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Infinite determinantal measures and the ergodic
decomposition of infinite Pickrell measures.

I. Construction of infinite determinantal measures

A. I. Bufetov

Abstract. This paper is the first in a series of three. We give an explicit
description of the ergodic decomposition of infinite Pickrell measures on the
space of infinite complex matrices. A key role is played by the construction
of σ-finite analogues of determinantal measures on spaces of configurations,
including the infinite Bessel process, a scaling limit of the σ-finite analogues
of the Jacobi orthogonal polynomial ensembles. Our main result identifies
the infinite Bessel process with the decomposing measure of an infinite
Pickrell measure.

Keywords: determinantal processes, infinite determinantal measures,
ergodic decomposition, infinite harmonic analysis, infinite unitary group,
scaling limits, Jacobi polynomials, Harish-Chandra–Itzykson–Zuber orbit
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§ 1. Introduction

1.1. Informal outline of main results. The Pickrell family of measures is given
by the formula

µ(s)
n = constn,s det(1 + z∗z)−2n−s dz.

Here n is a positive integer, s a real number, z an n×n matrix with complex entries,
dz the Lebesgue measure on the space of such matrices, and constn,s a normalizating
constant whose precise value will be obtained below. The measure µ(s)

n is finite
if s > −1 and infinite if s 6 −1. It is clear from the definition that µ(s)

n is invariant
under the actions by the unitary group U(n) of multiplication on the left and
on the right.
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If the constants constn,s are chosen appropriately, then the Pickrell family of
measures has the Kolmogorov property of consistency with respect to natural pro-
jections: the push-forward of the Pickrell measure µ

(s)
n+1 under the natural pro-

jection sending each (n + 1) × (n + 1) matrix to its upper left n × n corner is
precisely the Pickrell measure µ(s)

n . This consistency property also holds for infinite
Pickrell measures provided that n is sufficiently large (see Proposition 1.8 for an
exact statement). The consistency property and Kolmogorov’s theorem enable one
to define the Pickrell family of measures µ(s), s ∈ R, on the space of infinite com-
plex matrices. The Pickrell measures are invariant under the actions of the infinite
unitary group on the left and right, and the Pickrell family of measures is the nat-
ural infinite-dimensional analogue of the canonical unitarily invariant measure on
a Grassmann manifold (see the paper of Pickrell [1]).

What is the ergodic decomposition of Pickrell measures with respect to the action
of the Cartesian square of the infinite unitary group? The ergodic unitarily invari-
ant probability measures on the space of infinite complex matrices were explicitly
described by Pickrell [2], and another approach to their description was given by
Vershik and Olshanski [3]. Each ergodic measure is parametrized by an infinite
array x = (x1, . . . , xn, . . . ) of numbers in the half-line satisfying x1 > x2 > · · · > 0
and x1 + · · · + xn + · · · < +∞, and an additional parameter γ̃ that we call the
Gaussian parameter. Informally speaking, the parameters xn may be thought of as
the ‘asymptotic eigenvalues’ of an infinite complex matrix and γ̃ as the difference
between the ‘asymptotic trace’ and the sum of the asymptotic eigenvalues (this
difference is positive, in particular, for a Gaussian measure).

In 2000 Borodin and Olshanski [4] proved that for finite Pickrell measures the
Gaussian parameter vanishes almost surely and the corresponding spectral measure
(the measure parametrizing the ergodic decomposition), regarded as a measure on
the space of configurations on the half-line (0,+∞), coincides with the Bessel point
process of Tracy and Widom [5]. The correlation functions of this process are
expressed as determinants of the Bessel kernel.

Borodin and Olshanski [4] posed the following problem. Describe the ergodic
decomposition of infinite Pickrell measures. In this paper we give a solution.

The first step is the result in [6] saying that almost all ergodic components of an
infinite Pickrell measure are themselves finite, only the spectral measure is infinite.
Then it is proved, as for finite measures, that the Gaussian parameter vanishes
almost surely. The ergodic decomposition is thus given by a σ-finite measure B(s)

on the space of configurations on the half-line (0,+∞).
How to describe σ-finite measures on the space of configurations? We note that

the formalism of correlation functions is completely inapplicable since they are
defined only for finite measures.

This paper gives, for a first time, an explicit method for constructing infinite
measures on the space of configurations. Since these measures are very closely
related to determinantal probability measures, we call them infinite determinantal
measures.

We give three descriptions of the measure B(s). The first two may be carried out
in much greater generality.
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(1) Inductive limit of determinantal measures. By definition, B(s) is sup-
ported on those configurations X whose particles accumulate only to zero, not
to infinity. Hence B(s)-almost every configuration X admits a maximal parti-
cle xmax(X). By choosing an arbitrary R > 0 and restricting B(s) to the set
{X : xmax(X) < R}, we get a finite measure which becomes determinantal after
normalization. The corresponding operator is an orthogonal projection operator
whose range can be described explicitly for all R > 0. Thus the measure B(s)

may be obtained as an inductive limit of finite determinantal measures along an
exhausting 1 family of subsets of the space of configurations.

(2) A determinantal measure multiplied by a multiplicative functional.
More generally, one can reduce B(s) to a finite determinantal measure by taking its
product with an appropriate multiplicative functional. A multiplicative functional
on the space of configurations may be obtained as the product of the values of
a fixed non-negative function over all particles of a configuration:

Ψg(X) =
∏
x∈X

g(x).

If g is suitably chosen, then the measure

ΨgB(s) (1)

is finite and becomes determinantal after normalization. The corresponding oper-
ator is an orthogonal projection operator with explicitly computable range. Of
course, the previous description is the particular case g = χ(0,R) of this. It is often
convenient to take a strictly positive function, for example, gβ(x) = exp(−βx) for
β > 0. The range of the orthogonal projection operator inducing the measure (1)
is known explicitly for a large class of functions g, but an explicit formula for its
kernel is known only for several concrete functions. These computations will appear
in a sequel to this paper.

(3) A skew product. As noted above, B(s)-almost every configuration X con-
tains a maximal particle xmax(X). Therefore it is natural for the measure B(s) to fix
the position xmax(X) of the maximal particle and consider the corresponding con-
ditional measure. This is a well-defined determinantal probability measure induced
by a projection operator whose range can be found explicitly (using the descrip-
tion of Palm measures of determinantal point processes introduced by Shirai and
Takahashi [7]). The σ-finite distribution of the maximal particle can also be found
explicitly: the ratios of the measures of intervals are obtained as ratios of suitable
Fredholm determinants. The measure B(s) is thus represented as a skew prod-
uct whose base is an explicitly known σ-finite measure on the half-line and whose
fibres are certain explicitly known determinantal probability measures (see § 1.10
for a detailed presentation).

A key role in the construction of infinite determinantal measures is played by
the following result of [8] (see also [9]): the product of a determinantal probability
measure and an integrable multiplicative functional is, after normalization, again
a determinantal probability measure whose operator can be found explicitly. In

1A family of bounded sets Bn is said to be exhausting if Bn−1 ⊂ Bn and
S

Bn = E.
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particular, if PΠ is a determinantal point process induced by a projection operator Π
with range L, then under certain additional assumptions the process ΨgPΠ is, after
normalization, again the determinantal point process induced by the projection
operator onto the subspace

√
g L (a precise statement is given in Proposition B.3).

Informally speaking, if the function g is such that the subspace
√
g L does not lie

in L2, then the measure ΨgPΠ ceases to be finite and we obtain precisely an infinite
determinantal measure corresponding to a subspace of locally square-integrable
functions. This is one of our main constructions (see Theorem 2.11).

The Bessel point process of Tracy and Widom, which governs the ergodic decom-
position of finite Pickrell measures, is a scaling limit of Jacobi orthogonal polyno-
mial emsembles. To describe the ergodic decomposition of infinite Pickrell mea-
sures, one must consider the scaling limit of infinite analogues of Jacobi orthogonal
polynomial emsembles. The resulting infinite determinantal measure is computed
in this paper and is called the infinite Bessel point process (see § 1.4 for a precise
definition).

Our main result, Theorem 1.11, identifies the ergodic decomposition measure of
an infinite Pickrell measure with the infinite Bessel point process.

1.2. Historical remarks. Pickrell measures were introduced by Pickrell [1]
in 1987. In 2000, Borodin and Olshanski [4] studied a closely related two-parameter
family of measures on the space of infinite Hermitian matrices that are invariant
with respect to the natural action of the infinite unitary group by conjugation.
Since the existence of such measures (as well as of the original family considered by
Pickrell) is proved by a computation going back to the work of Hua Loo-Keng [10],
Borodin and Olshanski called their family of measures the Hua–Pickrell measures.
For various generalizations of the Hua–Pickrell measures see, for example, the
papers of Neretin [11] and Bourgade, Nikehbali, Rouault [12]. Pickrell considered
only those values of the parameter for which the corresponding measures are finite,
while Borodin and Olshanski [4] showed that the infinite Pickrell and Hua–Pickrell
measures are also well defined. Borodin and Olshanski [4] also proved that the
ergodic decomposition of Hua–Pickrell probability measures is given by a determi-
nantal point process arising as a scaling limit of pseudo-Jacobian orthogonal poly-
nomial ensembles and posed the problem of describing the ergodic decomposition
of infinite Hua–Pickrell measures.

The aim of the present paper, which is devoted to Pickrell’s original model,
is to give an explicit description of the ergodic decomposition of infinite Pickrell
measures on spaces of infinite complex matrices.

1.3. Organization of the paper. This paper is the first in a cycle of three giving
an explicit description of the ergodic decomposition of infinite Pickrell measures.
References to the other parts [13], [14] are organized as follows: Proposition II.2.3,
equation (III.9), and so on.

The paper is organized as follows. The introduction begins with a description
of the main construction (infinite determinantal measures) in the concrete case of
the infinite Bessel point process. We recall the construction of Pickrell measures
and the Olshanski–Vershik approach to Pickrell’s classification of ergodic unitarily
equivalent measures on the space of infinite complex matrices. Then we state the
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main result of the paper, Theorem 1.11, which identifies the ergodic decomposition
measure of an infinite Pickrell measure with the infinite Bessel process (up to the
change of variable y = 4/x). We conclude the introduction by giving an outline of
the proof of Theorem 1.11: the ergodic decomposition measures of Pickrell measures
are obtained as scaling limits of their finite-dimensional approximations (the radial
parts of finite-dimensional projections of Pickrell measures). First, Lemma 1.14
says that the rescaled radial parts, multiplied by a certain density, converge to the
desired ergodic decomposition measure multiplied by the same density. Second, it
turns out that the normalized products of the push-forwards of the rescaled radial
parts in the space of configurations on the half-line with an appropriately chosen
multiplicative functional on the space of configurations converge weakly in the space
of measures on the space of configurations. Combining these two facts, we complete
the proof of Theorem 1.11.
§ 2 is devoted to a general construction of infinite determinantal measures on

the space of configurations Conf(E) of a complete locally compact metric space E
endowed with a σ-finite Borel measure µ.

We start with a space H of functions on E that are locally square integrable
with respect to µ and with an increasing family of subsets

E0 ⊂ E1 ⊂ · · · ⊂ En ⊂ · · ·

in E such that for every n ∈ N the restriction χEn
H is a closed subspace of L2(E,µ).

If the corresponding projection operator Πn is locally of trace class, then the projec-
tion operator Πn induces a determinantal measure Pn on Conf(E) by the Macchi–
Soshnikov theorem. Under certain additional assumptions it follows from the results
of [8] (see Corollary B.5 below) that the measures Pn satisfy the following consis-
tency condition. Let Conf(E,En) be the set of configurations all of whose particles
lie in En. Then for every n ∈ N we have

Pn+1|Conf(E,En)

Pn+1(Conf(E,En))
= Pn. (2)

The consistency property (2) implies that there is a σ-finite measure B such that
for every n ∈ N we have 0 < B(Conf(E,En)) < +∞ and

B|Conf(E,En)

B(Conf(E,En))
= Pn.

The measure B is called an infinite determinantal measure. An alternative descrip-
tion of infinite determinantal measures uses the formalism of multiplicative func-
tionals. It was proved in [8] (see also [9] and Proposition B.3 below) that the
product of a determinantal measure and an integrable multiplicative functional is,
after normalization, again a determinantal measure. Taking the product of a deter-
minantal measure and a convergent (but not integrable) multiplicative functional,
we obtain an infinite determinantal measure. This reduction of infinite determinan-
tal measures to ordinary ones by taking the product with a multiplicative functional
is essential in the proof of Theorem 1.11. We conclude § 2 by proving the existence
of the infinite Bessel point process.
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The paper has three appendices. In Appendix A we collect the necessary facts
about Jacobi orthogonal polynomials, including the recurrence relation between
the nth Christoffel–Darboux kernel corresponding to the parameters (α, β) and the
(n − 1)th Christoffel–Darboux kernel corresponding to the parameters (α + 2, β).

Appendix B is devoted to determinantal point processes on spaces of configu-
rations. We first recall the definition of a space of configurations, its Borel struc-
ture, and its topology. Then we define determinantal point processes, recall the
Macchi–Soshnikov theorem, and state the rule of transformation of kernels under
a change of variable. We also recall the definition of a multiplicative functional
on the space of configurations, state the result of [8] (see also [9]) saying that the
product of a determinantal point process and a multiplicative functional is again
a determinantal point process, and give an explicit representation of the resulting
kernel. In particular, we recall the representations from [8], [9] for the kernels of
induced processes.

