + y - 1)$$

Other models: similarly consider the same operations on:

•
$$\mathbb{Q} \cap [0,1]$$
 and $\mathbb{Q}_{dyad} \cap [0,1]$.

• Finite MV algebras $\mathcal{M}_n = \{0, \frac{1}{n-1}, \frac{2}{n-1}, \cdots, \frac{n-2}{n-1}, 1\}$ (subalgebras of [0,1]). Note: $\mathcal{M}_2 = \{0, 1\}$.

Fact (Barr)

 $([0,1], \otimes, \oplus, 1, 0, \neg)$ also forms a *-autonomous poset.

Moreover, it has products (\land) and thus coproducts (\lor).

Example 2: Lattice-Ordered Abelian Groups

- Let ⟨G,+,-,0,≤⟩ be a partially ordered abelian group, i.e. an abelian group with translation invariant partial order.
- If G is lattice-ordered, call G an ℓ -group, G^+ its positive cone.
- If G is an ℓ -group and $t \in G$, then t + () preserves \lor and \land .
- If G is an ℓ-group, an order unit u ∈ G is an Archimedian element: ∀g ∈ G, ∃n ∈ N⁺ s.t. g ≤ nu.
- If G is an ℓ -group with order unit u, define

$$[0, u]_G = \{g \in G \mid 0 \leqslant g \leqslant u\}$$
 (just a poset)

Example: $\Gamma(G, u) = ([0, u]_G, \oplus, \otimes, *, 0, 1)$ is an MV algebra, via:

$$\begin{array}{rcl} x \oplus y & := & u \wedge (x+y) \\ x^* & := & u-x \\ x \otimes y & := & (x^* \oplus y^*)^* \\ 0 := 0_G \quad \text{and} \quad 1 := u \end{array}$$

Lattice-Ordered Abelian Groups

Examples of MV algebras $\Gamma(G, u) = ([0, u]_G, \oplus, \otimes, *, 0, 1)$:

- $\Gamma(\mathbb{R},1) = [0,1]$,
- $\Gamma(\mathbb{Q},1)=\mathbb{Q}\cap [0,1]$,
- $\Gamma(\frac{1}{n-1}\mathbb{Z},1) = \mathcal{M}_n = \{0, \frac{1}{n-1}, \frac{2}{n-1}, \cdots, \frac{n-2}{n-1}, 1\}$ (called a *Łukasiewicz chain*).

•
$$\Gamma(\mathbb{Z},1) = \mathcal{M}_2 = \{0,1\}.$$

Let \mathcal{MV} = the category of MV-algebras and MV-morphisms. Let $\ell \mathcal{G}_u$ be the category of ℓ -groups and order-unit preserving homs.

Theorem (Mundici, 1986)

 Γ induces an equivalence of categories $\ \ell \mathcal{G}_u \cong \mathcal{MV}$

In particular, for every MV algebra A, there exists an ℓ -group G with order unit u, unique up to isomorphism, such that $A \cong \Gamma(G, u)$, and $|G| \leq max(\aleph_0, |A|)$.

Theorem (Chang, 1955-58)

- Every MV algebra is a subdirect product of MV Chains.
- **2** An MV equation holds in [0,1] iff it holds in all MV algebras.
- Ompleteness theorem for Łukasiewicz logic.

Corollary

The free MV algebra \mathcal{F}_{κ} on κ free generators is the smallest MV-algebra of functions $[0,1]^{\kappa} \rightarrow [0,1]$ containing all projections (as generators) and closed under the pointwise operations.

Theorem (McNaughton, 1950: earlier than Chang!)

The free MV algebra \mathcal{F}_n is exactly the algebra of McNaughton Functions: continuous, piecewise linear polynomial functions (in n vbls, with integer coefficients): $[0,1]^n \rightarrow [0,1]$.

Matrix algebras and AF C*-algebras: some defns

See: Notes on Real and Complex C*-algebras by K. R. Goodearl.

- A finite dimensional C*-algebra is one isomorphic (as a *-algebra) to a direct sum of matrix algebras:
 ≃ M = (C)
 - $\cong M_{m(1)}(\mathbb{C}) \oplus \cdots \oplus M_{m(k)}(\mathbb{C}).$
- The ordered list (m(1), · · · , m(k)) is an invariant and determines A. We write A ≅ (m(1), · · · , m(k)).
- 🏈 Many categories arise, with many notions of map!
- (Bratteli, 1972) An *AF C*-algebra* (approximately finite C*-algebra) is a countable colimit

$$\lim_{\longrightarrow} (\mathcal{A}_1 \xrightarrow{\alpha_1} \mathcal{A}_2 \xrightarrow{\alpha_2} \mathcal{A}_3 \xrightarrow{\alpha_3} \cdots)$$

of finite-dimensional C*-algebras and *-algebra maps.

