
Higher Structures in Homotopy Type Theory

Antoine Allioux
Université Paris Cité

Institut de Recherche en Informatique Fondamentale (IRIF)

Séminaire Logique et Interactions
Institut de Mathématiques de Marseille

9 November 2023

Joint work with Eric Finster



Plan

1. Algebra in HoTT
2. A universe of polynomial monads
3. Opetopic types and their applications



Sets

Mathematics are classically based on sets: collections of
discrete elements.

true

false

Figure: the set of booleans

0
1

2

3
4

. . .

Figure: the set of natural numbers

Two elements of a set are equal if they have the same definition.



Sets

Mathematics are classically based on sets: collections of
discrete elements.

true

false

Figure: the set of booleans

0
1

2

3
4

. . .

Figure: the set of natural numbers

Two elements of a set are equal if they have the same definition.



Sets

Mathematics are classically based on sets: collections of
discrete elements.

true

false

Figure: the set of booleans

0
1

2

3
4

. . .

Figure: the set of natural numbers

Two elements of a set are equal if they have the same definition.



Principle of equivalence

The principle of equivalence states that mathematical reasoning
should be invariant under the proper notion of equivalence.

In a foundation respecting this principle, two mathematical
objects should be equal if they have the same properties.

Set theory does not respect this principle (e.g., two bijective sets
are not necessarily equal).



Principle of equivalence

The principle of equivalence states that mathematical reasoning
should be invariant under the proper notion of equivalence.

In a foundation respecting this principle, two mathematical
objects should be equal if they have the same properties.

Set theory does not respect this principle (e.g., two bijective sets
are not necessarily equal).



Principle of equivalence

The principle of equivalence states that mathematical reasoning
should be invariant under the proper notion of equivalence.

In a foundation respecting this principle, two mathematical
objects should be equal if they have the same properties.

Set theory does not respect this principle (e.g., two bijective sets
are not necessarily equal).



Principle of equivalence
Equality in sets does not account for all equivalences.

true

false

0

1

idB idZ2

swapB
swapZ2



Principle of equivalence
Equality in sets does not account for all equivalences.

true

false

0

1

idB idZ2

swapB
swapZ2



Homotopy type theory

Homotopy type theory is a foundation for constructive
mathematics in which this principle holds.

In type theory, logical propositions are defined as the types of
their proofs (BHK interpretation of intuitionistic logic).

Type theory is a language rich enough to unify mathematical
constructions and logical propositions.



Homotopy type theory

Homotopy type theory is a foundation for constructive
mathematics in which this principle holds.

In type theory, logical propositions are defined as the types of
their proofs (BHK interpretation of intuitionistic logic).

Type theory is a language rich enough to unify mathematical
constructions and logical propositions.



Homotopy type theory

Homotopy type theory is a foundation for constructive
mathematics in which this principle holds.

In type theory, logical propositions are defined as the types of
their proofs (BHK interpretation of intuitionistic logic).

Type theory is a language rich enough to unify mathematical
constructions and logical propositions.



Proposition-as-types paradigm

The correspondence goes as follows.

Logic Type theory
⊥ 0
A ∧ B A × B
A ∨ B A + B
A =⇒ B A → B
∃(x ∈ A).B(x) (x : A) × B(x)
∀(x ∈ A).B(x) (x : A) → B(x)



Identity types

Given two elements x, y : A, their identity type is x =A y.

For any identity p : x =A y and any type family B : A → U , there
is a transport function between fibres

p∗ : B(x) → B(y)

Formal version of Leibniz’s identity of indiscernibles.



Identity types

Given two elements x, y : A, their identity type is x =A y.

For any identity p : x =A y and any type family B : A → U , there
is a transport function between fibres

p∗ : B(x) → B(y)

Formal version of Leibniz’s identity of indiscernibles.



Identity types

Given two elements x, y : A, their identity type is x =A y.

For any identity p : x =A y and any type family B : A → U , there
is a transport function between fibres

p∗ : B(x) → B(y)

Formal version of Leibniz’s identity of indiscernibles.



Univalence

In HoTT, the equality between two types X and Y is equivalent
to the type of equivalences between these two types:

(X =U Y) ' (X ' Y)

Not only are equivalent types identified, but the different ways
they are identified are recorded.

In general, no uniqueness of identity proofs (UIP).



