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Background results

• Mundici in mid-80’s connected up MV-algebras (arising from
many-valued logics) with G. Elliot’s program for classification of
AF C*-algebras via countable dimension groups.

Theorem [Mundici, 1986] countable MV algebras ∼=
AF C*-algebra with lattice-ordered dimension group (K0-group) .

• In 1990’s, the algebraic theory of quantum effects in physics led
to Effect Algebras developed by Bennett & Foulis, eastern
European school: Jencova, Pulmannova, et. al.

Theorem [J & P, 2008] There are three categorical equivalences:
unital AF C*-algebras ∼= countable dimension effect algebras ∼=
countable dimension groups.
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What do we want to do?

• Find a setting that encompasses both frameworks, based on
Inverse Monoid Theory.

• Connect this work up with recent works on noncommutative
Stone-Duality, étale groupoids, pseudogroups, tilings, formal
language theory, etc. (Lawson, Lenz, Resende, et. al.)

• Generalize AF C*-algebra techniques (Bratteli diagrams) to
develop a theory of AF inverse monoids (e.g. the dyadic or CAR
Inverse Monoid) and connect it up with effect algebras.

Theorem (Coordinatization Theorem, L-S)

Let A be a countable MV algebra. Then there exists a boolean
inverse “coordinatizing” monoid S such that S/J ∼= A.

Here J is the standard relation: aJ b iff SaS = SbS .
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 Lukasiewicz many-valued logics

 Lukasiewicz (1878-1956) introduced many-valued logics in the
1920’s. What are they? In brief:

A logic L with truth values in [0,1] (also related ones with
truth values in Q ∩ [0, 1] or QDyad ∩ [0, 1] ).

Finite  Lukasiewicz logics Ln, with truth values in
{0, 1

n−1 ,
2

n−1 , · · · ,
n−2
n−1 , 1}.

Before going into details, let me give a brief history. See also:

(i) Many-Valued Logic, Stanford Encyclopedia of Philosophy

(ii) Many papers and works of Daniele Mundici (Milan), e.g.

Algebraic Foundations of Many-valued Reasoning (2000),
Cignoli, D’Ottaviano, Mundici.
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 Lukasiewicz Logics and their Algebras

 Lukasiewicz (1878-1956) introduced many-valued logics in the
1920’s.

Studied by Polish logicians in 1920’s, including Lesniewski,
Tarski (in parallel with Post (1921) in U.S.)

1940’s & early 1950’s: Rosenbloom, Rosser, McNaughton.

Mid-1950’s: major advances by CC. Chang: MV-algebras,
Chang Completeness Thm, lattice ordered abelian groups.

From mid-1980’s: large body of work by D. Mundici, et.al.

Theory of MV Algebras via lattice-ordered groups & rings
MV-Algebras & AF C*-algebras.
Connections to works of Elliott, Effros, Handleman:
dimension groups and Grothendieck’s K0 functor.
States & probability distributions.

Sheaf Representation Theory of MV-Algebras:
Dubuc/Poveda (2010)

Philip Scott University of Ottawa & Informatics, U. Edinburgh (Joint work with Mark Lawson)Coordinatizing MV-Algebras



What are MV Algebras?

MV algebras are structures M = 〈M,⊕,¬, 0〉 satisfying:

〈M,⊕, 0〉 is a commutative monoid.

¬ is an involution: ¬¬x = x , for all x ∈ M.

1 := ¬0 is absorbing: x ⊕ 1 = 1 , for all x ∈ M.

¬(¬x ⊕ y)⊕ y = ¬(¬y ⊕ x)⊕ x .

Writing x −◦ y := ¬x ⊕ y , we can rewrite the last equation:

(x −◦ y) −◦ y = (y −◦ x) −◦ x

Notation: x ⊗ y := ¬(¬x ⊕ ¬y)
x 6 y iff for some z , x ⊕ z = y iff x −◦ y = 1

Facts: (i) 6 is a partial order.