Appendix C is devoted to the construction of Pickrell measures following a com-
putation of Hua Loo–Keng [10] and the observation of Borodin and Olshanski in
the infinite case.

1.4. The infinite Bessel point process.

1.4.1. Outline of the construction. Take n ∈ N, s ∈ R and endow the cube (−1, 1)n

with the measure ∏
16i<j6n

(ui − uj)2
n∏

i=1

(1− ui)sdui. (3)

When s > −1 the measure (3) is a particular case of the Jacobi orthogonal poly-
nomial ensemble (a determinantal point process induced by the nth Christoffel–
Darboux projection operator for Jacobi polynomials). The classical Heine–Mehler
asymptotics for Jacobi polynomials yields an asymptotic formula for the Christoffel–
Darboux kernels and, therefore, for the corresponding determinantal point pro-
cesses, whose scaling limit with respect to the scaling

ui = 1− yi

2n2
, i = 1, . . . , n, (4)

is the Bessel point process of Tracy and Widom [5]. We recall that the Bessel
point process is governed by the operator of projection of L2((0,+∞); Leb) onto
the subspace of functions whose Hankel transform is supported on [0, 1].

For s 6 −1 the measure (3) is infinite. To describe its scaling limit, we first recall
a recurrence relation between the Christoffel–Darboux kernels for Jacobi polyno-
mials and a corollary: recurrence relations between the corresponding orthogonal
polynomial ensembles. Namely, the nth Christoffel–Darboux kernel of the Jacobi
ensemble with parameter s is a rank-one perturbation of the (n− 1)th Christoffel–
Darboux kernel of the Jacobi ensemble with parameter s+ 2.

This recurrence relation motivates the following construction. Consider the range
of the Christoffel–Darboux projection operator. This is a finite-dimensional sub-
space of polynomials of degree at most n − 1 multiplied by the weight (1 − u)s/2.
Consider the same subspace for s 6 −1. Being no longer a subspace of L2, it is
nevertheless a well-defined space of locally square-integrable functions. In view of
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the recurrence relations, our subspace corresponding to a parameter s is a rank-one
perturbation of the similar subspace corresponding to the parameter s + 2, and
so on, until we arrive at a value of the parameter (to be denoted by s + 2ns) for
which the subspace becomes a part of L2. Thus our initial subspace is a finite-rank
perturbation of a closed subspace of L2, and the rank of this perturbation depends
on s but not on n. Taking the scaling limit of this representation, we obtain a sub-
space of locally square-integrable functions on (0,+∞), which is again a finite-rank
perturbation of the range of the Bessel projection operator which corresponds to
the parameter s+ 2ns.

To every such subspace of locally square-integrable functions we then assign
a σ-finite measure on the space of configurations: the infinite Bessel point process.
The infinite Bessel point process is a scaling limit of the measures (3) under the
scaling (4).

1.4.2. The Jacobi orthogonal polynomial ensemble. We first consider the case when
s > −1. Let P (s)

n be the standard Jacobi orthogonal polynomials corresponding
to the weight (1 − u)s, and let K̃(s)

n (u1, u2) be the nth Christoffel–Darboux ker-
nel for the Jacobi orthogonal polynomial ensemble (see the formulae (34), (35) in
Appendix A). For s > −1 we have the following well-known determinantal repre-
sentation of the measure (3):

constn,s

∏
16i<j6n

(ui − uj)2
n∏

i=1

(1− ui)sdui =
1
n!

det K̃(s)
n (ui, uj)

n∏
i=1

dui, (5)

where the normalization constant constn,s is chosen in such a way that the left-hand
side is a probability measure.

1.4.3. The recurrence relation for Jacobi orthogonal polynomial ensembles. We
write Leb for the ordinary Lebesgue measure on (a subset of) the real axis. Given
a finite family of functions f1, . . . , fN on the line, we write span(f1, . . . , fN ) for
the vector space spanned by these functions. The Christoffel–Darboux kernel K̃(s)

n

is the kernel of the orthogonal projection operator of L2([−1, 1]; Leb) onto the
subspace

L
(s,n)
Jac = span

(
(1− u)s/2, (1− u)s/2u, . . . , (1− u)s/2un−1

)
= span

(
(1− u)s/2, (1− u)s/2+1, . . . , (1− u)s/2+n−1

)
.

By definition we have a direct-sum decomposition

L
(s,n)
Jac = C(1− u)s/2 ⊕ L

(s+2,n−1)
Jac .

By Proposition A.1, for every s > −1 we have the recurrence relation

K̃(s)
n (u1, u2) =

s+ 1
2s+1

P
(s+1)
n−1 (u1)(1− u1)s/2P

(s+1)
n−1 (u2)(1− u2)s/2 + K̃(s+2)

n (u1, u2)

and, therefore, an orthogonal direct sum decomposition

L
(s,n)
Jac = CP (s+1)

n−1 (u)(1− u)s/2 ⊕ L
(s+2,n−1)
Jac .
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We now pass to the case when s 6 −1. We define a positive integer ns by the
relation

s

2
+ ns ∈

(
−1

2
,
1
2

]
and consider the subspace

Ṽ (s,n) = span
(
(1− u)s/2, (1− u)s/2+1, . . . , P

(s+2ns−1)
n−ns

(u)(1− u)s/2+ns−1
)
. (6)

By definition we get a direct-sum decomposition

L
(s,n)
Jac = Ṽ (s,n) ⊕ L

(s+2ns,n−ns)
Jac . (7)

Note that
L

(s+2ns,n−ns)
Jac ⊂ L2([−1, 1]; Leb)

while
Ṽ (s,n) ∩ L2([−1, 1]; Leb) = 0.

1.4.4. Scaling limits. We recall that the scaling limit of the Christoffel–Darboux
kernels K̃(s)

n of the Jacobi orthogonal polynomial ensemble with respect to the
scaling (4) is the Bessel kernel J̃s of Tracy and Widom [5]. (We recall a definition
of the Bessel kernel in Appendix A and give a precise statement on the scaling limit
in Proposition A.3.)

Clearly, for every β under the scaling (4) we have

lim
n→∞

(2n2)β(1− ui)β = yβ
i

and, for every α > −1, the classical Heine–Mehler asymptotics for the Jacobi
polynomials yields that

lim
n→∞

2−
α+1

2 n−1P (α)
n (ui)(1− ui)

α−1
2 =

Jα(
√
yi)√
yi

.

It is therefore natural to take the subspace

Ṽ (s) = span
(
ys/2, ys/2+1, . . . ,

Js+2ns−1(
√
y)

√
y

)
as the scaling limit of the subspaces (6).

Moreover, we already know that the scaling limit of the subspace (7) is the range
L̃(s+2ns) of the operator J̃s+2ns .

Thus we arrive at the subspace H̃(s),

H̃(s) = Ṽ (s) ⊕ L̃(s+2ns).

It is natural to regard H̃(s) as the scaling limit of the subspaces L(s,n)
Jac as n → ∞

under the scaling (4).
Note that the subspaces H̃(s) consist of functions that are locally square inte-

grable and, moreover, fail to be square integrable only at zero: for every ε > 0 the
subspace χ[ε,+∞)H̃

(s) lies in L2.
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1.4.5. Definition of the infinite Bessel point process. We now proceed to give a pre-
cise description, in this specific case, of one of our main constructions, that of the
σ-finite measure B̃(s), the scaling limit of the infinite Jacobi ensembles (3) under
the scaling (4). Let Conf((0,+∞)) be the space of configurations on (0,+∞).
Given any Borel subset E0 ⊂ (0,+∞), we write Conf((0,+∞);E0) for the sub-
space of configurations all of whose particles lie in E0. As usual, given a measure B
on X and a measurable subset Y ⊂ X with 0 < B(Y ) < +∞, we write B|Y for the
restriction of B to Y .

It will be proved in what follows that for every ε > 0 the subspace χ(ε,+∞)H̃
(s) is

a closed subspace of L2((0,+∞); Leb) and that the orthogonal projection operator
Π̃(ε,s) onto χ(ε,+∞)H̃

(s) is locally of trace class. By the Macchi–Soshnikov theorem,
the operator Π̃(ε,s) induces a determinantal measure PeΠ(ε,s) on Conf((0,+∞)).

Proposition 1.1. Let s 6 −1. Then there is a σ-finite measure B(s) on
Conf((0,+∞)) such that the following conditions hold.

(1) The particles of B-almost all configurations do not accumulate at zero.
(2) For every ε > 0 we have

0 < B
(
Conf((0,+∞); (ε,+∞))

)
< +∞,

B|Conf((0,+∞);(ε,+∞))

B(Conf((0,+∞); (ε,+∞)))
= PeΠ(ε,s) .

These conditions uniquely determine the measure B̃(s) up to multiplication by
a constant.

Remark. When s 6= −1,−3, . . . , we can also write

H̃(s) = span(ys/2, . . . , ys/2+ns−1)⊕ L̃(s+2ns)

and use the previous construction without any further changes. Note that when
s = −1 the function y1/2 is not square integrable at infinity, whence the need for
the definition above. When s > −1 we put B̃(s) = PJ̃s

.

Proposition 1.2. If s1 6= s2, then the measures B̃(s1) and B̃(s2) are mutually
singular.

The proof of Proposition 1.2 will be deduced from Proposition 1.4, which will
in turn be obtained from our main result, Theorem 1.11.

1.5. The modified Bessel point process. In what follows we use the Bessel
point process subject to the change of variable y = 4/x. To describe it, we consider
the half-line (0,+∞) with the standard Lebesgue measure Leb. Take s > −1 and
introduce a kernel J (s) by the formula

J (s)(x1, x2) =
Js

(
2√
x1

)
1√
x2
Js+1

(
2√
x2

)
− Js

(
2√
x2

)
1√
x1
Js+1

(
2√
x1

)
x1 − x2

,

x1 > 0, x2 > 0,
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or, equivalently,

J (s)(x, y) =
1

x1x2

∫ 1

0

Js

(
2
√

t

x1

)
Js

(
2
√

t

x2

)
dt.

The change of variable y = 4/x reduces the kernel J (s) to the kernel J̃s of
the Bessel point process of Tracy and Widom as considered above (we recall that
a change of variables u1 = ρ(v1), u2 = ρ(v2) transforms a kernel K(u1, u2) to
a kernel of the form K(ρ(v1), ρ(v2))

√
ρ′(v1)ρ′(v2)). Thus the kernel J (s) induces

a locally trace-class orthogonal projection operator on L2((0,+∞); Leb). Slightly
abusing our notation, we denote this operator again by J (s). Let L(s) be the range
of J (s). By the Macchi–Soshnikov theorem, the operator J (s) induces a determi-
nantal measure PJ(s) on the space of configurations Conf((0,+∞)).

1.6. The modified infinite Bessel point process. The involutive homeomor-
phism y = 4/x of the half-line (0,+∞) induces the corresponding homeomorphism
(change of variable) of the space Conf((0,+∞)). Let B(s) be the image of B̃(s)

under the change of variables. We shall see below that B(s) is precisely the ergodic
decomposition measure for the infinite Pickrell measures.

A more explicit description of B(s) can be given as follows.
By definition we put

L(s) =
{
ϕ(4/x)
x

, ϕ ∈ L̃(s)

}
.

(The behaviour of determinantal measures under a change of variables is described
in §B.5.)

We similarly write V (s),H(s) ⊂ L2,loc((0,+∞); Leb) for the images of the sub-
spaces Ṽ (s), H̃(s) under the change of variable y = 4/x:

V (s) =
{
ϕ(4/x)
x

, ϕ ∈ Ṽ (s)

}
, H(s) =

{
ϕ(4/x)
x

, ϕ ∈ H̃(s)

}
.

By definition we have

V (s) = span
(
x−s/2−1, . . . ,

Js+2ns−1(2/
√
x)√

x

)
, H(s) = V (s) ⊕ L(s+2ns).

We shall see that for allR>0, χ(0,R)H
(s) is a closed subspace of L2((0,+∞); Leb).

Let Π(s,R) be the corresponding orthogonal projection. By definition, Π(s,R) is
locally of trace class and, by the Macchi–Soshnikov theorem, Π(s,R) induces a deter-
minantal measure PΠ(s,R) on Conf((0,+∞)).

The measure B(s) is characterized by the following conditions.
(1) The set of particles of B(s)-almost every configuration is bounded.
(2) For every R > 0 we have

0 < B
(
Conf((0,+∞); (0, R))

)
< +∞,

B|Conf((0,+∞);(0,R))

B(Conf((0,+∞); (0, R)))
= PΠ(s,R) .

These conditions uniquely determine B(s) up to a constant.
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Remark. When s 6= −1,−3, . . . , we can also write

H(s) = span(x−s/2−1, . . . , x−s/2−ns+1)⊕ L(s+2ns).

Let I1,loc((0,+∞); Leb) be the space of locally trace-class operators on the space
L2((0,+∞); Leb) (see §B.3 for a detailed definition). The following proposition
describes the asymptotic behaviour of the operators Π(s,R) as R→∞.

Proposition 1.3. Let s 6 −1. Then the following assertions hold.
(1) As R→∞, we have Π(s,R) → J (s+2ns) in I1,loc((0,+∞); Leb).
(2) The corresponding measures also converge as R→∞:

PΠ(s,R) → PJ(s+2ns)

weakly in the space of probability measures on Conf((0,+∞)).