Univalence

In HoTT, the equality between two types X and Y is equivalent
to the type of equivalences between these two types:

(X =U Y) ' (X ' Y)

Not only are equivalent types identified, but the different ways
they are identified are recorded.

In general, no uniqueness of identity proofs (UIP).



Univalence

In HoTT, the equality between two types X and Y is equivalent
to the type of equivalences between these two types:

(X =U Y) ' (X ' Y)

Not only are equivalent types identified, but the different ways
they are identified are recorded.

In general, no uniqueness of identity proofs (UIP).



Types

Types contain
elements—like sets.

x y

z

p

q

r
s

The proposition x = y is a
type.

p
q

r

s



Types

Types contain
elements—like sets.

x y

z

p

q

r
s

The proposition x = y is a
type.

p
q

r

s



Types

Types contain
elements—like sets.

x y

z

p

q

r

s

The proposition x = y is a
type.

p
q

r

s



Types

Types contain
elements—like sets.

x y

z

p

q

r

s

The proposition x = y is a
type.

p
q

r

s



Types

Types contain
elements—like sets.

x y

z

p

q

r
s

The proposition x = y is a
type.

p
q

r

s



Algebra of paths

Any element comes with a distinguished loop called reflexivity.

x

y

z

reflx

refly

reflz



Algebra of paths

Any element comes with a distinguished loop called reflexivity.

x

y

zreflx

refly

reflz



Algebra of paths

Identities can be composed (transitivity of equality).

x y z
p q

p � q



Algebra of paths

Identities can be composed (transitivity of equality).

x y z
p q

p � q



Algebra of paths

Composition of identities is associative up to a higher identity.

a db c
p q r

p � q

(p � q) � r

q � r

p � (q � r)

assoc�p,q,r



Algebra of paths

Composition of identities is associative up to a higher identity.

a db c
p q r

p � q

(p � q) � r

q � r

p � (q � r)

assoc�p,q,r



Algebra of paths

Composition of identities is associative up to a higher identity.

a db c
p q r

p � q

(p � q) � r

q � r

p � (q � r)

assoc�p,q,r



Algebra of paths

Composition of identities is associative up to a higher identity.

a db c
p q r

p � q

(p � q) � r

q � r

p � (q � r)

assoc�p,q,r



Algebra of paths

Composition of identities is associative up to a higher identity.

a db c
p q r

p � q

(p � q) � r

q � r

p � (q � r)

assoc�p,q,r



Algebra of paths

Composition of identities is associative up to a higher identity.

a d

b c
p q r

p � q

(p � q) � r

q � r

p � (q � r)

assoc�p,q,r



Algebra of paths

Composition of identities is associative up to a higher identity.

a d

b c
p q r

p � q

(p � q) � r

q � r

p � (q � r)

assoc�p,q,r



Algebra of paths
Composition of identities is left and right unital up to a higher
identity.

x y
p

reflx refly

reflx � p

p � refly

unit-l�p

unit-r�p



Algebra of paths
Composition of identities is left and right unital up to a higher
identity.

x y
p

reflx refly

reflx � p

p � refly

unit-l�p

unit-r�p



Algebra of paths
Composition of identities is left and right unital up to a higher
identity.

x y
p

reflx refly

reflx � p

p � refly

unit-l�p

unit-r�p



Algebra of paths
Composition of identities is left and right unital up to a higher
identity.

x y
p

reflx refly

reflx � p

p � refly

unit-l�p

unit-r�p



Algebra of paths
Composition of identities is left and right unital up to a higher
identity.

x y
p

reflx refly

reflx � p

p � refly

unit-l�p

unit-r�p



Algebra of paths

Identities can be inverted.

x y

p

p−1



Algebra of paths

Identities can be inverted.

x y

p

p−1



Algebra of paths

Identities can be inverted.

x x

p � p−1

reflx

inv-r�p



Algebra of paths

Identities can be inverted.

x x

p � p−1

reflx

inv-r�p



Algebra of paths

Similarly, there is an identity

y y

p−1 � p

refly

inv-l�p



Algebra of paths

In addition, the identities witnessing the laws satisfy coherence
conditions. More on that later.

This structure we just described is the one of ∞-groupoid.



Algebra of paths

In addition, the identities witnessing the laws satisfy coherence
conditions. More on that later.

This structure we just described is the one of ∞-groupoid.



Algebra on types

We want to generalise usual algebraic structures (groups,
monoids, rings, …) to types.

An algebraic structure on a type is an operation acting on the
elements of this type satisfying coherent laws expressed in terms
of identities.