(ii) ⊗ is adjoint to −◦, i.e.
x ⊗ y 6 z iff x 6 (y −◦ z)
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Further MV Lattice Structure

Further Facts:

(i) Let x 	 y := x ⊗ ¬y . Then

x 6 y iff x 	 y = 0 iff y = x ⊕ (y 	 x)

(ii) 	 is left adjoint to ⊕, i.e. x 	 z 6 y iff x 6 y ⊕ z

Lattice Structure (“Additives”)

The order on an MV algebra determines a distributive lattice
structure with 0, 1:

x ∨ y := (x ⊗ ¬y)⊕ y = (x 	 y)⊕ y
x ∧ y := ¬(¬x ∨ ¬y)
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Fundamental Example of an MV Algebra: [0, 1]

For x , y ∈ [0, 1], define:

1 ¬x = 1− x

2 x ⊕ y = min(1, x + y)

3 x ⊗ y = max(0, x + y − 1)

Other models: similarly consider the same operations on:

Q ∩ [0, 1] and Qdyad ∩ [0, 1].

Finite MV algebras Mn = {0, 1
n−1 ,

2
n−1 , · · · ,

n−2
n−1 , 1}

(subalgebras of [0,1]). Note: M2 = {0, 1}.

Fact (Barr)

([0, 1],⊗,⊕, 1, 0,¬) also forms a *-autonomous poset.

Moreover, it has products (∧) and thus coproducts (∨).
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Example 2: Lattice-Ordered Abelian Groups

Let 〈G ,+,−, 0,6〉 be a partially ordered abelian group, i.e.
an abelian group with translation invariant partial order.

If G is lattice-ordered, call G an `-group, G+ its positive cone.

If G is an `-group and t ∈ G , then t + ( ) preserves ∨ and ∧.

If G is an `-group, an order unit u ∈ G is an Archimedian
element: ∀g ∈ G , ∃n ∈ N+ s.t. g 6 nu.

If G is an `-group with order unit u, define

[0, u]G = {g ∈ G | 0 6 g 6 u} (just a poset)

Example: Γ(G , u) = ([0, u]G ,⊕,⊗, ∗, 0, 1) is an MV algebra, via:

x ⊕ y := u ∧ (x + y)

x∗ := u − x

x ⊗ y := (x∗ ⊕ y∗)∗

0 := 0G and 1 := u
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Lattice-Ordered Abelian Groups

Examples of MV algebras Γ(G , u) = ([0, u]G ,⊕,⊗, ∗, 0, 1):

Γ(R, 1) = [0, 1],

Γ(Q, 1) = Q ∩ [0, 1],

Γ( 1
n−1Z, 1) =Mn = {0, 1

n−1 ,
2

n−1 , · · · ,
n−2
n−1 , 1} (called a

 Lukasiewicz chain).

Γ(Z, 1) =M2 = {0, 1}.
Let MV = the category of MV-algebras and MV-morphisms. Let
`Gu be the category of `-groups and order-unit preserving homs.

Theorem (Mundici, 1986)

Γ induces an equivalence of categories `Gu ∼=MV

In particular, for every MV algebra A, there exists an `-group G
with order unit u, unique up to isomorphism, such that
A ∼= Γ(G , u), and |G | 6 max(ℵ0, |A|).
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Completeness Theorems

Theorem (Chang, 1955-58)

1 Every MV algebra is a subdirect product of MV Chains.

2 An MV equation holds in [0, 1] iff it holds in all MV algebras.

3 Completeness theorem for  Lukasiewicz logic.

Corollary

The free MV algebra Fκ on κ free generators is the smallest
MV-algebra of functions [0, 1]κ → [0, 1] containing all projections
(as generators) and closed under the pointwise operations.

Theorem (McNaughton, 1950: earlier than Chang!)

The free MV algebra Fn is exactly the algebra of McNaughton
Functions: continuous, piecewise linear polynomial functions (in n
vbls, with integer coefficients): [0, 1]n → [0, 1].
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Matrix algebras and AF C*-algebras: some defns

See: Notes on Real and Complex C*-algebras by K. R. Goodearl.

A finite dimensional C*-algebra is one isomorphic (as a
*-algebra) to a direct sum of matrix algebras:
∼= Mm(1)(C)⊕ · · · ⊕Mm(k)(C).

The ordered list (m(1), · · · ,m(k)) is an invariant and
determines A. We write A ∼= (m(1), · · · ,m(k)).

�
Many categories arise, with many notions of map!

(Bratteli, 1972) An AF C*-algebra (approximately finite
C*-algebra) is a countable colimit

lim→ (A1
α1−→ A2

α2−→ A3
α3−→ · · · )

of finite-dimensional C*-algebras and *-algebra maps.