As above, for s > −1 we put B(s) = PJ(s) . Proposition 1.2 is equivalent to the
following assertion.

Proposition 1.4. If s1 6= s2, then the measures B(s1) and B(s2) are mutually
singular.

We will obtain Proposition 1.4 in the last section of the paper as a corollary of
our main result, Theorem 1.11.

We now represent the measure B(s) as the product of a determinantal probabil-
ity measure and a multiplicative functional. Here we restrict ourselves to a specific
example of such representation, but we shall see in what follows that the construc-
tion holds in much greater generality. We introduce a function S on the space of
configurations Conf((0,+∞)) putting

S(X) =
∑
x∈X

x.

Of course, the function S may take the value ∞, but the following proposition
shows that the set of such configurations has B(s)-measure zero.

Proposition 1.5. For every s ∈ R we have S(X) < +∞ almost surely with respect
to the measure B(s) and, for any β > 0,

exp
(
−βS(X)

)
∈ L1

(
Conf((0,+∞)); B(s)

)
.

Furthermore, we shall now see that the measure

exp(−βS(X))B(s)∫
Conf((0,+∞))

exp(−βS(X)) dB(s)

is determinantal.

Proposition 1.6. For all s ∈ R and β > 0, the subspace

exp
(
−βx

2

)
H(s) (8)

is a closed subspace of L2

(
(0,+∞); Leb

)
and the operator of orthogonal projection

onto (8) is locally of trace class.
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Let Π(s,β) be the operator of orthogonal projection onto the subspace (8).
By Proposition 1.6 and the Macchi–Soshnikov theorem, the operator Π(s,β)

induces a determinantal probability measure on the space Conf((0,+∞)).

Proposition 1.7. For all s ∈ R and β > 0 we have

exp(−βS(X))B(s)∫
Conf((0,+∞))

exp(−βS(X)) dB(s)
= PΠ(s,β) . (9)

1.7. Unitarily invariant measures on spaces of infinite matrices.

1.7.1. Pickrell measures. Let Mat(n,C) be the space of complex n × n matrices:

Mat(n,C) =
{
z = (zij), i = 1, . . . , n, j = 1, . . . , n

}
.

Let Leb = dz be the Lebesgue measure on Mat(n,C). For n1 < n let

πn
n1

: Mat(n,C) → Mat(n1,C)

be the natural projection sending each matrix z = (zij), i, j = 1, . . . , n, to its upper
left corner, that is, the matrix πn

n1
(z) = (zij), i, j = 1, . . . , n1.

Following Pickrell [2], we take s ∈ R and introduce a measure µ̃(s)
n on Mat(n,C)

by the formula
µ̃(s)

n = det(1 + z∗z)−2n−sdz.

The measure µ̃(s)
n is finite if and only if s > −1.

The measures µ̃(s)
n have the following property of consistency with respect to the

projections πn
n1

.

Proposition 1.8. Let s ∈ R and n ∈ N be such that n + s > 0. Then for every
matrix z̃ ∈ Mat(n,C) we have∫

(πn+1
n )−1(z̃)

det(1+z∗z)−2n−2−s dz =
π2n+1(Γ(n+ 1 + s))2

Γ(2n+ 2 + s)Γ(2n+ 1 + s)
det(1+z̃∗z̃)−2n−s.

We now consider the space Mat(N,C) of infinite complex matrices whose rows
and columns are indexed by positive integers:

Mat(N,C) =
{
z = (zij), i, j ∈ N, zij ∈ C

}
.

Let π∞n : Mat(N,C) → Mat(n,C) be the natural projection sending each infinite
matrix z ∈ Mat(N,C) to its upper left n × n corner, that is, the matrix (zij),
i, j = 1, . . . , n.

For s > −1 it follows from Proposition 1.8 and Kolmogorov’s existence theo-
rem [15] that there is a unique probability measure µ(s) on Mat(N,C) such that for
every n ∈ N we have

(π∞n )∗µ(s) = π−n2
n∏

l=1

Γ(2l + s)Γ(2l − 1 + s)
(Γ(l + s))2

µ̃(s)
n .
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If s 6 −1, then Proposition 1.8 along with Kolmogorov’s existence theorem [15]
enables us to conclude that for every λ > 0 there is a unique infinite measure µ(s,λ)

on Mat(N,C) with the following properties.
(1) For every n ∈ N satisfying n+ s > 0 and every compact set Y ⊂ Mat(n,C)

we have µ(s,λ)(Y ) < +∞. Hence the push-forwards (π∞n )∗µ(s,λ) are well defined.
(2) For every n ∈ N satisfying n+ s > 0 we have

(π∞n )∗µ(s,λ) = λ

( n∏
l=n0

π−2n Γ(2l + s)Γ(2l − 1 + s)
(Γ(l + s))2

)
µ̃(s).

The measures µ(s,λ) are called infinite Pickrell measures. Slightly abusing our
notation, we shall omit the superscript λ and write µ(s) for a measure defined up
to a multiplicative constant. A detailed definition of infinite Pickrell measures is
given by Borodin and Olshanski [4], p. 116.

Proposition 1.9. For all s1, s2 ∈ R with s1 6= s2 the Pickrell measures µ(s1) and
µ(s2) are mutually singular.

Proposition 1.9 may be obtained from Kakutani’s theorem in the spirit of [4]
(see also [11]).

Let U(∞) be the infinite unitary group. An infinite matrix u = (uij)i,j∈N belongs
to U(∞) if there is a positive integer n0 such that the matrix (uij), i, j ∈ [1, n0],
is unitary, uii = 1 for i > n0, and uij = 0 whenever i 6= j, max(i, j) > n0. The
group U(∞)×U(∞) acts on Mat(N,C) by multiplication on both sides: T(u1,u2)z =
u1zu

−1
2 . The Pickrell measures µ(s) are by definition invariant under this action.

The role of Pickrell (and related) measures in the representation theory of U(∞) is
reflected in [3], [16], [17].

It follows from Theorem 1 and Corollary 1 in [18] that the measures µ(s) admit
an ergodic decomposition. Theorem 1 in [6] says that for every s ∈ R almost all
ergodic components of µ(s) are finite. We now state this result in more detail.
Recall that a (U(∞)×U(∞))-invariant measure on Mat(N,C) is said to be ergodic
if every (U(∞)×U(∞))-invariant Borel subset of Mat(N,C) either has measure zero
or has a complement of measure zero. Equivalently, ergodic probability measures
are extreme points of the convex set of all (U(∞) × U(∞))-invariant probability
measures on Mat(N,C). We denote the set of all ergodic (U(∞)×U(∞))-invariant
probability measures on Mat(N,C) by Merg(Mat(N,C)). The set Merg(Mat(N,C))
is a Borel subset of the set of all probability measures on Mat(N,C) (see, for exam-
ple, [18]). Theorem 1 in [6] says that for every s ∈ R there is a unique σ-finite Borel
measure µ(s) on Merg(Mat(N,C)) such that

µ(s) =
∫

Merg(Mat(N,C))

η dµ(s)(η).

Our main result is an explicit description of the measure µ(s) and its identifica-
tion, after a change of variable, with the infinite Bessel point process considered
above.
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1.8. Classification of ergodic measures. We recall a classification of ergodic
(U(∞) × U(∞))-invariant probability measures on Mat(N,C). This classification
was obtained by Pickrell [2], [19]. Vershik [20] and Vershik and Olshanski [3] sug-
gested another approach to it in the case of unitarily invariant measures on the space
of infinite Hermitian matrices, and Rabaoui [21], [22] adapted the Vershik–Olshanski
approach to the original problem of Pickrell. We also follow the approach of Vershik
and Olshanski.

We take a matrix z ∈ Mat(N,C), put z(n) = π∞n z, and let

λ
(n)
1 > · · · > λ(n)

n > 0

be the eigenvalues of the matrix

(z(n))∗z(n)

counted with multiplicities and arranged in non-increasing order. To stress the
dependence on z, we write λ(n)

i = λ
(n)
i (z).

Theorem. (1) Let η be an ergodic (U(∞) × U(∞))-invariant Borel probability
measure on Mat(N,C). Then there are non-negative real numbers

γ > 0, x1 > x2 > · · · > xn > · · · > 0,

satisfying the condition γ >
∑∞

i=1 xi and such that for η-almost all matrices z ∈
Mat(N,C) and every i ∈ N we have

xi = lim
n→∞

λ
(n)
i (z)
n2

, γ = lim
n→∞

tr(z(n))∗z(n)

n2
. (10)

(2) Conversely, suppose we are given any non-negative real numbers γ > 0,
x1 > x2 > · · · > xn > · · · > 0 such that γ >

∑∞
i=1 xi. Then there is a unique

ergodic (U(∞) × U(∞))-invariant Borel probability measure η on Mat(N,C) such
that the relations (10) hold for η-almost all matrices z ∈ Mat(N,C).

We define the Pickrell set ΩP ⊂ R+ × RN
+ by the formula

ΩP =
{
ω = (γ, x) : x = (xn), n ∈ N, xn > xn+1 > 0, γ >

∞∑
i=1

xi

}
.

By definition, ΩP is a closed subset of the product R+ × RN
+ endowed with the

Tychonoff topology. For ω ∈ ΩP let ηω be the corresponding ergodic probability
measure.

The Fourier transform of ηω may be described explicitly as follows. For every
λ ∈ R we have∫

Mat(N,C)

exp(iλRe z11) dηω(z) =
exp

(
−4

(
γ −

∑∞
k=1 xk

)
λ2

)∏∞
k=1(1 + 4xkλ2)

. (11)

We denote the right-hand side of (11) by Fω(λ). Then for all λ1, . . . , λm ∈ R we
have∫

Mat(N,C)

exp
(
i(λ1 Re z11 + · · ·+ λm Re zmm)

)
dηω(z) = Fω(λ1) · . . . · Fω(λm).
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Thus the Fourier transform is completely determined and, therefore, the measure
ηω is completely described.

An explicit construction of the measures ηω is as follows. Letting all entries
of z be independent identically distributed complex Gaussian random variables
with expectation 0 and variance γ̃, we get a Gaussian measure with parameter γ̃.
Clearly, this measure is unitarily invariant and, by Kolmogorov’s zero-one law,
ergodic. It corresponds to the parameter ω = (γ̃, 0, . . . , 0, . . . ): all x-coordinates
are equal to zero (indeed, the eigenvalues of a Gaussian matrix grow at the rate
of
√
n rather than n). We now consider two infinite sequences (v1, . . . , vn, . . . ) and

(w1, . . . , wn, . . . ) of independent identically distributed complex Gaussian random
variables with variance

√
x and put zij = viwj . This yields a measure which

is clearly unitarily invariant and, by Kolmogorov’s zero-one law, ergodic. This
measure corresponds to a parameter ω ∈ ΩP such that γ(ω) = x, x1(ω) = x,
and all other parameters are equal to zero. Following Vershik and Olshanski [3],
we call such measures Wishart measures with parameter x. In the general case we
put γ̃ = γ −

∑∞
k=1 xk. The measure ηω is then an infinite convolution of the

Wishart measures with parameters x1, . . . , xn, . . . and a Gaussian measure with
parameter γ̃. This convolution is well defined since the series x1 + · · · + xn + · · ·
converges.

The quantity γ̃ = γ −
∑∞

k=1 xk will therefore be called the Gaussian parameter
of the measure ηω. We shall prove that the Gaussian parameter vanishes for almost
all ergodic components of Pickrell measures.

By Proposition 3 in [18], the set of ergodic (U(∞) × U(∞))-invariant mea-
sures is a Borel subset in the space of all Borel measures on Mat(N,C) endowed
with the natural Borel structure (see, for example, [23]). Furthermore, writing
ηω for the ergodic Borel probability measure corresponding to a point ω ∈ ΩP ,
ω = (γ, x), we see that the correspondence ω → ηω is a Borel isomorphism between
the Pickrell set ΩP and the set of ergodic (U(∞) × U(∞))-invariant probability
measures on Mat(N,C).

The ergodic decomposition theorem (Theorem 1 and Corollary 1 in [18]) says
that each Pickrell measure µ(s), s ∈ R, induces a unique decomposition measure µ(s)

on ΩP such that

µ(s) =
∫

ΩP

ηω dµ
(s)(ω). (12)

The integral is understood in the ordinary weak sense (see [18]).
When s > −1 the measure µ(s) is a probability measure on ΩP . When s 6 −1,

it is infinite.
We put

Ω0
P =

{
(γ, {xn}) ∈ ΩP : xn > 0 for all n, γ =

∞∑
n=1

xn

}
.

Of course, the subset Ω0
P is not closed in ΩP . We introduce the map

conf : ΩP → Conf((0,+∞))
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sending each point ω ∈ ΩP , ω = (γ, {xn}), to the configuration

conf(ω) = (x1, . . . , xn, . . . ) ∈ Conf((0,+∞)).

The map ω → conf(ω) is bijective when restricted to Ω0
P .

Remark. The map conf is defined by counting multiplicities of the ‘asymptotic
eigenvalues’ xn. Moreover, if xn0 =0 for some n0, then xn0 and all subsequent terms
are discarded and the resulting configuration is finite. Nevertheless we shall see that
µ(s)-almost all configurations are infinite and, µ(s)-almost surely, all multiplicities
are equal to one. We shall also prove that ΩP \Ω0

P has µ(s)-measure zero for all s.