Bratteli showed AF C*-algebras have a *standard form*:

Matrix C*-algebras: standard maps

Consider matrix C*-algebras $\mathcal{A} = M_{m(1)}(\mathbb{C}) \oplus \cdots \oplus M_{m(k)}(\mathbb{C}).$

Consider *-algebra maps A → M_{n(i)}(C) mapping to a block diagonal n(i) × n(i)-matrix: (A₁,..., A_k) → DIAG_{n(i)}(A₁,..., A₁, A₂,..., A₂,..., A_k, ..., A_k) determined by s_{ik} ∈ N where s_{i1}m(1) + ... + s_{ik}m(k) = n(i).
Let A = (m(1),..., m(k)), B = (n(1),..., n(l)) be algebras. A standard *-map A → B is an l-tuple of such DIAGs:

$$(A_1, \cdots, A_k) \mapsto (DIAG_{n(1)}(\cdots), \dots, DIAG_{n(l)}(\cdots))$$

determined by $l \times k$ matrix (s_{ij}) s.t. $\sum_{j=1}^{k} (s_{ij}m(j)) = n(i)$, $1 \leq i \leq l$. The s_{ij} are sometimes called *partial multiplicities*.

Theorem (Bratteli)

Any AF C*-algebra is isomorphic (as a C*-algebra) to a colimit of a system of matricial C*-algebras and standard maps.

Bratteli introduced a graphical language for standard maps. We form a (directed) multigraph from the matrix (s_{ij}) . For example, we have two horizontal rows of labelled vertices:

m(1) m(2) ... m(k)n(1) n(2) ... n(l)

Draw s_{ij} -many edges between m(j) to n(i). (Of course, we assume the s_{ij} satisfy the combinatorial condition.)

Our Goal: introduce general theory for AF C*-inverse monoids.

Bratteli diagrams have become part of the combinatorial structure behind AF C*-algebra. More generally, one can define a Bratteli diagram as an infinite directed multigraph B = (V, E), where $V = \bigcup_{i=0}^{\infty} V(i)$ and $E = \bigcup_{i=0}^{\infty} E(i)$. We assume V(0) has one vertex, the *root*. Edges are only defined from V(i) to V(i + 1). Vertices have weights on them.

$$V(i)$$
 $m(1)$
 $m(2)$
 \cdots
 $m(k)$
 $V(i+1)$
 $n(1)$
 $n(2)$
 \cdots
 $n(l)$

Draw s_{ij} -many edges between m(j) to n(i). (Of course, for adjacent levels, the s_{ij} must satisfy the combinatorial conditions.)

K_0 : Grothendieck group functor **Ring** \rightarrow **Ab**

- A general functorial construction K₀(-). Gives a pre- or p.o.-abelian group K₀(A) for classes of structures A.
- Roughly, we construct a commutative monoid on isomorphism classes of idempotents in a category of idempotents (a kind of Karoubi envelope/A). E.g. say idempotents e ~ f iff there exists maps x : e → f and y : f → e in Karoubi(A) such that xy = e and yx = f. But how to add classes [e] + [f] =?
- E.g. A = ring. Move to matrix ring over A. Define "gen. idempotents" E(A) = ∪_{n=1}[∞] {idempotents in M_n(A)}. If e ∈ M_k, f ∈ M_n, then e ⊕ f = Diag(e, f) ∈ M_{n+k} is an idempotent. E(A)/~ is commutative monoid. Want cancellative monoid (why?). Use stably equiv. idempotents: e ≈ f iff e ⊕ g ~ f ⊕ g for some g ∈ E(A). Get cancellative abelian monoid. Apply now the formal INT construction (like building Z from N). Get functor K₀ : Rings → Ab.

K_0 : Grothendieck group for C*-algebras A

- Suppose A is a *-algebra. Now use self-adjoint idempotents (= projections): e = e^{*} = e². (Note if e ≠ 0, ||e|| = ||e^{*}|| = ||e||², so ||e|| = 1).
- For projections e, f ∈ A, e ^{*} f if for some w ∈ A, f ^w→ e in Karoubi(A), w^{*}w = f, ww^{*} = e. Note: e ^{*} f implies e ~ f.
- For C*-algebras A, again use matrices, using ^{*}, ^{*}⇒, and P(A) = ∪[∞]_{n=1}{projections in M_n(A)}. Next facts are increasingly hard to prove: see Goodearl's text:
- Prop: K₀ : C*-alg → Preord-Ab_u is a functor preserving colimits.
- Prop: If start with AF C*-algebra, $K_0 : \mathbf{AF} \rightarrow \mathbf{Po}-\mathbf{Ab}_u$.
- Prop: If A is an AF C*-algebra, then K₀(A) is a countable dimension group with an order unit (in fact, K₀(A) ≅ Z^k with direct product ordering.)