Algebra on types

We want to generalise usual algebraic structures (groups,
monoids, rings, …) to types.

An algebraic structure on a type is an operation acting on the
elements of this type satisfying coherent laws expressed in terms
of identities.



Algebra on a type
Example

An associative magma on a type X is the data of a binary
operation

_ ⊗ _ : X × X → X

along with an identity

(a ⊗ b) ⊗ c a ⊗ (b ⊗ c)
assoc⊗a,b,c

for any a, b, c : X witnessing that the multiplication is
associative.



Coherence

In addition, we require this identity to be such that the
following diagram commutes up to a higher identity:

(a ⊗ (b ⊗ c)) ⊗ d a ⊗ ((b ⊗ c) ⊗ d)

(a ⊗ b) ⊗ (c ⊗ d)

((a ⊗ b) ⊗ c) ⊗ d a ⊗ (b ⊗ (c ⊗ d))

assoc⊗a,b⊗c,d

refla ⊗ assoc⊗b,c,dassoc⊗a,b,c ⊗ refld

assoc⊗a⊗b,c,d assoc⊗a,b,c⊗d



Coherence

In turn, this new data has to satisfy its own coherence
conditions leading to an infinite tower of data described by
Stasheff’s associahedra Kn.

((a(bc))d)e (a((bc)d))e

a((bc)(de))

((ab)(cd))e

((ab)c)(de) a((b(cd))e)

(a(bc))(de) a(((bc)d)e)

(((ab)c)d)e (a(b(cd)))e

·

·

· ·



Coherence

Without these coherence laws, some expected mathematical
results do not hold.

For instance, we cannot define the slice category of a category if
its laws are not coherent.

Sets are degenerate types whose only identities are reflexivities.
Laws of algebraic structures on sets are therefore trivially
coherent.



Coherence

Without these coherence laws, some expected mathematical
results do not hold.

For instance, we cannot define the slice category of a category if
its laws are not coherent.

Sets are degenerate types whose only identities are reflexivities.
Laws of algebraic structures on sets are therefore trivially
coherent.



Coherence

Without these coherence laws, some expected mathematical
results do not hold.

For instance, we cannot define the slice category of a category if
its laws are not coherent.

Sets are degenerate types whose only identities are reflexivities.
Laws of algebraic structures on sets are therefore trivially
coherent.



Algebra in type theory

In classical mathematics, spaces are encoded in terms of sets.

Algebras on spaces are then presented using algebraic
structures on sets (operads, presheaves, …).

Spaces are primitive in type theory, any algebraic structure
must be stated coherently in the first place.



Algebra in type theory

In classical mathematics, spaces are encoded in terms of sets.

Algebras on spaces are then presented using algebraic
structures on sets (operads, presheaves, …).

Spaces are primitive in type theory, any algebraic structure
must be stated coherently in the first place.



Algebra in type theory

In classical mathematics, spaces are encoded in terms of sets.

Algebras on spaces are then presented using algebraic
structures on sets (operads, presheaves, …).

Spaces are primitive in type theory, any algebraic structure
must be stated coherently in the first place.



A theory of structures

By embracing the principle of equivalence in type theory, we
lost the ability to do algebra on types.

Type theory seems to be missing a theory of structures.



A theory of structures

By embracing the principle of equivalence in type theory, we
lost the ability to do algebra on types.

Type theory seems to be missing a theory of structures.



Proposal

Extension of type theory with a universe of cartesian
polynomial monads.

Presentation of types and their higher structures as opetopic
types.

Allows the definition of higher algebraic structures on arbitrary
types (∞-groupoids, (∞, 1)-categories).

This approach is compatible with univalence.



Proposal

Extension of type theory with a universe of cartesian
polynomial monads.

Presentation of types and their higher structures as opetopic
types.

Allows the definition of higher algebraic structures on arbitrary
types (∞-groupoids, (∞, 1)-categories).

This approach is compatible with univalence.



Proposal

Extension of type theory with a universe of cartesian
polynomial monads.

Presentation of types and their higher structures as opetopic
types.

Allows the definition of higher algebraic structures on arbitrary
types (∞-groupoids, (∞, 1)-categories).

This approach is compatible with univalence.



Proposal

Extension of type theory with a universe of cartesian
polynomial monads.

Presentation of types and their higher structures as opetopic
types.

Allows the definition of higher algebraic structures on arbitrary
types (∞-groupoids, (∞, 1)-categories).