1.9. Statement of the main result. We first state an analogue of the Borodin–
Olshanski ergodic decomposition theorem [4] for finite Pickrell measures.

Proposition 1.10. Suppose that s > −1. Then µ(s)(Ω0
P ) = 1 and the map ω →

conf(ω), which is bijective µ(s)-almost everywhere, identifies the measure µ(s) with
the determinantal measure PJ(s) .

Our main result is the following explicit description of the ergodic decomposition
for infinite Pickrell measures.

Theorem 1.11. Suppose that s ∈ R and let µ(s) be the decomposition measure
(defined in (12)) of the Pickrell measure µ(s). Then the following assertions hold.

(1) µ(s)(ΩP \ Ω0
P ) = 0.

(2) The map ω → conf(ω), which is bijective µ(s)-almost everywhere, identifies
the measure µ(s) with the infinite determinantal measure B(s).

1.10. A skew-product representation of the measure B(s). Note that B(s)-
almost all configurations X may accumulate only at zero and, therefore, admit
a maximal particle, which we denote by xmax(X). We are interested in the distri-
bution of values of xmax(X) with respect to B(s). By definition, for every R > 0,
B(s) takes finite values on the sets {X : xmax(X) < R}. Furthermore, again by
definition, the following relation holds for R > 0 and R1, R2 6 R:

B(s)({X : xmax(X) < R1})
B(s)({X : xmax(X) < R2})

=
det(1− χ(R1,+∞)Π(s,R)χ(R1,+∞))
det(1− χ(R2,+∞)Π(s,R)χ(R2,+∞))

.

The push-forward of the measure B(s) is a well-defined σ-finite Borel measure
on (0,+∞). We denote it by ξmaxB(s). Of course, the measure ξmaxB(s) is defined
up to multiplication by a positive constant.

Question. What is the asymptotic behaviour of ξmaxB(s)(0, R) as R → ∞ and
as R→ 0?

We again denote the kernel of the operator Π(s,R) by Π(s,R). Consider the
function ϕR(x) = Π(s,R)(x,R). By definition,

ϕR(x) ∈ χ(0,R)H
(s).

Let H(s,R) be the orthogonal complement of the one-dimensional subspace spanned
by ϕR(x) in χ(0,R)H

(s). In other words, H(s,R) is the subspace of all functions
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in χ(0,R)H
(s) that vanish at R. Let Π(s,R) be the operator of orthogonal projection

onto H(s,R).

Proposition 1.12. We have

B(s) =
∫ ∞

0

PΠ(s,R) dξmaxB(s)(R).

Proof. This follows immediately from the definition of B(s) and the characterization
of Palm measures for determinantal point processes (see the paper [24] by Shirai
and Takahashi). �

1.11. The general scheme of ergodic decomposition.

1.11.1. Approximation. Let F be the family of σ-finite (U(∞) × U(∞))-invariant
measures µ on Mat(N,C) for which there is a positive integer n0 (depending on µ)
such that for all R > 0 we have

µ
({
z : max

16i,j6n0
|zij | < R

})
< +∞.

By definition, all Pickrell measures belong to the class F.
We recall a result of [6]: every ergodic measure of class F is finite and, therefore,

the ergodic components of any measure in F are finite almost surely. (The existence
of an ergodic decomposition for every measure µ ∈ F follows from the ergodic
decomposition theorem for actions of inductively compact groups, that is, inductive
limits of compact groups, established in [18].) The classification of finite ergodic
measures now yields that for every measure µ ∈ F there is a unique σ-finite Borel
measure µ on the Pickrell set ΩP such that

µ =
∫

ΩP

ηω dµ(ω). (13)

Our next aim is to construct, following Borodin and Olshanski [4], a sequence of
finite-dimensional approximations of µ.

With every matrix z ∈ Mat(N,C) and number n ∈ N we associate the sequence

(λ(n)
1 , λ

(n)
2 , . . . , λ(n)

n )

of all eigenvalues of the matrix (z(n))∗z(n) arranged in non-increasing order. Here

z(n) = (zij)i,j=1,...,n.

For n ∈ N we define the map

r(n) : Mat(N,C) → ΩP

by the formula

r(n)(z) =
(

1
n2

tr(z(n))∗z(n),
λ

(n)
1

n2
,
λ

(n)
2

n2
, . . . ,

λ
(n)
n

n2
, 0, 0, . . .

)
.
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It is clear from the definition that for all n ∈ N and z ∈ Mat(N,C) we have

r(n)(z) ∈ Ω0
P .

For every measure µ ∈ F and all sufficiently large n ∈ N the push-forwards
(r(n))∗µ are well defined since the unitary group is compact. We now prove that for
any µ ∈ F the measures (r(n))∗µ approximate the ergodic decomposition measure µ.

We start with the direct description of the map sending each measure µ ∈ F to
its ergodic decomposition measure µ.

Following Borodin and Olshanski [4], we consider the set Matreg(N,C) of all
regular matrices z, that is, matrices with the following properties.

(1) For every k the limit limn→∞
1

n2λ
(k)
n =: xk(z) exists.

(2) The limit limn→∞
1

n2 tr(z(n))∗z(n) =: γ(z) exists.
Since the set of regular matrices has full measure with respect to any finite

ergodic (U(∞) × U(∞))-invariant measure, the existence of the ergodic decompo-
sition (13) implies that

µ
(
Mat(N,C) \Matreg(N,C)

)
= 0.

We define a map
r(∞) : Matreg(N,C) → ΩP

by the formula

r(∞)(z) =
(
γ(z), x1(z), x2(z), . . . , xk(z), . . .

)
.

The ergodic decomposition theorem [18] and the classification of ergodic unitarily
invariant measures (in the form of Vershik and Olshanski) yield the important
equality

(r(∞))∗µ = µ. (14)

Remark. This equality has a simple analogue in the context of De Finetti’s theorem.
To obtain the ergodic decomposition of an exchangeable measure on the space of
binary sequences, it suffices to consider the push-forward of the initial measure
under the almost surely defined map sending each sequence to the frequency of
zeros in it.

Given a complete separable metric space Z, we write Mfin(Z) for the space of all
finite Borel measures on Z endowed with the weak topology. We recall (see [23])
that Mfin(Z) is itself a complete separable metric space: the weak topology is
induced, for example, by the Lévy–Prokhorov metric.

We now prove that the measures (r(n))∗µ approximate the measure (r(∞))∗µ = µ
as n→∞. For finite measures µ the following result was obtained by Borodin and
Olshanski [4].

Proposition 1.13. Let µ be a finite unitarily invariant measure on Mat(N,C).
Then, as n→∞, we have

(r(n))∗µ→ (r(∞))∗µ

weakly in Mfin(ΩP ).
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Proof. Let f : ΩP → R be continuous and bounded. By definition, for every infinite
matrix z ∈ Matreg(N,C) we have r(n)(z) → r(∞)(z) as n→∞ and, therefore,

lim
n→∞

f(r(n)(z)) = f(r(∞)(z)).

Hence, by the dominated convergence theorem, we have

lim
n→∞

∫
Mat(N,C)

f(r(n)(z)) dµ(z) =
∫

Mat(N,C)

f(r(∞)(z)) dµ(z).

Changing variables, we arrive at the convergence

lim
n→∞

∫
ΩP

f(ω) d(r(n))∗µ =
∫

ΩP

f(ω) d(r(∞))∗µ.

This establishes the desired weak convergence. �

For σ-finite measures µ ∈ F, the result of Borodin and Olshanski can be modified
as follows.

Lemma 1.14. Let µ ∈ F. Then there is a positive bounded continuous function f
on the Pickrell set ΩP such that the following conditions hold.

(1) f ∈L1(ΩP , (r(∞))∗µ) and f ∈L1(ΩP , (r(n))∗µ) for all sufficiently large n∈N.
(2) As n→∞, we have

f(r(n))∗µ→ f(r(∞))∗µ

weakly in Mfin(ΩP ).

A proof of Lemma 1.14 will be given in the third part of this paper.

Remark. The argument above shows that the explicit characterization of the ergodic
decomposition of Pickrell measures in Theorem 1.11 relies on the abstract result
(Theorem 1 in [18]) that a priori guarantees the existence of the ergodic decom-
position. Theorem 1.11 does not give an alternative proof of the existence of this
ergodic decomposition.

1.11.2. Convergence of probability measures on the Pickrell set. We recall the def-
inition of a natural ‘forgetful’ map

conf : ΩP → Conf((0,+∞)).

This map sends each point ω = (γ, x), x = (x1, . . . , xn, . . . ), to the configuration
conf(ω) = (x1, . . . , xn, . . . ).

For ω ∈ ΩP , ω = (γ, x), x = (x1, . . . , xn, . . . ), xn = xn(ω), we put

S(ω) =
∞∑

n=1

xn(ω).

In other words, we put S(ω) = S(conf(ω)) and, slightly abusing the notation,
denote both maps by the same letter. Take β > 0 and for every n ∈ N consider the
measures

exp(−βS(ω))r(n)(µ(s)).
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Proposition 1.15. For all s ∈ R and β > 0 we have

exp(−βS(ω)) ∈ L1(ΩP , r
(n)(µ(s))).

Introduce probability measures

ν(s,n,β) =
exp(−βS(ω))r(n)(µ(s))∫

ΩP
exp(−βS(ω)) dr(n)(µ(s))

.

We now reconsider the probability measure PΠ(s,β) on the space Conf((0,+∞))
(see (9)) and define a measure ν(s,β) on ΩP by the following requirements:

(1) ν(s,β)(ΩP \ Ω0
P ) = 0;

(2) conf∗ ν(s,β) = PΠ(s,β) .
The following proposition plays a key role in the proof of Theorem 1.11.

Proposition 1.16. For all β > 0 and s ∈ R we have

ν(s,n,β) → ν(s,β)

weakly on Mfin(ΩP ) as n→∞.

Proposition 1.16 will be proved in §§ III.3, III.4. Combining Proposition 1.16
with Lemma 1.14, we shall complete the proof of our main result, Theorem 1.11.

To prove the weak convergence of the measures ν(s,n,β), we first study scaling
limits of the radial parts of finite-dimensional projections of infinite Pickrell mea-
sures.

1.12. The radial part of a Pickrell measure. Following Pickrell, we associate
with every matrix z ∈ Mat(n,C) the tuple (λ1(z), . . . , λn(z)) of eigenvalues of z∗z,
arranged in non-decreasing order. We introduce the map

radn : Mat(n,C) → Rn
+

by the formula
radn : z →

(
λ1(z), . . . , λn(z)

)
. (15)

The map (15) extends naturally to Mat(N,C), and we denote this extension again
by radn. Thus the map radn sends each infinite matrix to the tuple of squared
eigenvalues of its upper left corner of size n× n.

We now define the radial part of the Pickrell measure µ(s)
n as the push-forward

of µ(s)
n under the map radn. Since the finite-dimensional unitary groups are compact

and, by definition, µ(s)
n is finite on compact sets for every s and all sufficiently

large n, the push-forward is well defined for all sufficiently large n, even when the
measure µ(s) is infinite.

Slightly abusing the notation, we write dz for the Lebesgue measure on Mat(n,C),
and dλ for the Lebesgue measure on Rn

+.
For the push-forward of the Lebesgue measure Leb(n) = dz under the map radn

we now have
(radn)∗(dz) = const(n)

∏
i<j

(λi − λj)2 dλ
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(see, for example, [25], [26]), where const(n) is a positive constant depending only
on n.

Then the radial part of µ(s)
n takes the form

(radn)∗µ(s)
n = const(n, s)

∏
i<j

(λi − λj)2
1

(1 + λi)2n+s
dλ,

where const(n, s) is a positive constant depending only on n and s.
Following Pickrell, we introduce new variables u1, . . . , un by the formula

ui =
xi − 1
xi + 1

. (16)

Proposition 1.17. In the coordinates (16), the radial part (radn)∗µ
(s)
n of the mea-

sure µ(s)
n is given on the cube [−1, 1]n by the formula

(radn)∗µ(s)
n = const(n, s)

∏
i<j

(ui − uj)2
n∏

i=1

(1− ui)s dui (17)

(the constant const(n, s) may change from one formula to another).

If s > −1, then the constant const(n, s) may be chosen in such a way that
the right-hand side is a probability measure. If s 6 −1, then there is no canonical
normalization and the left-hand side is defined up to an arbitrary positive constant.

When s>−1 Proposition 1.17 yields a determinantal representation for the radial
part of the Pickrell measure. Namely, the radial part is identified with the Jacobi
orthogonal polynomial ensemble in the coordinates (16). Passing to a scaling limit,
we obtain the Bessel point process up to the change of variable y = 4/x.

We shall similarly prove that when s 6 −1, the scaling limit of the measures (17)
is equal to the modified infinite Bessel point process introduced above. Furthermore,
if we multiply the measures (17) by the density exp(−βS(X)/n2), then the resulting
measures are finite and determinantal, and their weak limit after an appropriate
choice of scaling is equal to the determinantal measure PΠ(s,β) as given in (9). This
weak convergence is a key step in the proof of Proposition 1.16.

Thus the study of the case s 6 −1 requires a new object: infinite determinantal
measures on the space of configurations. In the next section we proceed to the gen-
eral construction and description of properties of infinite determinantal measures.