Bratteli showed AF C*-algebras have a standard form:
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Matrix C*-algebras: standard maps

Consider matrix C*-algebras A = Mm(1)(C)⊕ · · · ⊕Mm(k)(C).

Consider *-algebra maps A → Mn(i)(C) mapping to a block
diagonal n(i)× n(i)-matrix:

(A1, · · · ,Ak) 7→ DIAGn(i)(

si1︷ ︸︸ ︷
A1, · · · ,A1,

si2︷ ︸︸ ︷
A2, · · · ,A2, · · · ,

sik︷ ︸︸ ︷
Ak , · · · ,Ak)

determined by sik ∈ N where si1m(1) + · · ·+ sikm(k) = n(i) .

Let A = (m(1), · · · ,m(k)), B = (n(1), · · · , n(l)) be algebras.

A standard ∗-map A → B is an l-tuple of such DIAGs:

(A1, · · · ,Ak) 7→ (DIAGn(1)(· · · ), . . . ,DIAGn(l)(· · · ))

determined by l × k matrix (sij) s.t.
∑k

j=1(sijm(j)) = n(i),
1 6 i 6 l . The sij are sometimes called partial multiplicities.
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Bratteli Diagrams

Theorem (Bratteli)

Any AF C*-algebra is isomorphic (as a C*-algebra) to a colimit of
a system of matricial C*-algebras and standard maps.

Bratteli introduced a graphical language for standard maps. We
form a (directed) multigraph from the matrix (sij) . For example,
we have two horizontal rows of labelled vertices:

m(1) m(2) · · · m(k)

n(1) n(2) · · · n(l)

Draw sij -many edges between m(j) to n(i) . (Of course, we
assume the sij satisfy the combinatorial condition.)

Our Goal: introduce general theory for AF C*-inverse monoids.
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Bratteli Diagrams in general

Bratteli diagrams have become part of the combinatorial structure
behind AF C*-algebra. More generally, one can define a Bratteli
diagram as an infinite directed multigraph B = (V ,E ), where
V = ∪∞i=0V (i) and E = ∪∞i=0E (i). We assume V (0) has one
vertex, the root. Edges are only defined from V (i) to V (i + 1).
Vertices have weights on them.

V (i) m(1) m(2) · · · m(k)

V (i + 1) n(1) n(2) · · · n(l)

Draw sij -many edges between m(j) to n(i) . (Of course, for
adjacent levels, the sij must satisfy the combinatorial conditions.)
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K0: Grothendieck group functor Ring→ Ab

A general functorial construction K0(−). Gives a pre- or
p.o.-abelian group K0(A) for classes of structures A.

Roughly, we construct a commutative monoid on isomorphism
classes of idempotents in a category of idempotents (a kind of
Karoubi envelope/A). E.g. say idempotents e ∼ f iff there
exists maps x : e → f and y : f → e in Karoubi(A) such that
xy = e and yx = f . But how to add classes [e] + [f ] =?

E.g. A = ring. Move to matrix ring over A. Define “gen.
idempotents” E (A) = ∪∞n=1{idempotents in Mn(A)}. If
e ∈ Mk , f ∈ Mn, then e ⊕ f = Diag(e, f ) ∈ Mn+k is an
idempotent. E (A)/∼ is commutative monoid. Want
cancellative monoid (why?). Use stably equiv. idempotents:
e ≈ f iff e ⊕ g ∼ f ⊕ g for some g ∈ E (A). Get cancellative
abelian monoid. Apply now the formal INT construction (like
building Z from N). Get functor K0 : Rings→ Ab.
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K0: Grothendieck group for C*-algebras A

Suppose A is a *-algebra. Now use self-adjoint idempotents
(= projections): e = e∗ = e2. (Note if e 6= 0,
||e|| = ||e∗|| = ||e||2, so ||e|| = 1).

For projections e, f ∈ A, e
∗∼ f if for some w ∈ A, f

w−→ e in
Karoubi(A), w∗w = f ,ww∗ = e. Note: e

∗∼ f implies e ∼ f .

For C*-algebras A, again use matrices, using
∗∼,
∗
≈, and

P(A) = ∪∞n=1{projections in Mn(A)}. Next facts are
increasingly hard to prove: see Goodearl’s text:

Prop: K0 : C*-alg→ Preord-Abu is a functor preserving
colimits.