AF C*-algebras & Mundici's Work

Approx. finite (AF) C*-algebras classified in deep work of G. Elliott (studied further by Effros, Handelman, Goodearl, et. al).

- **Defn:** F.d. complex C*-algebras $\cong M_{n_1}(\mathbb{C}) \times \cdots \times M_{n_k}(\mathbb{C})$.
- AF C*-algebras \cong colimits of such matricial algebras.
- There's a functor AF ^{K₀}→PoAb. K₀(A) is a countable p.o. group (called a *dimension* group). E.g. if A is matricial C*-algebra, K₀(A) is the free p.o.abelian group (Z^k, (Z^k)⁺).
- (Mundici) Let *l*AF_u = category of AF-algebras, st K₀ is lattice-ordered with order unit. Let *MV_ω* = countable MV-algebras.

We can extend $\Gamma : \ell \mathcal{G}_u \cong \mathcal{MV}$ to a functor $\widetilde{\Gamma} : \ell \mathbf{AF}_u \to \mathcal{MV}_\omega$,

$$\begin{split} \widetilde{\Gamma} \ (\mathcal{A}) &:= \Gamma(\mathcal{K}_0(\mathcal{A}), [1_{\mathcal{A}}]) \\ (\text{i}) \ \mathcal{A} &\cong \mathcal{B} \text{ iff } \widetilde{\Gamma}(\mathcal{A}) \cong \widetilde{\Gamma}(\mathcal{B}) \\ (\text{ii}) \ \widetilde{\Gamma} \text{ is full.} \end{split}$$

- For \mathcal{M} an MV algebra and X a set, \mathcal{M}^X with pointwise operations is an MV algebra.
- MV algebras are an equational class, so closed under HSP as well as ultraproducts.
- Coproducts and Tensor Products of MV algebras were studied by Mundici [1988], [1999], resp.
- Mundici [1991] has a long list of countable MV-algebras and associated AF C*-algebras, according to his correspondence above.

Countable MV Algebra	AF C*-correspondent
$\{0,1\}$	\mathbb{C}
Chain \mathcal{M}_n	$Mat_n(\mathbb{C})$
Finite	Finite Dimensional
Dyadic Rationals	CAR algebra of a Fermi gas
$\mathbb{Q}\cap [0,1]$	Glimm's universal UHF algebra
Real algebraic numbers in [0,1]	Blackadar algebra <i>B</i> .
Generated by an irrational $ ho \in [0,1]$	Effros-Shen Algebra \mathfrak{F}_p
Finite Product of Post MV-algebras	Continuous Trace
Free on \aleph_0 generators	Universal AF C*-algebra ${\mathfrak M}$
Free on one generator	Farey AF C*-algebra \mathfrak{M}_1 .
	Mundici (1988)

An *Effect Algebra* is a *partial* algebra $\langle E; 0, 1, \widetilde{\oplus} \rangle$ satisfying: $\forall a, b, c \in E$ (writing $a \widetilde{\oplus} b \downarrow$ for " $a \widetilde{\oplus} b$ is defined" and using Kleene directed equality \succeq)

$$\bullet a \stackrel{\sim}{\oplus} b \succeq b \stackrel{\sim}{\ominus} a.$$

An *Effect Algebra* is a *partial* algebra $\langle E; 0, 1, \widetilde{\oplus} \rangle$ satisfying: $\forall a, b, c \in E$ (writing $a \widetilde{\oplus} b \downarrow$ for " $a \widetilde{\oplus} b$ is defined" and using Kleene directed equality \succeq)

$$\begin{array}{l} \bullet a \stackrel{\sim}{\oplus} b \succeq b \stackrel{\sim}{\mapsto} a. \\ \hline \bullet b \downarrow \text{ then } (a \stackrel{\sim}{\oplus} b) \stackrel{\sim}{\oplus} c \succeq a \stackrel{\sim}{\oplus} (b \stackrel{\sim}{\oplus} c). \end{array}$$