Grigori Olshanski posed the problem to me, and I am greatly indebted to
him. I an deeply grateful to Alexei M. Borodin, Yanqi Qiu, Klaus Schmidt, and
Maria V. Shcherbina for useful discussions.

§ 2. Construction and properties of infinite determinantal measures

2.1. Preliminary remarks on σ-finite measures. Let Y be a Borel space. We
consider a representation

Y =
∞⋃

n=1

Yn
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of Y as a countable union of an increasing sequence of subsets Yn, Yn ⊂ Yn+1.
As above, given a measure µ on Y and a subset Y ′ ⊂ Y , we write µ|Y ′ for the
restriction of µ to Y ′. Suppose that for every n we are given a probability measure
Pn on Yn. The following proposition is obvious.

Proposition 2.1. A σ-finite measure B on Y with

B|Yn

B(Yn)
= Pn (18)

exists if and only if for all N and n with N > n we have

PN |Yn

PN (Yn)
= Pn.

The condition (18) uniquely determines the measure B up to multiplication by a con-
stant.

Corollary 2.2. If B1, B2 are σ-finite measures on Y such that for all n ∈ N we
have

0 < B1(Yn) < +∞, 0 < B2(Yn) < +∞

and
B1|Yn

B1(Yn)
=

B2|Yn

B2(Yn)
,

then there is a positive constant C > 0 such that B1 = CB2.

2.2. The unique extension property.

2.2.1. Extension from a subset. Let E be a standard Borel space, µ a σ-finite
measure on E, L a closed subspace of L2(E,µ), Π the operator of orthogonal
projection onto L, and E0 ⊂ E a Borel subset. We say that the subspace L has the
property of unique extension from E0 if every function ϕ ∈ L satisfying χE0ϕ = 0
must be identically equal to zero and the subspace χE0L is closed. In general, the
condition that every function ϕ ∈ L satisfying χE0ϕ = 0 is always the zero function,
does not imply that the restricted subspace χE0L is closed. Nevertheless we have
the following obvious corollary of the open mapping theorem.

Proposition 2.3. Let L be a closed subspace such that every function ϕ ∈ L with
χE0ϕ = 0 is the zero function. In this case the subspace χE0L is closed if and only
if there is an ε > 0 such that for all ϕ ∈ L we have

‖χE\E0ϕ‖ 6 (1− ε)‖ϕ‖. (19)

If this condition holds, then the natural restriction map ϕ → χE0ϕ is an isomor-
phism of Hilbert spaces. If the operator χE\E0Π is compact, then the condition (19)
holds.

Remark. In particular, the condition (19) holds a fortiori if the operator χE\E0Π
is Hilbert–Schmidt or, equivalently, if the operator χE\E0ΠχE\E0 belongs to the
trace class.
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We immediately obtain some corollaries of Proposition 2.3.

Corollary 2.4. Let g be a bounded non-negative Borel function on E such that

inf
x∈E0

g(x) > 0. (20)

If the condition (19) holds, then the subspace
√
g L is closed in L2(E,µ).

Remark. The apparently superfluous square root is put here to keep the notation
consistent with other results in this paper.

Corollary 2.5. Under the hypotheses of Proposition 2.3, if (19) holds and the
Borel function g : E → [0, 1] satisfies (20), then the operator Πg of orthogonal
projection onto

√
g L is given by the formula

Πg =
√
gΠ(1 + (g − 1)Π)−1√g =

√
gΠ(1 + (g − 1)Π)−1Π

√
g. (21)

In particular, the operator ΠE0 of orthogonal projection onto the subspace χE0L
takes the form

ΠE0 = χE0Π(1− χE\E0Π)−1χE0 = χE0Π(1− χE\E0Π)−1ΠχE0 . (22)

Corollary 2.6. Under the hypotheses of Proposition 2.3 suppose that the condition
(19) holds. Then for every subset Y ⊂ E0, whenever the operator χY ΠE0χY belongs
to the trace class, so does the operator χY ΠχY and we have

trχY ΠE0χY > trχY ΠχY .

Indeed, it is clear from (22) that if the operator χY ΠE0 is Hilbert–Schmidt, then
so is χY Π. The inequality between traces is also immediate from (22).

2.2.2. Examples: the Bessel kernel and the modified Bessel kernel.

Proposition 2.7. (1) For every ε > 0 the operator J̃s has the property of unique
extension from (ε,+∞).

(2) For every R > 0 the operator J (s) has the property of unique extension from
(0, R).

Proof. Part (1) follows directly from the uncertainty principle for the Hankel trans-
form: a function and its Hankel transform cannot both be supported on a set of
finite measure [27], [28] (note that the uncertainty principle in [27] is stated only for
s > −1/2, but the more general uncertainty principle in [28] is directly applicable
when s ∈ [−1, 1/2]; see also [29]) and the following bound, which clearly holds by
the definitions for every R > 0:∫ R

0

J̃s(y, y) dy < +∞.

The second part follows from the first by the change of variable y = 4/x. �
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2.3. Inductively determinantal measures. Let E be a locally compact metric
space and Conf(E) the space of configurations on E endowed with the natural Borel
structure (see, for example, [30], [31] and §B.1 below).

Given a Borel subset E′ ⊂ E, we write Conf(E,E′) for the subspace of those
configurations all of whose particles lie in E′. Given a measure B on X and a mea-
surable subset Y ⊂ X with 0 < B(Y ) < +∞, we write B|Y for the restriction of B
to Y .

Let µ be a σ-finite Borel measure on E.
Take a Borel subset E0 ⊂ E and assume that for every bounded Borel subset

B ⊂ E \ E0 we are given a closed subspace LE0∪B ⊂ L2(E,µ) such that the
corresponding projection operator ΠE0∪B belongs to I1,loc(E,µ). We also make
the following assumption.

Assumption 1. (1) ‖χBΠE0∪B‖ < 1, χBΠE0∪BχB ∈ I1(E,µ).
(2) For any subsets B(1) ⊂ B(2) ⊂ E \ E0 we have

χE0∪B(1)LE0∪B(2)
= LE0∪B(1)

.

Proposition 2.8. Under these assumptions there is a σ-finite measure B on
Conf(E) with the following properties.

(1) For B-almost all configurations, only finitely many particles lie in E \ E0.
(2) For every bounded Borel subset B⊂E\E0 we have 0 < B(Conf(E; E0∪B)) <

+∞ and
B|Conf(E;E0∪B)

B(Conf(E;E0 ∪B))
= PΠE0∪B .

We call such a measure B an inductively determinantal measure.
Proposition 2.8 follows immediately from Proposition 2.1 combined with Propo-

sition B.3 and Corollary B.5. Note that the conditions (1) and (2) determine the
measure uniquely up to multiplication by a constant.

We now give a sufficient condition for an inductively determinantal measure to
be an actual finite determinantal measure.

Proposition 2.9. Consider a family of projections ΠE0∪B satisfying Assumption 1,
and let B be the corresponding inductively determinantal measure. If there are
R > 0 and ε > 0 such that for all bounded Borel subsets B ⊂ E \ E0 we have

(1) ‖χBΠE0∪B‖ < 1− ε,
(2) trχBΠE0∪BχB < R,

then there is an operator Π ∈ I1,loc(E,µ) of projection onto a closed subspace
L ⊂ L2(E,µ) with the following properties :

(1) LE0∪B = χE0∪BL for all B;
(2) χE\E0ΠχE\E0 ∈ I1(E,µ);
(3) the measures B and PΠ coincide up to multiplication by a constant.

Proof. By our assumptions, for every bounded Borel subset B ⊂ E \ E0 we have
a closed subspace LE0∪B (the range of the operator ΠE0∪B) which has the property
of unique extension from E0. The uniform bounds for the norms of the operators
χBΠE0∪B imply the existence of a closed subspace L such that LE0∪B = χE0∪BL.



Ergodic decomposition of infinite Pickrell measures. I 1135

Since by assumption the projection operator ΠE0∪B belongs to I1,loc(E,µ), we
obtain for every bounded subset Y ⊂ E that

χY ΠE0∪Y χY ∈ I1(E,µ).

Using Corollary 2.6 for the subset E0 ∪ Y , we now obtain that

χY ΠχY ∈ I1(E,µ).

Thus the operator Π of orthogonal projection onto L is locally of trace class and,
therefore, induces a unique determinantal probability measure PΠ on Conf(E).
Using Corollary 2.6 again, we obtain that

trχE\E0ΠχE\E0 6 R. �

We now give sufficient conditions for the measure B to be infinite.

Proposition 2.10. If at least one of the following assumptions holds, then the
measure B is infinite.

(1) For every ε > 0 there is a bounded Borel subset B ⊂ E \ E0 such that

‖χBΠE0∪B‖ > 1− ε.

(2) For every R > 0 there is a bounded Borel subset B ⊂ E \ E0 such that

trχBΠE0∪BχB > R.

Proof. We recall that

B(Conf(E;E0))
B(Conf(E;E0 ∪B))

= PΠE0∪B (Conf(E;E0)) = det(1− χBΠE0∪BχB).

If the first assumption holds, then it follows immediately that the top eigenvalue
of the self-adjoint trace-class operator χBΠE0∪BχB is greater than 1 − ε, whence

det(1− χBΠE0∪BχB) 6 ε.

If the second assumption holds, then

det(1− χBΠE0∪BχB) 6 exp(− trχBΠE0∪BχB) 6 exp(−R).

In both cases the ratio
B(Conf(E;E0))

B(Conf(E; E0 ∪B))

can be made arbitrarily small by an appropriate choice of the subset B. It follows
that the measure B is infinite. �
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2.4. General construction of infinite determinantal measures. By the
Macchi–Soshnikov theorem, under some additional assumptions, one can construct
a determinantal measure from an operator of orthogonal projection or, equivalently,
from a closed subspace of L2(E,µ). In a similar way, an infinite determinantal mea-
sure may be assigned to every subspace H of locally square-integrable functions.

We recall that L2,loc(E,µ) is the space of all measurable functions f : E → C
such that for every bounded set B ⊂ E we have∫

B

|f |2 dµ < +∞. (23)

By choosing an exhausting family Bn of bounded sets (for example, balls with
fixed centre whose radii tend to infinity) and using (23) for B = Bn, we endow
the space L2,loc(E,µ) with a countable family of seminorms that makes it into
a complete separable metric space. Of course, the resulting topology is independent
of the choice of the exhausting family of sets.

Let H ⊂ L2,loc(E,µ) be a vector subspace. When E′ ⊂ E is a Borel set such that
χE′H is a closed subspace of L2(E,µ), we denote by ΠE′

the operator of orthogonal
projection onto the subspace χE′H ⊂ L2(E,µ). We now fix a Borel subset E0 ⊂ E.
Informally speaking, E0 is the set where the particles may accumulate. We impose
the following conditions on E0 and H.

Assumption 2. (1) For every bounded Borel set B ⊂ E, the space χE0∪BH is
a closed subspace of L2(E,µ).

(2) For every bounded Borel set B ⊂ E \ E0 we have

ΠE0∪B ∈ I1,loc(E,µ), χBΠE0∪BχB ∈ I1(E,µ).

(3) If ϕ ∈ H satisfies χE0ϕ = 0, then ϕ = 0.

If a subspace H and the subset E0 are such that every function ϕ ∈ H with
χE0ϕ = 0 must be the zero function, then we say that H has the property of unique
extension from E0.

Theorem 2.11. Let E be a locally compact metric space and µ a σ-finite Borel
measure on E. If a subspace H ⊂ L2,loc(E,µ) and a Borel subset E0 ⊂ E sat-
isfy Assumption 2, then there is a σ-finite Borel measure B on Conf(E) with the
following properties.

(1) B-almost every configuration has at most finitely many particles outside E0.
(2) For every (possibly empty) bounded Borel set B ⊂ E \ E0 we have 0 <

B(Conf(E;E0 ∪B)) < +∞ and

B|Conf(E;E0∪B)

B(Conf(E;E0 ∪B))
= PΠE0∪B .

The conditions (1) and (2) determine the measure B uniquely up to multiplication
by a positive constant.

We write B(H,E0) for the one-dimensional cone of non-zero infinite determi-
nantal measures induced by H and E0 and, slightly abusing the notation, write
B = B(H,E0) for a representative of this cone.
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Remark. If B is a bounded set, then, by definition,

B(H,E0) = B(H,E0 ∪B).

Remark. If E′ ⊂ E is a Borel subset such that χE0∪E′ is a closed subspace of
L2(E,µ) and the operator ΠE0∪E′

of orthogonal projection onto χE0∪E′H satisfies

ΠE0∪E′
∈ I1,loc(E,µ), χE′ΠE0∪E′

χE′ ∈ I1(E,µ),

then, exhausting E′ by bounded sets, we easily obtain from Theorem 2.11 that
0 < B(Conf(E;E0 ∪ E′)) < +∞ and

B|Conf(E;E0∪E′)

B(Conf(E;E0 ∪ E′))
= PΠE0∪E′ .

2.5. Change of variables for infinite determinantal measures. Any homeo-
morphism F : E → E induces a homeomorphism of Conf(E), which will again be
denoted by F . For every configuration X ∈ Conf(E), the particles of F (X) are of
the form F (x) for all x ∈ X.

We now assume that the measures F∗µ and µ are equivalent, and let B = B(H,E0)
be an infinite determinantal measure. We introduce the subspace

F ∗H =
{
ϕ(F (x))

√
dF∗µ

dµ
, ϕ ∈ H

}
.