Prop: If start with AF C*-algebra, K0 : AF→ Po-Abu.

Prop: If A is an AF C*-algebra, then K0(A) is a countable
dimension group with an order unit (in fact, K0(A) ∼= Zk with
direct product ordering.)
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AF C*-algebras & Mundici’s Work

Approx. finite (AF) C*-algebras classified in deep work of G. Elliott
(studied further by Effros, Handelman, Goodearl, et. al).

Defn: F.d. complex C*-algebras ∼= Mn1(C)× · · · ×Mnk (C).

AF C*-algebras ∼= colimits of such matricial algebras.

There’s a functor AF
K0−→PoAb. K0(A) is a countable p.o.

group (called a dimension group). E.g. if A is matricial
C*-algebra, K0(A) is the free p.o.abelian group (Zk , (Zk)+).

(Mundici) Let `AFu = category of AF-algebras, st K0 is
lattice-ordered with order unit. Let MVω = countable
MV-algebras.

We can extend Γ : `Gu ∼=MV to a functor
∼
Γ: `AFu →MVω,

∼
Γ (A) := Γ(K0(A), [1A])

(i) A ∼= B iff
∼
Γ(A) ∼=∼Γ(B)

(ii)
∼
Γ is full.
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Further Examples

For M an MV algebra and X a set, MX with pointwise
operations is an MV algebra.

MV algebras are an equational class, so closed under HSP as
well as ultraproducts.

Coproducts and Tensor Products of MV algebras were studied
by Mundici [1988], [1999], resp.

Mundici [1991] has a long list of countable MV-algebras and
associated AF C*-algebras, according to his correspondence
above.
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Some Mundici Examples

Countable MV Algebra AF C*-correspondent

{0, 1} C
Chain Mn Matn(C)

Finite Finite Dimensional
Dyadic Rationals CAR algebra of a Fermi gas

Q ∩ [0, 1] Glimm’s universal UHF algebra
Real algebraic numbers in [0,1] Blackadar algebra B.

Generated by an irrational ρ ∈ [0, 1] Effros-Shen Algebra Fp

Finite Product of Post MV-algebras Continuous Trace
Free on ℵ0 generators Universal AF C*-algebra M
Free on one generator Farey AF C*-algebra M1.

Mundici (1988)
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Effect Algebras

Introduced by Foulis & Bennet (1994) as an abstraction of the
algebraic structure of self-adjoint operators with spectrum in [0,1]
(called quantum effects). Also think of [0, 1] under the partial
operation of +. (See recent work of Bart Jacobs (2012))

An Effect Algebra is a partial algebra 〈E ; 0, 1,
∼⊕〉 satisfying:

∀a, b, c ∈ E (writing a
∼⊕ b ↓ for “a

∼⊕ b is defined” and using
Kleene directed equality �� )

1 a
∼⊕ b �� b

∼⊕ a.

2 If a
∼⊕ b ↓ then (a

∼⊕ b)
∼⊕ c �� a

∼⊕ (b
∼⊕ c)

3 0
∼⊕ a ↓ and 0

∼⊕ a = a

 PCM

4 ∀a∈E ∃!a′∈E such that a
∼⊕ a′ = 1.

5 a
∼⊕ 1 ↓ implies a = 0.

}
Orthocomplemented
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Effect Algebras

Introduced by Foulis & Bennet (1994) as an abstraction of the
algebraic structure of self-adjoint operators with spectrum in [0,1]
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∼⊕ 1 ↓ iff a = 0.

}
Orthocomplemented

Philip Scott University of Ottawa & Informatics, U. Edinburgh (Joint work with Mark Lawson)Coordinatizing MV-Algebras



Effect Algebras: Additional Properties

Let E be an effect algebra. Let a, b, c ∈ E . Denote a′ by a⊥ or a∗.

1 Partial Order: a 6 b iff for some c , a
∼⊕ c = b.

2 0 6 a 6 1, ∀a ∈ E .

3 a⊥⊥ = a.

4 a
∼⊕ c1 = a

∼⊕ c2 implies c1 = c2.

5 a
∼⊕ b = 0 implies a = b = 0

6 0⊥ = 1 and 1⊥ = 0.