An *Effect Algebra* is a *partial* algebra $\langle E; 0, 1, \widetilde{\oplus} \rangle$ satisfying: $\forall a, b, c \in E$ (writing $a \widetilde{\oplus} b \downarrow$ for " $a \widetilde{\oplus} b$ is defined" and using Kleene directed equality \succeq)

$$\begin{array}{l} \bullet & a \stackrel{\sim}{\oplus} b \succeq b \stackrel{\sim}{\to} a. \\ \bullet & \text{If } a \stackrel{\sim}{\oplus} b \downarrow \text{ then } (a \stackrel{\sim}{\oplus} b) \stackrel{\sim}{\oplus} c \succeq a \stackrel{\sim}{\oplus} (b \stackrel{\sim}{\oplus} c) \\ \bullet & \bullet \stackrel{\circ}{\to} a \downarrow \text{ and } 0 \stackrel{\sim}{\oplus} a = a \end{array} \right\} \text{PCM}$$

An *Effect Algebra* is a *partial* algebra $\langle E; 0, 1, \widetilde{\oplus} \rangle$ satisfying: $\forall a, b, c \in E$ (writing $a \widetilde{\oplus} b \downarrow$ for " $a \widetilde{\oplus} b$ is defined" and using Kleene directed equality \succeq)

$$\begin{array}{l} \bullet a \stackrel{\sim}{\oplus} b \coloneqq b \stackrel{\sim}{\rightleftharpoons} a. \\ \bullet & \text{If } a \stackrel{\sim}{\oplus} b \downarrow \text{ then } (a \stackrel{\sim}{\oplus} b) \stackrel{\sim}{\oplus} c \succeq a \stackrel{\sim}{\oplus} (b \stackrel{\sim}{\oplus} c) \\ \bullet & \bullet \stackrel{\circ}{\to} a \downarrow \text{ and } 0 \stackrel{\sim}{\oplus} a = a \\ \bullet & \forall_{a \in E} \exists !_{a' \in E} \text{ such that } a \stackrel{\sim}{\oplus} a' = 1. \end{array} \right\} \text{PCM}$$

An *Effect Algebra* is a *partial* algebra $\langle E; 0, 1, \widetilde{\oplus} \rangle$ satisfying: $\forall a, b, c \in E$ (writing $a \widetilde{\oplus} b \downarrow$ for " $a \widetilde{\oplus} b$ is defined" and using Kleene directed equality \succeq)

$$\left.\begin{array}{c} a \stackrel{\sim}{\oplus} b \succeq b \stackrel{\sim}{\oplus} a.\\ \end{array}\right\} PCM$$

$$\left.\begin{array}{c} a \stackrel{\sim}{\oplus} b \downarrow \text{ then } (a \stackrel{\sim}{\oplus} b) \stackrel{\sim}{\oplus} c \succeq a \stackrel{\sim}{\oplus} (b \stackrel{\sim}{\oplus} c) \\ \end{array}\right\} PCM$$

$$\left.\begin{array}{c} a \stackrel{\sim}{\oplus} a \downarrow \text{ and } 0 \stackrel{\sim}{\oplus} a = a\\ \end{array}\right\} \quad \left.\begin{array}{c} \forall_{a \in E} \exists !_{a' \in E} \text{ such that } a \stackrel{\sim}{\oplus} a' = 1.\\ \end{array}\right\} \quad \left.\begin{array}{c} a \stackrel{\sim}{\oplus} 1 \downarrow \text{ implies } a = 0. \end{array}\right\} \quad \left.\begin{array}{c} \text{Orthocomplemented} \end{array}\right\}$$

Introduced by Foulis & Bennet (1994) as an abstraction of the algebraic structure of self-adjoint operators with spectrum in [0,1] (called *quantum effects*). (See recent work of Bart Jacobs (2012))

An *Effect Algebra* is a partial algebra $\langle E; 0, 1, \widetilde{\oplus} \rangle$ satisfying: $\forall a, b, c \in E$ (writing $a \widetilde{\oplus} b \downarrow$ for " $a \widetilde{\oplus} b$ is defined" and using Kleene inequality \succeq) Various axiomatizations, e.g.:

Effect Algebras: Additional Properties

Let *E* be an effect algebra. Let *a*, *b*, *c* \in *E*. Denote *a'* by *a*^{\perp} or *a*^{*}.

9 Partial Order:
$$a \leq b$$
 iff for some c , $a \bigoplus^{\sim} c = b$.

2)
$$0 \leqslant a \leqslant 1, \forall a \in E.$$

$$a^{\perp\perp} = a.$$

$${old 0}$$
 $a \stackrel{\sim}{\oplus} c_1 = a \stackrel{\sim}{\oplus} c_2$ implies $c_1 = c_2$.

(a)
$$a \oplus c_1 = a \oplus c_2$$
 implies $c_1 =$
(b) $a \bigoplus b = 0$ implies $a = b = 0$

•
$$0^{\perp} = 1$$
 and $1^{\perp} = 0$.