The following proposition is easily obtained from the definitions.

Proposition 2.12. The push-forward of the infinite determinantal measure

B = B(H,E0)

is given by
F∗B = B(F ∗H,F (E0)).

2.6. Example: infinite orthogonal polynomial ensembles. Let ρ be a non-
negative function on R, not identically equal to zero. Take N ∈ N and endow the
set RN with the measure

∏
16i,j6N

(xi − xj)2
N∏

i=1

ρ(xi) dxi. (24)

If for all k = 0, . . . , 2N − 2 we have∫ +∞

−∞
xkρ(x) dx < +∞,

then the measure (24) is finite and, after normalization, yields a determinantal
point process on Conf(R).
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Given a finite family of functions f1, . . . , fN on the real line, we write
span(f1, . . . , fN ) for the vector space spanned by these functions. For a general
function ρ we introduce a subspace H(ρ) ⊂ L2,loc(R; Leb) by the formula

H(ρ) = span
(√

ρ(x), x
√
ρ(x), . . . , xN−1

√
ρ(x)

)
.

The following obvious proposition shows that (24) is an infinite determinantal mea-
sure.

Proposition 2.13. Let ρ be a non-negative continuous function on R, and let
(a, b) ⊂ R be a non-empty interval such that the restriction of ρ to (a, b) is positive
and bounded. Then the measure (24) is an infinite determinantal measure of the
form B(H(ρ), (a, b)).

2.7. Infinite determinantal measures and multiplicative functionals. Our
next aim is to show that under some additional assumptions every infinite determi-
nantal measure can be represented as the product of a finite determinantal measure
and a multiplicative functional.

Proposition 2.14. Let B = B(H,E0) be the infinite determinantal measure induced
by a subspace H ⊂ L2,loc(E,µ) and a Borel set E0, let g : E → (0, 1] be a positive
Borel function such that

√
g H is a closed subspace of L2(E,µ), and let Πg be the

corresponding projection operator. Assume further that
(1)

√
1− gΠE0

√
1− g ∈ I1(E,µ);

(2) χE\E0Π
gχE\E0I1(E,µ);

(3) Πg ∈ I1,loc(E,µ).
Then the multiplicative functional Ψg is B-almost surely positive and B-integrable,
and we have

ΨgB∫
Conf(E)

Ψg dB
= PΠg .

The proof uses several auxiliary propositions.
First, we have the following simple corollary of the unique extension property.

Proposition 2.15. Suppose that H ⊂ L2,loc(E,µ) has the property of unique
extension from E0, and let ψ ∈ L2,loc(E,µ) be such that χE0∪Bψ ∈ χE0∪BH for
every bounded Borel set B ⊂ E \ E0. Then ψ ∈ H .

Proof. Indeed, for every B there is a function ψB ∈ L2,loc(E,µ) such that
χE0∪BψB =χE0∪Bψ. Take bounded Borel sets B1 and B2 and note that χE0ψB1 =
χE0ψB2 = χE0ψ, whence the unique extension property yields that ψB1 = ψB2 .
Therefore all the functions ψB are equal to each other and to ψ, which thus belongs
to H. �

Our next proposition gives a sufficient condition for a subspace of locally square-
integrable functions to be closed in L2.

Proposition 2.16. Let L ⊂ L2,loc(E,µ) be a subspace with the following proper-
ties.

(1) For every bounded Borel set B ⊂ E \ E0 the subspace χE0∪BL is closed
in L2(E,µ).
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(2) The natural restriction map χE0∪BL → χE0L is an isomorphism of Hilbert
spaces, and the norm of its inverse is bounded above by a positive constant inde-
pendent of B.

Then L is a closed subspace of L2(E,µ) and the natural restriction map L →
χE0L is an isomorphism of Hilbert spaces.

Proof. If L contains a function with non-integrable square, then the inverse of the
restriction isomorphism χE0∪BL→ χE0L will have an arbitrarily large norm for an
appropriate choice of B. Hence it follows from the unique extension property and
Proposition 2.15 that L is closed. �

We now proceed to prove Proposition 2.14.
We first check that the following inclusion holds for every bounded Borel set

B ⊂ E \ E0: √
1− gΠE0∪B

√
1− g ∈ I1(E,µ).

Indeed, by the definition of an infinite determinantal measure we have

χBΠE0∪B ∈ I2(E,µ),

whence, a fortiori, √
1− g χBΠE0∪B ∈ I2(E,µ).

We now recall that

ΠE0 = χE0Π
E0∪B(1− χBΠE0∪B)−1ΠE0∪BχE0 .

Then the relation √
1− gΠE0

√
1− g ∈ I1(E,µ)

implies that √
1− g χE0Π

E0∪BχE0

√
1− g ∈ I1(E,µ)

or, equivalently, √
1− g χE0Π

E0∪B ∈ I2(E,µ).

We conclude that √
1− gΠE0∪B ∈ I2(E,µ)

or, in other words, √
1− gΠE0∪B

√
1− g ∈ I1(E,µ),

as required.
We now check that the subspace

√
g HχE0∪B is closed in L2(E,µ). This follows

directly from the closure of
√
g H, the property of unique extension from E0 (the

subspace
√
g H possesses it since H does) and the assumption χE\E0Π

gχE\E0 ∈
I1(E,µ).

Let ΠgχE0∪B be the operator of orthogonal projection onto
√
g HχE0∪B .

It follows from the above that for every bounded Borel set B ⊂ E \ E0, the
multiplicative functional Ψg is PΠE0∪B -almost surely positive and, furthermore,

ΨgPΠE0∪B∫
Ψg dPΠE0∪B

= PΠ
gχE0∪B .
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Therefore for every bounded Borel set B ⊂ E \ E0 we have

ΨgχE0∪B
B∫

ΨgχE0∪B
dB

= PΠ
gχE0∪B . (25)

It remains to note that the assertion of Proposition 2.14 follows immediately
from (25). �

2.8. Infinite determinantal measures obtained as finite-rank perturba-
tions of probability determinantal measures.

2.8.1. Construction of finite-rank perturbations. We now consider infinite determi-
nantal measures induced by those subspaces H that are obtained by adding a finite-
dimensional subspace V to a closed subspace L ⊂ L2(E,µ).

Let Q ∈ I1,loc(E,µ) be the operator of orthogonal projection onto the closed
subspace L ⊂ L2(E,µ), and let V a finite-dimensional subspace of L2,loc(E,µ) with
V ∩ L2(E,µ) = 0. We put H = L+ V . Let E0 ⊂ E be a Borel subset. We impose
the following restrictions on L, V and E0.

Assumption 3. (1) χE\E0QχE\E0 ∈ I1(E,µ);
(2) χE0V ⊂ L2(E,µ);
(3) if ϕ ∈ V satisfies χE0ϕ ∈ χE0L, then ϕ = 0;
(4) if ϕ ∈ L satisfies χE0ϕ = 0, then ϕ = 0.

Proposition 2.17. If L, V and E0 satisfy Assumption 3, then the subspace H =
L+ V and the set E0 satisfy Assumption 2.

In particular, for every bounded Borel set B the subspace χE0∪BL is closed.
This can be seen by taking E′ = E0 ∪B in the following obvious proposition.

Proposition 2.18. Let Q ∈ I1,loc(E,µ) be the operator of orthogonal projection
onto a closed subspace L ⊂ L2(E,µ). Let E′ ⊂ E be a Borel subset such that
χE′QχE′ ∈ I1(E,µ) and, for every function ϕ ∈ L, the equality χE′ϕ = 0 implies
that ϕ = 0. Then the subspace χE′L is closed in L2(E,µ).

Thus the subspaceH and the Borel subset E0 determine an infinite determinantal
measure B = B(H,E0). The measure B(H,E0) is infinite by Proposition 2.10.

2.8.2. Multiplicative functionals of finite-rank perturbations. Proposition 2.14 has
the following immediate corollary.

Corollary 2.19. Suppose that L, V and E0 induce an infinite determinantal mea-
sure B. Let g : E → (0, 1] be a positive measurable function with the following
properties :

(1)
√
g V ⊂ L2(E,µ);

(2)
√

1− gΠ
√

1− g ∈ I1(E,µ).
Then the multiplicative functional Ψg is B-almost surely positive and B-integrable
and we have

ΨgB∫
Ψg dB

= PΠg ,

where Πg is the operator of orthogonal projection onto the closed subspace
√
g L+√

g V .



Ergodic decomposition of infinite Pickrell measures. I 1141

2.9. Example: the infinite Bessel point process. We are now ready to prove
Proposition 1.1 on the existence of the infinite Bessel point process B̃(s), s 6 −1.
To do this, we need the following property of the ordinary Bessel point process J̃s,
s > −1. As above, we denote the range of the projection operator J̃s by L̃s.

Lemma 2.20. Take an arbitrary s > −1. Then the following assertions hold.
(1) For every R > 0 the subspace χ(R,+∞)L̃s is closed in L2((0,+∞); Leb) and

the corresponding projection operator J̃s,R is locally of trace class.
(2) For every R > 0 we have

PJ̃s

(
Conf((0,+∞); (R,+∞))

)
> 0,

PJ̃s
|Conf((0,+∞);(R,+∞))

PJ̃s

(
Conf((0,+∞); (R,+∞))

) = PJ̃s,R
.

Proof. Clearly, for every R > 0 we have∫ R

0

J̃s(x, x) dx < +∞

or, equivalently,
χ(0,R)J̃sχ(0,R) ∈ I1((0,+∞); Leb).

The lemma now follows from the unique extension property of the Bessel point
process. �

We now take s 6 −1 and recall that the number ns ∈ N is defined by the relation

s

2
+ ns ∈

(
−1

2
,
1
2

]
.

Put

V̌ (s) = span
(
ys/2, ys/2+1, . . . ,

Js+2ns−1

(√
y
)

√
y

)
.

Proposition 2.21. We have dim V̌ (s) = ns and, for every R > 0,

χ(0,R)Ṽ
(s) ∩ L2((0,+∞); Leb) = 0.

Proof. The following argument was suggested by Yanqi Qiu. By definition of the
Bessel kernel, every function in Ls+2ns is the restriction to R+ of a harmonic func-
tion defined on the half-plane {z : Re(z) > 0}. The desired claim now follows from
the uniqueness theorem for harmonic functions. �

Proposition 2.21 immediately yields the existence of the infinite Bessel point
process B̃(s), which completes the proof of Proposition 1.1.

By making the change of variable y = 4/x, we establish the existence of the
modified infinite Bessel point process B(s). Moreover, using the characterization
(described in Proposition 2.14 and Corollary 2.19) of multiplicative functionals
of infinite determinantal measures, we arrive at the proof of Propositions 1.5–1.7.
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Appendix A. The Jacobi orthogonal polynomial ensemble

A.1. Jacobi polynomials. For α, β > −1 let P (α,β)
n be the standard Jacobi

polynomials, namely, polynomials on the closed interval [−1, 1] that are orthogonal
with the weight

(1− u)α(1 + u)β

and normalized by the condition

P (α,β)
n (1) =

Γ(n+ α+ 1)
Γ(n+ 1)Γ(α+ 1)

.

We recall that the leading coefficient k(α,β)
n of the polynomial P (α,β)

n is given by the
following formula (see, for example, [32], formula (4.21.6)):

k(α,β)
n =

Γ(2n+ α+ β + 1)
2nΓ(n+ 1)Γ(n+ α+ β + 1)

,

and for the squared norm we have

h(α,β)
n =

∫ 1

−1

(P (α,β)
n (u))2(1− u)α(1 + u)β du

=
2α+β+1

2n+ α+ β + 1
Γ(n+ α+ 1)Γ(n+ β + 1)
Γ(n+ 1)Γ(n+ α+ β + 1)

.

Let K̃(α,β)
n (u1, u2) be the nth Christoffel–Darboux kernel of the Jacobi orthogonal

polynomial ensemble:

K̃(α,β)
n (u1, u2) =

n−1∑
l=0

P
(α,β)
l (u1)P

(α,β)
l (u2)

h
(α,β)
l

(1−u1)α/2(1+u1)β/2(1−u2)α/2(1+u2)β/2.

The Christoffel—Darboux formula gives an equivalent representation for the ker-
nel K̃(α,β)

n :

K̃(α,β)
n (u1, u2) =

2−α−β

2n+ α+ β

Γ(n+ 1)Γ(n+ α+ β + 1)
Γ(n+ α)Γ(n+ β)

(1− u1)α/2(1 + u1)β/2

× (1− u2)α/2(1 + u2)β/2P
(α,β)
n (u1)P

(α,β)
n−1 (u2)− P

(α,β)
n (u2)P

(α,β)
n−1 (u1)

u1 − u2
. (26)

A.2. The recurrence relations between Jacobi polynomials. We have
the following recurrence relation between the Christoffel–Darboux kernels K̃(α,β)

n+1

and K̃(α+2,β)
n .