7 a 6 b implies b⊥ 6 a⊥

Define a partial operation b
∼	 a by: b

∼	 a = c iff a
∼⊕ c = b. So

b
∼	 a ↓ iff a 6 b

.
a
∼⊕ (b

∼	 a) = b

a′ = a⊥ = 1
∼	 a
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MV versus MV-Effect Algebras

What is the relation between MV-algebras and Effect Algebras?
An MV-Effect Algebra is a lattice-ordered effect algebra satisfying

(a ∨ b)
∼	 a = b

∼	 (a ∧ b)

Proposition (Chovanec, Kôka, 1997)

There is a natural 1-1 correspondence between MV-effect algebras
and MV-algebras.

Idea: MV-Effect algebras ←→ MV-Algebras

〈E , 0, 1,∼⊕〉 7−→ 〈E , 0, 1,⊕〉, where x ⊕ y = x
∼⊕ (x ′ ∧ y)

〈E , 0, 1, ∼⊕〉 ←−p 〈E , 0, 1,⊕〉, where

x
∼⊕ y = x ⊕ y (restricted to (x , y) s.t. x 6 ¬y);
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Equivalences of MV- and MV-Effect Algebras

Various facts (mostly due to Bennett & Foulis (1995))

For lattice-ordered effect algebras E ,
E is MV ⇔ ∀a, b ∈ E , a ∧ b = 0⇒ a⊕ b ↓ .
An effect algebra satisfies RDP (Riesz Decomposition
Property) iff

a 6 b1 ⊕ b2 ⊕ · · · ⊕ bn ⇒
a = a1 ⊕ a2 ⊕ · · · ⊕ an with ai 6 bi , i 6 n

Proposition (B& F)

An effect algebra is an MV-effect algebra iff it is lattice ordered
and has RDP.
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Inverse Semigroups and Monoids

Definition (Inverse Semigroups)

Semigroups (resp. monoids) satisfying: “Every element x has a
unique pseudo-inverse y .”

∀x∃!y(xyx = x & yxy = y)

Fact (Preston-Wagner): Equivalent axiomatization, (i) & (ii):

(i) Existence of pseudo-inverses: ∀x∃y(xyx = x & yxy = y)

(ii) Idempotents commute:
∀x , y [(x2 = x & y2 = y) ⇒ xy = yx ].

We denote the unique pseudo-inverse of x by x−1. So the
equations of an inverse semigroup/monoid are:

xx−1x = x & x−1xx−1 = x−1

Ref: M.V. Lawson Inverse semigroups: the theory of partial
symmetries, World Scientific Publishing Co., 1998.
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Examples: Inverse Semigroups & Inv. Monoids

1 Any group (with pseudo-inverse(x) := usual inverse x−1)

2 Fundamental Example: IX = PBij(X ), partial bijections on
the set X . These are partial functions f : X ⇀ X which are
bijections dom(f )→ ran(f ). We have:

For each subset A ⊆ X , there are partial identity functions
1A ∈ IX . These are idempotents.
f −1of = 1dom(f ) and f of −1 = 1ran(f ) , partial identities on X .
For partial bijections f , g ∈ IX , we have:

(f = f og of and g = g of og) ⇔ g = f −1

3 Pseudogroups (arising in differential geometry): inverse
semigroups of partial homeomorphisms between open subsets
of a topological space (Veblen-Whitehead, Ehresmann).

4 Tiling semigroups associated with tilings of Rn.
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Inverse Monoids: Basic Definitions

Let S be an inverse monoid with zero element 0. Let E (S) be the
set of idempotents of S .

1 For a, b ∈ S , define a 6 b iff a = be, for some e ∈ E (S).

2 E (S) is always a ∧-semi-lattice.

3 S is ∧-inverse monoid if a ∧ b exists, ∀a, b ∈ S .

4 6 on S is compatible with multiplication.

5 a 6 b implies a−1 6 b−1 !

6 For a ∈ S , define dom(a) := a−1a, ran(a) := aa−1, so
dom(a)

a−→ ran(a).

7 (Compatibility) For a, b ∈ S , define a ∼ b iff a−1b &
ab−1 ∈ E (S). This is necessary for a ∨ b to exist.

8 a ⊥ b iff a−1b = 0 = ab−1.