•
$$a \leqslant b$$
 implies $b^{\perp} \leqslant a^{\perp}$

Define a *partial* operation $b \stackrel{\sim}{\ominus} a$ by: $b \stackrel{\sim}{\ominus} a = c$ iff $a \stackrel{\sim}{\oplus} c = b$. So

高 とう きょう く ほ とう ほう

$$b \stackrel{\sim}{\ominus} a \downarrow \text{ iff } a \leqslant b$$

• $a \stackrel{\sim}{\oplus} (b \stackrel{\sim}{\ominus} a) = b$
• $a' = a^{\perp} = 1 \stackrel{\sim}{\ominus} a$

What is the relation between MV-algebras and Effect Algebras? An *MV-Effect Algebra* is a lattice-ordered effect algebra satisfying

$$(a \lor b) \stackrel{\sim}{\ominus} a = b \stackrel{\sim}{\ominus} (a \land b)$$

Proposition (Chovanec, Kôka, 1997)

There is a natural 1-1 correspondence between MV-effect algebras and MV-algebras.

Idea: MV-Effect algebras \longleftrightarrow MV-Algebras $\langle E, 0, 1, \bigoplus^{\sim} \rangle \longmapsto \langle E, 0, 1, \bigoplus^{\sim} \rangle$, where $x \oplus y = x \bigoplus^{\sim} (x' \land y)$ $\langle E, 0, 1, \bigoplus^{\sim} \rangle \longleftrightarrow \langle E, 0, 1, \bigoplus^{\sim} \rangle$, where $x \bigoplus^{\sim} y = x \oplus y$ (restricted to (x, y) s.t. $x \leq \neg y$);

Equivalences of MV- and MV-Effect Algebras

Various facts (mostly due to Bennett & Foulis (1995))

- For lattice-ordered effect algebras E, E is MV $\Leftrightarrow \forall a, b \in E, a \land b = 0 \Rightarrow a \oplus b \downarrow$.
- An effect algebra satisfies RDP (*Riesz Decomposition Property*) iff

$$\begin{array}{l} a \leqslant b_1 \oplus b_2 \oplus \cdots \oplus b_n \quad \Rightarrow \\ a = a_1 \oplus a_2 \oplus \cdots \oplus a_n \quad \text{with} \quad a_i \leqslant b_i, i \leqslant n \end{array}$$

Proposition (B& F)

An effect algebra is an MV-effect algebra iff it is lattice ordered and has RDP.

Definition (Inverse Semigroups)

Semigroups (resp. monoids) satisfying: "Every element x has a unique pseudo-inverse y."

• $\forall x \exists ! y (xyx = x \& yxy = y)$

Fact (Preston-Wagner): Equivalent axiomatization, (i) & (ii):

(i) Existence of pseudo-inverses: $\forall x \exists y (xyx = x \& yxy = y)$

(ii) Idempotents commute: $\forall x, y \ [(x^2 = x \& y^2 = y) \Rightarrow xy = yx].$

We denote the unique pseudo-inverse of x by x^{-1} . So the equations of an inverse semigroup/monoid are:

$$xx^{-1}x = x \& x^{-1}xx^{-1} = x^{-1}$$

Ref: M.V. Lawson *Inverse semigroups: the theory of partial symmetries*, World Scientific Publishing Co., 1998.

• Any group (with pseudo-inverse(x) := usual inverse x^{-1})

- Any group (with pseudo-inverse(x) := usual inverse x^{-1})
- Pundamental Example: *I_X* = PBij(*X*), partial bijections on the set *X*. These are partial functions *f* : *X* → *X* which are bijections dom(*f*) → ran(*f*). We have:

- Any group (with pseudo-inverse(x) := usual inverse x^{-1})
- Pundamental Example: *I_X* = PBij(*X*), partial bijections on the set *X*. These are partial functions *f* : *X* → *X* which are bijections dom(*f*) → ran(*f*). We have:
 - For each subset $A \subseteq X$, there are partial identity functions $1_A \in \mathcal{I}_X$. These are idempotents.

- Any group (with pseudo-inverse(x) := usual inverse x^{-1})
- Pundamental Example: *I_X* = PBij(*X*), partial bijections on the set *X*. These are partial functions *f* : *X* → *X* which are bijections dom(*f*) → ran(*f*). We have:
 - For each subset $A \subseteq X$, there are partial identity functions $1_A \in \mathcal{I}_X$. These are idempotents.

•
$$f^{-1} \circ f = 1_{dom(f)}$$
 and $f \circ f^{-1} = 1_{ran(f)}$, partial identities on X .