Proposition A.1. For all α, β > −1,

K̃
(α,β)
n+1 (u1, u2)

=
α+ 1

2α+β+1

Γ(n+ 1)Γ(n+ α+ β + 2)
Γ(n+ β + 1)Γ(n+ α+ 1)

P (α+1,β)
n (u1)(1− u1)α/2(1 + u1)β/2

× P (α+1,β)
n (u2)(1− u2)α/2(1 + u2)β/2 + K̃(α+2,β)

n (u1, u2). (27)
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Remark. Taking the scaling limit of (27), we obtain a similar recurrence relation
for Bessel kernels: the Bessel kernel with parameter s is a rank-one perturbation of
the Bessel kernel with parameter s+2. This can also be easily established directly.
Using the recurrence relation

Js+1(x) =
2s
x
Js(x)− Js−1(x)

for the Bessel functions, we immediately obtain the desired relation

J̃s(x, y) = J̃s+2(x, y) +
s+ 1
√
xy

Js+1(
√
x)Js+1(

√
y)

for the Bessel kernels.

Proof of Proposition A.1. This routine calculation is included for completeness.
We use the standard recurrence relations for Jacobi polynomials. First, we use
the relation(

n+
α+ β

2
+ 1

)
(u− 1)P (α+1,β)

n (u) = (n+ 1)P (α,β)
n+1 (u)− (n+ α+ 1)P (α,β)

n (u)

to obtain that

P
(α,β)
n+1 (u1)P

(α,β)
n (u2)− P

(α,β)
n+1 (u2)P

(α,β)
n (u1)

u1 − u2
=

2n+ α+ β + 2
2(n+ 1)

× (u1 − 1)P (α+1,β)
n (u1)P

(α,β)
n (u2)− (u2 − 1)P (α+1,β)

n (u2)P
(α,β)
n (u1)

u1 − u2
. (28)

Then we use the relation

(2n+ α+ β + 1)P (α,β)
n (u) = (n+ α+ β + 1)P (α+1,β)

n (u)− (n+ β)P (α+1,β)
n−1 (u)

to arrive at the equality

(u1 − 1)P (α+1,β)
n (u1)P

(α,β)
n (u2)− (u2 − 1)P (α+1,β)

n (u2)P
(α,β)
n (u1)

u1 − u2

=
n+ α+ β + 1
2n+ α+ β + 1

P (α+1,β)
n (u1)P (α+1,β)

n (u2) +
n+ β

2n+ α+ β + 1

×
(1− u1)P

(α+1,β)
n (u1)P

(α+1,β)
n−1 (u2)− (1− u2)P

(α+1,β)
n (u2)P

(α+1,β)
n−1 (u1)

u1 − u2
.

(29)

Next using the recurrence relation(
n+

α+ β + 1
2

)
(1− u)P (α+2,β)

n−1 (u) = (n+ α+ 1)P (α+1,β)
n−1 (u)− nP (α+1,β)

n (u),
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we arrive at the equality

(1− u1)P
(α+1,β)
n (u1)P

(α+1,β)
n−1 (u2)− (1− u2)P

(α+1,β)
n (u2)P

(α+1,β)
n−1 (u1)

u1 − u2

= − n

n+ α+ 1
P (α+1,β)

n (u1)P (α+1,β)
n (u2) +

2n+ α+ β + 1
2(n+ α+ 1)

(1− u1)(1− u2)

×
P

(α+1,β)
n (u1)P

(α+2,β)
n−1 (u2)− P

(α+1,β)
n (u2)P

(α+2,β)
n−1 (u1)

u1 − u2
. (30)

Combining (29) and (30), we obtain

(u1 − 1)P (α+1,β)
n (u1)P

(α,β)
n (u2)− (u2 − 1)P (α+1,β)

n (u2)P
(α,β)
n (u1)

u1 − u2

=
(α+ 1)(2n+ α+ β + 1)

(n+ α+ 1)(2n+ α+ β + 1)
P (α+1,β)

n (u1)P (α+1,β)
n (u2) +

n+ β

2(n+ α+ 1)

× (1− u1)(1− u2)
P

(α+1,β)
n (u1)P

(α+2,β)
n−1 (u2)− P

(α+1,β)
n (u2)P

(α+2,β)
n−1 (u1)

u1 − u2
.

(31)
Using the recurrence relation

(2n+ α+ β + 2)P (α+1,β)
n (u) = (n+ α+ β + 2)P (α+2,β)

n (u)− (n+ β)P (α+2,β)
n−1 (u),

we now arrive at the equality

P
(α+1,β)
n (u1)P

(α+2,β)
n−1 (u2)− P

(α+1,β)
n (u2)P

(α+2,β)
n−1 (u1)

u1 − u2
=

n+ α+ β + 2
2n+ α+ β + 2

×
P

(α+2,β)
n (u1)P

(α+2,β)
n−1 (u2)− P

(α+2,β)
n (u2)P

(α+2,β)
n−1 (u1)

u1 − u2
. (32)

Combining (28), (31), (32) and using the definition (26) of the Christoffel–Darboux
kernels, we conclude the proof of Proposition A.1. �

As above, given a finite family of functions f1, . . . , fN on the interval [−1, 1] or
on the real line, we write span(f1, . . . , fN ) for the vector space spanned by these
functions. For α, β ∈ R we introduce the subspaces

L
(α,β,n)
Jac = span

(
(1− u)α/2(1 + u)β/2, (1− u)α/2(1 + u)β/2u,

. . . , (1− u)α/2(1 + u)β/2un−1
)
.

Proposition A.1 yields the following orthogonal direct sum decomposition for
α, β > −1:

L
(α,β,n)
Jac = CP (α+1,β)

n ⊕ L
(α+2,β,n−1)
Jac . (33)

The relation (33) remains valid for α ∈ (−2,−1] although the corresponding spaces
are no longer subspaces of L2. It is convenient to restate (33) shifting α by 2.
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Proposition A.2. For all α > 0, β > −1, n ∈ N we have

L
(α−2,β,n)
Jac = CP (α−1,β)

n ⊕ L
(α,β,n−1)
Jac .

Proof. Let Q(α,β)
n be functions of the second kind corresponding to the Jacobi poly-

nomials P (α,β)
n . By formula (4.62.19) in [32], for all u ∈ (−1, 1) and ν > 1 we have

n∑
l=0

(2l + α+ β + 1)
2α+β+1

Γ(l + 1)Γ(l + α+ β + 1)
Γ(l + α+ 1)Γ(l + β + 1)

P
(α)
l (u)Q(α)

l (ν)

=
1
2

(ν − 1)−α(ν + 1)−β

(ν − u)
+

2−α−β

2n+ α+ β + 2

× Γ(n+ 2)Γ(n+ α+ β + 2)
Γ(n+ α+ 1)Γ(n+ β + 1)

P
(α,β)
n+1 (u)Q(α,β)

n (ν)−Q
(α,β)
n+1 (ν)P (α,β)

n (u)
ν − u

.

We pass to the limit as ν → 1, using the following asymptotic expansion as ν → 1
for Jacobi functions of the second kind (see [32], formula (4.62.5)):

Q(α)
n (v) ∼ 2α−1Γ(α)Γ(n+ β + 1)

Γ(n+ α+ β + 1)
(ν − 1)−α.

Recalling the recurrence formula (22.7.19) in [33]:

P
(α−1,β)
n+1 (u) = (n+ α+ β + 1)P (α,β)

n+1 − (n+ β + 1)P (α,β)
n (u),

we arrive at the relation

1
1− u

+
Γ(α)Γ(n+ 2)
Γ(n+ α+ 1)

P
(α−1,β)
n+1 ∈ L(α,β,n)

Jac ,

which immediately yields Proposition A.2. �

We now take s > −1 and, for brevity, write P (s)
n = P

(s,0)
n .

The leading coefficient k(s)
n and the squared norm h

(s)
n of the polynomial P (s)

n

are given by the formulae

k(s)
n =

Γ(2n+ s+ 1)
2nn! Γ(n+ s+ 1)

,

h(s)
n =

∫ 1

−1

(P (s)
n (u))2(1− u)s du =

2s+1

2n+ s+ 1
.

We denote the corresponding nth Christoffel–Darboux kernel by K̃
(s)
n (u1, u2):

K̃(s)
n (u1, u2) =

n−1∑
l=1

P
(s)
l (u1)P

(s)
l (u2)

h
(s)
l

(1− u1)s/2(1− u2)s/2. (34)
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The Christoffel–Darboux formula gives an equivalent representation of the ker-
nel K̃(s)

n :

K̃(s)
n (u1, u2)

=
n(n+ s)

2s(2n+ s)
(1− u1)s/2(1− u2)s/2P

(s)
n (u1)P

(s)
n−1(u2)− P

(s)
n (u2)P

(s)
n−1(u1)

u1 − u2
.

(35)

A.3. The Bessel kernel. Consider the half-line (0,+∞) with the standard
Lebesgue measure Leb. Take s > −1 and consider the standard Bessel kernel

J̃s(y1, y2) =
√
y1Js+1(

√
y1)Js(

√
y2)−

√
y2Js+1(

√
y2)Js(

√
y1)

2(y1 − y2)

(see, for example, [5], p. 295).
An alternative integral representation for the kernel J̃s is given by

J̃s(y1, y2) =
1
4

∫ 1

0

Js

(√
ty1

)
Js

(√
ty2

)
dt (36)

(see, for example, formula (2.2) on p. 295 in [5]).
It follows from (36) that the kernel J̃s induces on L2((0,+∞); Leb) an operator

of orthogonal projection onto the subspace of functions whose Hankel transform
vanishes everywhere outside [0, 1] (see [5]).

Proposition A.3. For every s > −1, as n→∞, the kernel K̃(s)
n converges to J̃s

uniformly in all variables on compact subsets of (0,+∞)× (0,+∞).

Proof. This follows immediately from the classical Heine–Mehler asymptotics for
Jacobi orthogonal polynomials (see, for example, [32], Ch. VIII). Note that the
uniform convergence actually holds on arbitrary simply connected compact subsets
of (C \ {0})× (C \ {0}). �

Appendix B. Spaces of configurations
and determinantal point processes

B.1. Spaces of configurations. Let E be a locally compact complete metric
space.

A configuration X on E is an unordered family of points called particles. The
main assumption is that the particles do not accumulate anywhere in E or, equiva-
lently, that every bounded subset of E contains only finitely many particles of the
configuration.

With each configuration X we associate a Radon measure∑
x∈X

δx,

where the sum is taken over all particles in X. Conversely, every purely atomic
Radon measure on E is given by a configuration. Thus the space Conf(E) of all
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configurations on E can be identified with a closed subset in the set of all integer-
valued Radon measures on E. This enables us to endow Conf(E) with the structure
of a complete metric space, which is, however, not locally compact.

The Borel structure on Conf(E) can be defined equivalently as follows. For every
bounded Borel subset B ⊂ E we introduce the function

#B : Conf(E) → R

sending every configuration X to the number of its particles lying in B. The family
of functions #B over all bounded Borel subsets B of E determines a Borel struc-
ture on Conf(E). In particular, to define a probability measure on Conf(E), it is
necessary and sufficient to determine the joint distributions of the random variables
#B1 , . . . ,#Bk

for all finite tuples of disjoint bounded Borel subsets B1, . . . , Bk ⊂ E.

B.2. The weak topology on the space of probability measures on the
space of configurations. The space Conf(E) is endowed with the natural struc-
ture of a complete metric space and, therefore, the space Mfin(Conf(E)) of finite
Borel measures on the space of configurations is also a complete metric space with
respect to the weak topology.

Let ϕ : E → R be a compactly supported continuous function. We define a mea-
surable function #ϕ : Conf(E) → R by the formula

#ϕ(X) =
∑
x∈X

ϕ(x).

For a bounded Borel set B ⊂ E we have #B = #χB
.

The Borel σ-algebra on Conf(E) coincides with the σ-algebra generated by the
integer-valued random variables #B over all bounded Borel subsets B ⊂ E. There-
fore it also coincides with the σ-algebra generated by the random variables #ϕ

over all compactly supported continuous functions ϕ : E → R. Thus the following
proposition holds.

Proposition B.1. Every Borel probability measure P ∈ Mfin(Conf(E)) is uniquely
determined by the joint distributions of the random variables

#ϕ1 ,#ϕ2 , . . . ,#ϕl

over all possible finite tuples of continuous functions ϕ1, . . . , ϕl : E → R with dis-
joint compact supports.

The weak topology on Mfin(Conf(E)) admits the following characterization in
terms of these finite-dimensional distributions (see [34], vol. 2, Theorem 11.1.VII).
Let Pn, n ∈ N, and P be Borel probability measures on Conf(E). Then the mea-
sures Pn converge weakly to P as n → ∞ if and only if for every finite tuple
ϕ1, . . . , ϕl of continuous functions with disjoint compact supports, the joint distri-
butions of the random variables #ϕ1 , . . . ,#ϕl

with respect to Pn converge as n→∞
to the joint distribution of #ϕ1 , . . . ,#ϕl

with respect to P (the convergence of joint
distributions is understood in the sense of the weak topology on the space of Borel
probability measures on Rl).
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B.3. Spaces of locally trace-class operators. Let µ be a σ-finite Borel
measure on E. We write I1(E,µ) for the ideal of all trace-class operators K̃ :
L2(E,µ) → L2(E,µ) (a precise definition is given, for example, in vol. 1 of [35]
and in [36]) and denote the I1-norm of an operator K̃ by ‖K̃‖I1 . We also write
I2(E,µ) for the ideal of Hilbert–Schmidt operators K̃ : L2(E,µ) → L2(E,µ) and
denote the I2-norm of K̃ by ‖K̃‖I2 .