9 S is boolean if: (i) E (S) is a boolean algebra, (ii) compatible
elements have joins, (iii) multiplication distributes over ∨’s.
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Inverse Semigroups, more definitions

Let S be an inverse monoid. Define Green’s relations as follows:

1 J on S : aJ b iff SaS = SbS (i.e. equality of principal ideals).

2 D on E (S): eDf iff ∃a∈S(e = dom(a), f = ran(a), e
a−→ f )

3 For the classes of inverse semigroups we study, J = D.

4 S is completely semisimple if eDf 6 e implies e = f .

We consider E (S)/D, S boolean. For idempotents e, f ∈ E (S),
define [e]

∼⊕ [f ] as follows: if we can find orthogonal idempotents
e ′ ∈ [e], f ′ ∈ [f ], let [e]

∼⊕ [f ] := [e ′ ∨ f ′]. Otherwise, undefined.

Proposition

Let S be a Boolean inverse monoid.

(E (S)/D,∼⊕, [0], [1]) is a well-defined PCM satisfying (RDP).

If D preserves complementation and S is completely semi-
simple then (E (S)/D,∼⊕, [0], [1]) is an effect algebra w/ RDP.
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Rook Matrices

1 A rook matrix in Matn({0, 1}) is one where every row and
column have at most one 1. Let Rn := rook matrices.

2 Given A ∈ Rm,B ∈ Rn, define A⊕ B := Diag(A,B) ∈ Rm+n.
3 Define sA = A⊕ · · · ⊕ A (s times). Ditto

⊕n
i=1 siAi .

4 There’s bijection In
∼=−→ Rn: f 7→ M(f ), where M(f )ij = 1 iff

i = f (j). It’s an iso, and there are many.
5 Interested in letter isos: those wrt a chosen total order on n.
6 Standard morphisms Rm(1) × · · · × Rm(k)

σ−→ Rn given by
(A1, · · · ,Ak) 7→ s1A1 ⊕ · · · ⊕ skAk for some si ∈ N. More
generally, Rm(1)× · · · ×Rm(k)

σ−→ Rn(1)× · · · ×Rn(l) arises via
a matrix (sij) of coefficients in N + combinatorial condn.

Lemma (Standard Map Lemma: Rough Version)

Every morphism Im(1) × · · · × Im(k)
θ−→ In(1) × · · · × In(l) factors

as β−1σα for some standard map σ and letter isos.
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Bratteli Diagrams of Inverse Monoids and colimits of Ins

Recall B = (V ,E ) a Bratteli diagram, where V = ∪∞i=0V (i) and
E = ∪∞i=0E (i). We assume V (0) has one vertex, the root. Edges
are only defined from V (i) to V (i + 1). Vertices have weights.

V (i) m(1) m(2) · · · m(k)

V (i + 1) n(1) n(2) · · · n(l)

Draw sij -many edges between m(j) to n(i) .

Associate

V (0) ↔ S0 = I1 ∼= {0, 1}
...

...
...

V (i) ↔ Si = Im(1) × · · · × Im(k)

Morphisms σi : Si → Si+1 are induced by standard maps. These
will be monomorphisms. Also, Combinatorial Conditions are true

An AF Inverse Monoid := colim(S0
σ0−→ S1

σ1−→ S2
σ2−→ · · · ).

Call this monoid I (B), for Bratteli diagram B.
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AF Inverse Monoids and colimits of Ins

Lemma

(1) Colimits of ω-chains (S0
σ0−→ S1

σ1−→ S2
σ2−→ · · · ) of boolean

inverse ∧-monoids with monos inherit all the nice features of the
factors. In particular, the groups of units are direct limits of groups
of units of the Si .
(2) Given any ω-sequence of semisimple inverse monoids and
injective morphisms, the colim(Si ) is isomorphic to I (B), for some
Bratteli diagram B.

Theorem

AF inverse monoids are completely semisimple Boolean inverse
monoids in which D preserves complementation. Their groups of
units are direct limits of finite direct products of finite symmetric
groups.
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Coordinatizing MV Algebras: Main Theorem

Consider such completely semisimple Boolean inverse monoids
S where D preserves complementation. Call them Foulis
monoids.

For Foulis monoids S as in the Proposition, D = J .

We can identify E (S)/D with the poset of principal ideals
S/J .

We say S satisfies the lattice condition if S/J is a lattice. It
is then in fact an MV-algebra (by Bennet & Foulis).