- Any group (with pseudo-inverse(x) := usual inverse x^{-1})
- ② Fundamental Example: *I_X* = PBij(*X*), partial bijections on the set *X*. These are partial functions *f* : *X* → *X* which are bijections dom(*f*) → ran(*f*). We have:
 - For each subset $A \subseteq X$, there are partial identity functions $1_A \in \mathcal{I}_X$. These are idempotents.
 - $f^{-1} \circ f = 1_{dom(f)}$ and $f \circ f^{-1} = 1_{ran(f)}$, partial identities on X.
 - For partial bijections $f, g \in \mathcal{I}_X$, we have:

$$(f = f \circ g \circ f \text{ and } g = g \circ f \circ g) \Leftrightarrow g = f^{-1}$$

- Any group (with pseudo-inverse(x) := usual inverse x^{-1})
- ② Fundamental Example: *I_X* = PBij(*X*), partial bijections on the set *X*. These are partial functions *f* : *X* → *X* which are bijections dom(*f*) → ran(*f*). We have:
 - For each subset $A \subseteq X$, there are partial identity functions $1_A \in \mathcal{I}_X$. These are idempotents.
 - $f^{-1} \circ f = 1_{dom(f)}$ and $f \circ f^{-1} = 1_{ran(f)}$, partial identities on X .
 - For partial bijections $f,g\in \mathcal{I}_X$, we have:

$$(f = f \circ g \circ f \text{ and } g = g \circ f \circ g) \Leftrightarrow g = f^{-1}$$

Seudogroups (arising in differential geometry): inverse semigroups of partial homeomorphisms between open subsets of a topological space (Veblen-Whitehead, Ehresmann).

Examples: Inverse Semigroups & Inv. Monoids

- Any group (with pseudo-inverse(x) := usual inverse x^{-1})
- ② Fundamental Example: *I_X* = PBij(*X*), partial bijections on the set *X*. These are partial functions *f* : *X* → *X* which are bijections dom(*f*) → ran(*f*). We have:
 - For each subset $A \subseteq X$, there are partial identity functions $1_A \in \mathcal{I}_X$. These are idempotents.
 - $f^{-1} \circ f = 1_{dom(f)}$ and $f \circ f^{-1} = 1_{ran(f)}$, partial identities on X .
 - For partial bijections $f,g\in \mathcal{I}_X$, we have:

 $(f = f \circ g \circ f$ and $g = g \circ f \circ g) \Leftrightarrow g = f^{-1}$

- Pseudogroups (arising in differential geometry): inverse semigroups of partial homeomorphisms between open subsets of a topological space (Veblen-Whitehead, Ehresmann).
- Tiling semigroups associated with tilings of \mathbb{R}^n .

Inverse Monoids: Basic Definitions

Let S be an inverse monoid with zero element 0. Let E(S) be the set of idempotents of S.

- **1** For $a, b \in S$, define $a \leq b$ iff a = be, for some $e \in E(S)$.
- **2** E(S) is always a \wedge -semi-lattice.
- **③** *S* is \land -inverse monoid if $a \land b$ exists, $\forall a, b \in S$.
- \leq on *S* is compatible with multiplication.

o
$$a \leqslant b$$
 implies $a^{-1} \leqslant b^{-1}$!

- For a ∈ S, define dom(a) := a⁻¹a, ran(a) := aa⁻¹, so dom(a) → ran(a).
- **②** (Compatibility) For $a, b \in S$, define $a \sim b$ iff $a^{-1}b$ & $ab^{-1} \in E(S)$. This is *necessary* for $a \lor b$ to exist.

3)
$$a \perp b$$
 iff $a^{-1}b = 0 = ab^{-1}b$

S is boolean if: (i) E(S) is a boolean algebra, (ii) compatible elements have joins, (iii) multiplication distributes over ∨'s.

Inverse Semigroups, more definitions

Let S be an inverse monoid. Define Green's relations as follows:

- **1** \mathcal{J} on S: $a\mathcal{J}b$ iff SaS = SbS (i.e. equality of principal ideals).
- **2** \mathcal{D} on E(S): $e\mathcal{D}f$ iff $\exists_{a\in S}(e = dom(a), f = ran(a), e \xrightarrow{a} f)$
- § For the classes of inverse semigroups we study, $\mathcal{J} = \mathcal{D}$.
- S is completely semisimple if $e\mathcal{D}f \leq e$ implies e = f.

We consider $E(S)/\mathcal{D}$, S boolean. For idempotents $e, f \in E(S)$, define $[e] \bigoplus [f]$ as follows: *if* we can find orthogonal idempotents $e' \in [e], f' \in [f]$, let $[e] \bigoplus [f] := [e' \vee f']$. Otherwise, undefined.