Let I1,loc(E,µ) be the space of operators K: L2(E,µ) → L2(E,µ) such that for
every bounded Borel set B ⊂ E we have

χBKχB ∈ I1(E,µ).

We endow the space I1,loc(E,µ) with a countable family of seminorms

‖χBKχB‖I1 ,

where, as above, B ranges over an exhausting family {Bn} of bounded sets.

B.4. Determinantal point processes. A Borel probability measure P on
Conf(E) is said to be determinantal if there is an operator K ∈ I1,loc(E,µ) such
that the following equality holds for every bounded measurable function g with
g − 1 supported on a bounded set B:

EPΨg = det(1 + (g − 1)KχB). (37)

The Fredholm determinant in (37) is well defined since K ∈ I1,loc(E,µ). The equa-
tion (37) determines the measure P uniquely. For every tuple of disjoint bounded
Borel sets B1, . . . , Bl ⊂ E and all z1, . . . , zl ∈ C it follows from (37) that

EPz
#B1
1 · · · z#Bl

l = det
(

1 +
l∑

j=1

(zj − 1)χBj
KχF

i Bi

)
.

For further results and background on determinantal point processes see, for
example, [7], [24], [31], [37]–[43].

For every operator K in I1,loc(E,µ) we denote the corresponding determinan-
tal measure throughout by PK . Note that PK is uniquely determined by K, but
different operators may yield the same measure. By the Macchi–Soshnikov theo-
rem (see [44], [31]) every Hermitian positive contraction belonging to I1,loc(E,µ)
induces a determinantal point process.

B.5. Change of variables. Every homeomorphism F : E → E induces a homeo-
morphism of the space Conf(E), which by a slight abuse of notation will again be
denoted by F . For every X ∈ Conf(E) the particles of the configuration F (X)
are of the form F (x), x ∈ X. Let µ be a σ-finite measure on E, and let PK be
the determinantal measure induced by an operator K ∈ I1,loc(E,µ). We define an
operator F∗K by the formula F∗K(f) = K(f ◦ F ).

Assume that the measures F∗µ and µ are equivalent and consider the operator

KF =

√
dF∗µ

dµ
F∗K

√
dF∗µ

dµ
.
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Note that if K is self-adjoint, then so is KF . If K is given by a kernel K(x, y), then
KF is given by the kernel

KF (x, y) =

√
dF∗µ

dµ
(x)K(F−1x, F−1y)

√
dF∗µ

dµ
(y).

The following proposition is obtained directly from the definitions.

Proposition B.2. The action of the homeomorphism F on the determinantal mea-
sure PK is given by the formula

F∗PK = PKF .

Note that if K is the operator of orthogonal projection onto a closed subspace
L ⊂ L2(E,µ), then, by definition, KF is the operator of orthogonal projection onto
the closed subspace {

ϕ ◦ F−1(x)

√
dF∗µ

dµ
(x)

}
⊂ L2(E,µ).

B.6. Multiplicative functionals on spaces of configurations. Let g be an
arbitrary non-negative measurable function on E. We introduce the multiplicative
functional Ψg : Conf(E) → R by the formula

Ψg(X) =
∏
x∈X

g(x).

If the infinite product
∏

x∈X g(x) converges absolutely to 0 or ∞, then we put
Ψg(X) = 0 or Ψg(X) = ∞ respectively. If the product on the right-hand side
does not converge absolutely, then the multiplicative functional is not defined
at the point considered.

B.7. Determinantal point processes and multiplicative functionals. The
construction of infinite determinantal measures is based on the results of [8], [9],
which may informally be stated as follows: the product of a determinantal mea-
sure and a multiplicative functional is again a determinantal measure. In other
words, if PK is the determinantal measure on Conf(E) induced by an operator K
on L2(E,µ), then it was shown under certain additional assumptions in [8], [9] that
the measure ΨgPK yields a determinantal point process after normalization.

As above, let g be a non-negative measurable function on E. If the operator
1 + (g − 1)K is invertible, then we put

B(g,K) = gK(1 + (g − 1)K)−1, B̃(g,K) =
√
g K(1 + (g − 1)K)−1√g.

By definition, B(g,K), B̃(g,K) ∈ I1,loc(E,µ) since K ∈ I1,loc(E,µ). If K is self-
adjoint, then so is B̃(g,K).

We now recall some propositions from [9].
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Proposition B.3. Let K ∈ I1,loc(E,µ) be a positive self-adjoint contraction,
PK the corresponding determinantal measure on Conf(E), and g a non-negative
bounded measurable function on E such that√

g − 1K
√
g − 1 ∈ I1(E,µ) (38)

and the operator 1 + (g − 1)K is invertible. Then the following assertions hold.
(1) We have Ψg ∈ L1(Conf(E),PK) and∫

Ψg dPK = det
(
1 +

√
g − 1K

√
g − 1

)
> 0.

(2) The operators B(g,K), B̃(g,K) induce a determinantal measure PB(g,K) =
P eB(g,K) on Conf(E) satisfying

PB(g,K) =
ΨgPK∫

Conf(E)
Ψg dPK

.

Remark. Suppose that the condition (38) holds and K is self-adjoint. Then the
operator 1 + (g − 1)K is invertible if and only if 1 +

√
g − 1K

√
g − 1 is.

If Q is a projection operator, then the operator B̃(g,Q) admits the following
description.

Proposition B.4. Let L ⊂ L2(E,µ) be a closed subspace, Q the operator of orthog-
onal projection onto L, and g a bounded measurable non-negative function such that
the operator 1 + (g− 1)Q is invertible. Then B̃(g,Q) is the operator of orthogonal
projection onto the closure of

√
g L.

We now consider the particular case when g is the characteristic function of
a Borel subset. If E′ ⊂ E is a Borel subset such that the subspace χE′L is closed
(we recall that Proposition 2.18 gives a sufficient condition for this), then we write
QE′

for the operator of orthogonal projection onto χE′L.
We obtain the following corollary of Proposition B.3.

Corollary B.5. Let Q ∈ I1,loc(E,µ) be the operator of orthogonal projection onto
a closed subspace L ∈ L2(E,µ), and let E′ ⊂ E be a Borel subset such that
χE′QχE′ ∈ I1(E,µ). Then

PQ(Conf(E,E′)) = det(1− χE\E′QχE\E′).

Assume further that for every function ϕ ∈ L the equality χE′ϕ = 0 implies that
ϕ = 0. Then the subspace χE′L is closed and we have

PQ(Conf(E,E′)) > 0, QE′
∈ I1,loc(E,µ),

and
PQ|Conf(E,E′)

PQ(Conf(E,E′))
= PQE′ .
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Thus the measure induced from a determinantal measure on the set of config-
urations all of whose particles lie in E′ is again a determinantal measure. In the
case of a discrete phase space, the related induced processes were considered by
Lyons [39] and Borodin and Rains [45].

We now state a sufficient condition for a multiplicative functional to be positive
on almost all configurations.

Proposition B.6. If

µ({x ∈ E : g(x) = 0}) = 0,
√
|g − 1|K

√
|g − 1| ∈ I1(E,µ),

then
0 < Ψg(X) < +∞

for PK-almost all configurations X ∈ Conf(E).

Proof. Our assumptions imply that for PK-almost all X ∈ Conf(E) we have∑
x∈X

|g(x)− 1| < +∞,

which is in its turn sufficient for the absolute convergence of the infinite product∏
x∈X g(x) to a finite non-zero limit. �

We state a version of Proposition B.3 in the particular case when the function g
assumes no values less than 1. In this case the multiplicative functional Ψg is
automatically non-zero and we obtain the following result.

Proposition B.7. Let Π ∈ I1,loc(E,µ) be the operator of orthogonal projection
onto a closed subspace H , and let g be a bounded Borel function on E such that
g(x) > 1 for all x ∈ E. Assume that√

g − 1 Π
√
g − 1 ∈ I1(E,µ).

Then the following assertions hold.
(1) We have Ψg ∈ L1(Conf(E),PΠ) and∫

Ψg dPΠ = det
(
1 +

√
g − 1 Π

√
g − 1

)
.

(2) We have
ΨgPΠ∫
Ψg dPΠ

= PΠg ,

where Πg is the operator of orthogonal projection onto
√
g H .

Appendix C. Construction of Pickrell measures
and proof of Proposition 1.8

We recall that the Pickrell measures are naturally defined on the space of m×n
rectangular matrices.
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Let Mat(m× n,C) be the space of complex m× n matrices:

Mat(m× n,C) =
{
z = (zij), i = 1, . . . , m, j = 1, . . . , n

}
.

We write dz for the Lebesgue measure on Mat(m× n,C).
Take s ∈ R and m0, n0 ∈ N such that m0 +s > 0, n0 +s > 0. Following Pickrell,

we take m > m0, n > n0 and introduce a measure µ(s)
m,n on Mat(m× n,C) by the

formula
µ(s)

m,n = const(s)m,n det(1 + z∗z)−m−n−s dz,

where

const(s)m,n = π−mn
m∏

l=m0

Γ(l + s)
Γ(n+ l + s)

.

For m1 6 m and n1 6 n we consider the natural projections

πm,n
m1,n1

: Mat(m× n,C) → Mat(m1 × n1,C).

Proposition C.1. Let m,n ∈ N be such that s > −m − 1. Then for all z̃ ∈
Mat(n,C) we have∫

(πm+1,n
m,n )−1(z̃)

det(1+z∗z)−m−n−1−s dz = πn Γ(m+ 1 + s)
Γ(n+m+ 1 + s)

det(1+z̃∗z̃)−m−n−s.

Proposition 1.8 is an immediate corollary of Proposition C.1.

Proof of Proposition C.1. As already mentioned in the introduction, the following
computation goes back to the classical work of Hua Loo-Keng [10]. Take z ∈
Mat((m+ 1)×n,C). Multiplying, if necessary, by a unitary matrix on the left and
on the right, we represent the matrix πm+1,n

m,n z = z̃ in diagonal form with positive
real diagonal entries: z̃ii = ui > 0, i = 1, . . . , n, z̃ij = 0 for i 6= j.

Here we put ui = 0 when i > min(n,m). Writing ξi = zm+1,i for i = 1, . . . , n,
we transform the determinant as follows:

det(1 + z∗z)−m−1−n−s =
m∏

i=1

(1 + u2
i )
−m−1−n−s

(
1 + ξ∗ξ −

n∑
i=1

|ξi|2 u2
i

1 + u2
i

)−m−1−n−s

.

Simplify the expression in parentheses:

1 + ξ∗ξ −
n∑

i=1

|ξi|2 u2
i

1 + u2
i

= 1 +
n∑

i=1

|ξi|2

1 + u2
i

.

Integrating with respect to ξ, we obtain∫ (
1+

n∑
i=1

|ξi|2

1 + u2
i

)−m−1−n−s

dξ =
m∏

i=1

(1+u2
i )

πn

Γ(n)

∫ +∞

0

rn−1(1+ r)−m−1−n−s dr,

where

r = r(m+1,n)(z) =
n∑

i=1

|ξi|2

1 + u2
i

. (39)
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Using the Euler integral∫ +∞

0

rn−1(1 + r)−m−1−n−s dr =
Γ(n)Γ(m+ 1 + s)
Γ(n+ 1 +m+ s)

,

we arrive at the desired equality. �

We introduce a map

π̃m+1,n
m,n : Mat((m+ 1)× n,C) → Mat(m× n,C)× R+

by the formula
π̃m+1,n

m,n (z) = (πm+1,n
m,n (z), r(m+1,n)(z)),

where r(m+1,n)(z) is given by the formula (39). Let P (m,n,s) be a probability mea-
sure on R+ such that

dP (m,n,s)(r) =
Γ(n+m+ s)
Γ(n)Γ(m+ s)

rn−1(1− r)−m−n−s dr.

The measure P (m,n,s) is well defined for m+ s > 0.

Corollary C.2. For all m,n ∈ N and s > −m− 1 we have(
π̃m+1,n

m,n

)
∗µ

(s)
m+1,n = µ(s)

m,n × P (m+1,n,s).

Indeed, this is precisely what was shown by our computations.
Removing a column is similar to removing a row:(

πm,n+1
m,n (z)

)t = πm+1,n
m,n (zt).

We introduce the notation r̃(m,n+1)(z) = r(n+1,m)(zt) and define a map

π̃m,n+1
m,n : Mat(m× (n+ 1),C) → Mat(m× n,C)× R+

by the formula
π̃m,n+1

m,n (z) =
(
πm,n+1

m,n (z), r̃(m,n+1)(z)
)
.

Corollary C.3. For all m,n ∈ N and s > −m− 1 we have(
π̃m,n+1

m,n

)
∗µ

(s)
m,n+1 = µ(s)

m,n × P (n+1,m,s).

We now take an n such that n+ s > 0, and define the map

π̃n : Mat(N× N,C) → Mat(n× n,C)

by the formula

π̃n(z) =
(
π∞,∞

n,n (z), r(n+1,n), r̃ (n+1,n+1), r(n+2,n+1), r̃ (n+2,n+2), . . .
)
.
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Recalling the definition of the Pickrell measure µ(s) on Mat(N×N,C) (see § 1.7.1),
we can now restate the result of our computations as follows.

Proposition C.4. If n+ s > 0, then

(π̃n)∗µ(s) = µ(s)
n,n ×

∞∏
l=0

(
P (n+l+1,n+l,s) × P (n+l+1,n+l+1,s)

)
. (40)
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