Theorem (Coordinatization Theorem for MV Algebras: L& S)

For each countable MV algebra A, there is a Foulis monoid S
satisfying the lattice condition such that S/J ∼= A.

Philip Scott University of Ottawa & Informatics, U. Edinburgh (Joint work with Mark Lawson)Coordinatizing MV-Algebras



Example 1: Coordinatizing Finite MV-Algebras

Let In = IX be the inverse monoid of partial bijections on n
letters, |X | = n. One can show that all the In’s are Foulis
monoids. The idempotents in this monoid are partial identities 1A,
where A ⊆ X . Two idempotents 1AD1B iff |A| = |B|. Indeed we

get a bijection In/J
∼=−→ n+1, where n+1 = {0, 1, · · · , n}. This

induces an order isomorphism, where n+1 is given its usual order,
and lattice structure via max, min.

The effect algebra structure of In/J becomes: let r , s ∈ n+1.
r
∼⊕ s is defined and equals r + s iff r + s 6 n. The

orthocomplement r ′ = n − r . The associated MV algebra:
r ⊕ s = r + min(r ′, s), which equals r + s if r + s 6 n and
r ⊕ s equals n if r + s > n.

We get an iso In/J ∼=Mn, the  Lukasiewicz chain. But every
finite MV algebra is a product of such chains, which are then
coordinatized by a product of In’s.
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Example 2: Coordinatizing Dyadic Rationals–Cantor Space

Cuntz (1977) studied C*-algebras of isometries (of a sep. Hilbert
space). They have also arisen in wavelet theory. Associated formal
inverse monoids also arose in formal language theory (Nivat,
Perrot). We’ll describe Cn the nth Cuntz inverse monoid.

Cantor Space Aω, A finite. For Cn, pick |A| = n. For C2, pick
A = {a, b}. Given the usual topology, we have:

1 Clopen subsets have the form XAω, where X ⊆ A∗ are Prefix
codes : finite subsets s.t. x - y (y prefix of x)⇒ x = y .

2 Representation of clopen subsets by prefix codes is not unique.
E.g. aAω = (aa + ab)Aω.

3 We can make prefixes X in clopens uniquely representable:
define weight by w(X ) =

∑
x∈X |x |. Every clopen is generated

by unique prefix codes X of minimal weight.
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Cuntz and n-adic AF-Inverse Monoids

Definition (The Cuntz inverse monoid, Lawson (2007))

Cn ⊆ IAω consists of those partial bijections on prefix sets of same
cardinality X = {x1, · · · , xr}, Y = {y1, · · · , yr} such that
xiu 7→ yiu for any right infinite string u.

Proposition (Lawson (2007))

Cn is a Boolean inverse ∧-monoid, whose set of idempotents
E (Cn) is the unique countable atomless B.A. Its group of units is
the Thompson group Vn.

Definition ( n-adic inverse monoid Adn ⊆ Cn)

Adn = those partial bijections in Cn of the form xi 7→ yi , where
|xi | = |yi |, i 6 r . Ad2 = the dyadic inverse monoid.
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Cuntz and Dyadic AF-Inverse Monoids

Theorem

The MV-algebra of dyadic rationals is co-ordinatized by Ad2.

The proof takes a small detour through aspects of Bernoulli
measures on prefix sets.

Proposition (Characterizing Ad2)

The dyadic inverse monoid is isomorphic to the direct limit of the
sequence of symmetric inverse monoids (partial bijections)

I2 → I4 → I8 → · · ·

called the CAR inverse monoid. The group of units is a colimit of
symmetric groups: Sym(1)→ Sym(2)→ · · · Sym(2r )→ · · · .
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The General Coordinatization Theorem

Theorem (Coordinatization Theorem for MV Algebras: L& S)

For each countable MV algebra A, there is a Foulis monoid S
satisfying the lattice condition such that S/J ∼= A.

Proof sketch: We know from Mundici every MV algebra A is
isomorphic to an MV-algebra [0, u], which is an interval effect
algebra for some order unit u in a countable `-group G . It turns
out that G is a countable dimension group. Thus there is a
Bratteli diagram B yielding G . Take then I (B), the AF inverse
monoid of B. It turns out that I (B)/J is isomorphic to [0, u] as
an MV effect-algebra, and the latter will be a lattice, thus a Foulis
monoid. So, we have coordinatized A.
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