Proposition

Let S be a Boolean inverse monoid.

- $(E(S)/\mathcal{D}, \stackrel{\sim}{\oplus}, [0], [1])$ is a well-defined PCM satisfying (RDP).
- If D preserves complementation and S is completely semisimple then (E(S)/D, ⊕, [0], [1]) is an effect algebra w/ RDP.

< ロ > < 同 > < 回 > < 回 >

Rook Matrices

- A rook matrix in Mat_n({0,1}) is one where every row and column have at most one 1. Let R_n := rook matrices.
- 3 Given $A \in R_m, B \in R_n$, define $A \oplus B := Diag(A, B) \in R_{m+n}$.
- **3** Define $sA = A \oplus \cdots \oplus A$ (*s* times). Ditto $\bigoplus_{i=1}^{n} s_i A_i$.
- There's bijection $\mathcal{I}_n \xrightarrow{\cong} R_n$: $f \mapsto M(f)$, where $M(f)_{ij} = 1$ iff i = f(j). It's an iso, and there are many.
- Interested in *letter isos*: those wrt a chosen total order on n.
- Standard morphisms R_{m(1)} ×···× R_{m(k)} → R_n given by (A₁,···, A_k) → s₁A₁ ⊕···⊕ s_kA_k for some s_i ∈ N. More generally, R_{m(1)} ×···× R_{m(k)} → R_{n(1)} ×···× R_{n(l)} arises via a matrix (s_{ii}) of coefficients in N + combinatorial condn.

Lemma (Standard Map Lemma: Rough Version)

Every morphism $\mathcal{I}_{m(1)} \times \cdots \times \mathcal{I}_{m(k)} \xrightarrow{\theta} \mathcal{I}_{n(1)} \times \cdots \times \mathcal{I}_{n(l)}$ factors as $\beta^{-1}\sigma\alpha$ for some standard map σ and letter isos.

Bratteli Diagrams of Inverse Monoids and colimits of \mathcal{I}_n s

Recall B = (V, E) a Bratteli diagram, where $V = \bigcup_{i=0}^{\infty} V(i)$ and $E = \bigcup_{i=0}^{\infty} E(i)$. We assume V(0) has one vertex, the *root*. Edges are only defined from V(i) to V(i + 1). Vertices have weights.

$$V(i)$$
 $m(1)$
 $m(2)$
 \cdots
 $m(k)$
 $V(i+1)$
 $n(1)$
 $n(2)$
 \cdots
 $n(l)$

Draw s_{ij} -many edges between m(j) to n(i).

Morphisms $\sigma_i : S_i \to S_{i+1}$ are induced by standard maps. These will be monomorphisms. Also, Combinatorial Conditions are true

An AF Inverse Monoid := $colim(S_0 \xrightarrow{\sigma_0} S_1 \xrightarrow{\sigma_1} S_2 \xrightarrow{\sigma_2} \cdots)$. Call this monoid I(B), for Bratteli diagram B_{\cdot}

Lemma

(1) Colimits of ω -chains $(S_0 \xrightarrow{\sigma_0} S_1 \xrightarrow{\sigma_1} S_2 \xrightarrow{\sigma_2} \cdots)$ of boolean inverse \wedge -monoids with monos inherit all the nice features of the factors. In particular, the groups of units are direct limits of groups of units of the S_i . (2) Given any ω -sequence of semisimple inverse monoids and injective morphisms, the colim (S_i) is isomorphic to I(B), for some

Bratteli diagram B.

Theorem

AF inverse monoids are completely semisimple Boolean inverse monoids in which \mathcal{D} preserves complementation. Their groups of units are direct limits of finite direct products of finite symmetric groups.

Coordinatizing MV Algebras: Main Theorem

- Consider such completely semisimple Boolean inverse monoids
 S where D preserves complementation. Call them Foulis monoids.
- For Foulis monoids S as in the Proposition, $\mathcal{D} = \mathcal{J}$.
- We can identify E(S)/D with the poset of principal ideals S/J.
- We say *S* satisfies the lattice condition if *S*/*J* is a lattice. It is then in fact an MV-algebra (by Bennet & Foulis).

Theorem (Coordinatization Theorem for MV Algebras: L& S)

For each countable MV algebra A, there is a Foulis monoid S satisfying the lattice condition such that $S/\mathcal{J} \cong A$.

Example 1: Coordinatizing Finite MV-Algebras

Let $\mathcal{I}_n = \mathcal{I}_X$ be the inverse monoid of partial bijections on n letters, |X| = n. One can show that all the \mathcal{I}_n 's are Foulis monoids. The idempotents in this monoid are partial identities 1_A , where $A \subseteq X$. Two idempotents $1_A \mathcal{D} 1_B$ iff |A| = |B|. Indeed we get a bijection $\mathcal{I}_n/\mathcal{J} \xrightarrow{\cong} \mathbf{n+1}$, where $\mathbf{n+1} = \{0, 1, \dots, n\}$. This induces an order isomorphism, where $\mathbf{n+1}$ is given its usual order, and lattice structure via *max*, *min*.

The effect algebra structure of $\mathcal{I}_n/\mathcal{J}$ becomes: let $r, s \in \mathbf{n+1}$. $r \stackrel{\sim}{\oplus} s$ is defined and equals r + s iff $r + s \leq n$. The orthocomplement r' = n - r. The associated MV algebra: $r \oplus s = r + min(r', s)$, which equals r + s if $r + s \leq n$ and $r \oplus s$ equals n if r + s > n.

We get an iso $\mathcal{I}_n/\mathcal{J} \cong \mathcal{M}_n$, the Łukasiewicz chain. But every *finite* MV algebra is a product of such chains, which are then coordinatized by a product of \mathcal{I}_n 's.

直 と く ヨ と く ヨ と

Example 2: Coordinatizing Dyadic Rationals–Cantor Space

Cuntz (1977) studied C*-algebras of isometries (of a sep. Hilbert space). They have also arisen in wavelet theory. Associated formal inverse monoids also arose in formal language theory (Nivat, Perrot). We'll describe C_n the *n*th Cuntz inverse monoid.

Cantor Space A^{ω} , A finite. For C_n , pick |A| = n. For C_2 , pick $A = \{a, b\}$. Given the usual topology, we have:

- Clopen subsets have the form XA^{ω} , where $X \subseteq A^*$ are *Prefix* codes : finite subsets s.t. $x \preceq y$ (y prefix of x) $\Rightarrow x = y$.
- Representation of clopen subsets by prefix codes is not unique.
 E.g. aA^{\u03c6} = (aa + ab)A^{\u03c6}.
- We can make prefixes X in clopens uniquely representable: define weight by w(X) = ∑_{x∈X} |x|. Every clopen is generated by unique prefix codes X of minimal weight.

• • = • • = •

Definition (The Cuntz inverse monoid, Lawson (2007))

 $C_n \subseteq \mathcal{I}_{A^{\omega}}$ consists of those partial bijections on prefix sets of same cardinality $X = \{x_1, \dots, x_r\}$, $Y = \{y_1, \dots, y_r\}$ such that $x_i u \mapsto y_i u$ for any right infinite string u.

Proposition (Lawson (2007))

 C_n is a Boolean inverse \wedge -monoid, whose set of idempotents $E(C_n)$ is the unique countable atomless B.A. Its group of units is the Thompson group V_n .

Definition (*n*-adic inverse monoid $Ad_n \subseteq C_n$)

 Ad_n = those partial bijections in C_n of the form $x_i \mapsto y_i$, where $|x_i| = |y_i|$, $i \leq r$. Ad_2 = the dyadic inverse monoid.

Theorem

The MV-algebra of dyadic rationals is co-ordinatized by Ad_2 .

The proof takes a small detour through aspects of Bernoulli measures on prefix sets.

Proposition (Characterizing Ad_2)

The dyadic inverse monoid is isomorphic to the direct limit of the sequence of symmetric inverse monoids (partial bijections)

$$\mathcal{I}_2 \rightarrow \mathcal{I}_4 \rightarrow \mathcal{I}_8 \rightarrow \cdots$$

called the CAR inverse monoid. The group of units is a colimit of symmetric groups: $Sym(1) \rightarrow Sym(2) \rightarrow \cdots Sym(2^r) \rightarrow \cdots$.

Theorem (Coordinatization Theorem for MV Algebras: L& S)

For each countable MV algebra A, there is a Foulis monoid S satisfying the lattice condition such that $S/\mathcal{J} \cong A$.

Proof sketch: We know from Mundici every MV algebra \mathcal{A} is isomorphic to an MV-algebra [0, u], which is an interval effect algebra for some order unit u in a countable ℓ -group G. It turns out that G is a countable dimension group. Thus there is a Bratteli diagram B yielding G. Take then I(B), the AF inverse monoid of B. It turns out that $I(B)/\mathcal{J}$ is isomorphic to [0, u] as an MV effect-algebra, and the latter will be a lattice, thus a Foulis monoid. So, we have coordinatized \mathcal{A} .