This approach is compatible with univalence.



Applications

In this type theory, the following results have been established:
• Fibrant opetopic types are equivalent to Baez-Dolan

coherent algebras whose morphisms are invertible.
• The internal ∞-groupoid associated to a type.
• The (∞, 1)-category of types.
• Adjunctions between (∞, 1)-categories.
• Fibrant opetopic types are closed under dependent sums.



Setting

The base type theory is book HoTT with Agda’s features
(coinductive records, inductive-recursive types, …).

Most of this work has been formalised in Agda using postulates
and rewrite rules to define the universe of polynomial monads.



Setting

The base type theory is book HoTT with Agda’s features
(coinductive records, inductive-recursive types, …).

Most of this work has been formalised in Agda using postulates
and rewrite rules to define the universe of polynomial monads.



Polynomial monads
Type theory is extended with a universe of cartesian
polynomial monads M : U .

The base data of a monad M : M is defined by the following
data:

• Idx M : U
• Cns M : Idx M → U
• Pos M : {i : Idx M} → Cns M(i) → U
• Typ M : {i : Idx M} {c : Cns M(i)} → Pos M(c) → Idx M

Constructors depicted as corollas:

x1
…

xn

c

y



Polynomial monads
Type theory is extended with a universe of cartesian
polynomial monads M : U .

The base data of a monad M : M is defined by the following
data:

• Idx M : U
• Cns M : Idx M → U
• Pos M : {i : Idx M} → Cns M(i) → U
• Typ M : {i : Idx M} {c : Cns M(i)} → Pos M(c) → Idx M

Constructors depicted as corollas:

x1
…

xn

c

y



Polynomial monads
Type theory is extended with a universe of cartesian
polynomial monads M : U .

The base data of a monad M : M is defined by the following
data:
• Idx M : U

• Cns M : Idx M → U
• Pos M : {i : Idx M} → Cns M(i) → U
• Typ M : {i : Idx M} {c : Cns M(i)} → Pos M(c) → Idx M

Constructors depicted as corollas:

x1
…

xn

c

y



Polynomial monads
Type theory is extended with a universe of cartesian
polynomial monads M : U .

The base data of a monad M : M is defined by the following
data:
• Idx M : U
• Cns M : Idx M → U

• Pos M : {i : Idx M} → Cns M(i) → U
• Typ M : {i : Idx M} {c : Cns M(i)} → Pos M(c) → Idx M

Constructors depicted as corollas:

x1
…

xn

c

y



Polynomial monads
Type theory is extended with a universe of cartesian
polynomial monads M : U .

The base data of a monad M : M is defined by the following
data:
• Idx M : U
• Cns M : Idx M → U
• Pos M : {i : Idx M} → Cns M(i) → U

• Typ M : {i : Idx M} {c : Cns M(i)} → Pos M(c) → Idx M
Constructors depicted as corollas:

x1
…

xn

c

y



Polynomial monads
Type theory is extended with a universe of cartesian
polynomial monads M : U .

The base data of a monad M : M is defined by the following
data:
• Idx M : U
• Cns M : Idx M → U
• Pos M : {i : Idx M} → Cns M(i) → U
• Typ M : {i : Idx M} {c : Cns M(i)} → Pos M(c) → Idx M

Constructors depicted as corollas:

x1
…

xn

c

y



Polynomial monads
Type theory is extended with a universe of cartesian
polynomial monads M : U .

The base data of a monad M : M is defined by the following
data:
• Idx M : U
• Cns M : Idx M → U
• Pos M : {i : Idx M} → Cns M(i) → U
• Typ M : {i : Idx M} {c : Cns M(i)} → Pos M(c) → Idx M

Constructors depicted as corollas:

x1
…

xn

c

y



Polynomial monads

The structure of cartesian polynomial monad is defined by a
unit operation η and a multiplication operation μ:

ηM : (i : Idx M) → Cns M(i)

μM : {i : Idx M} (c : Cns M(i)) → −−−−→
Cns M(c) → Cns M(i)



Polynomial monads
The unit

ηM : (i : Idx M) → Cns M(i)
Units η(i) are unary constructors whose source and target have
the same sort:

i

η(i)

i



Polynomial monads
The multiplication

μM : {i : Idx M} (c : Cns M(i)) (d :
−−−−→
Cns M(c)) → Cns M(i)

The multiplication “contracts” a tree of constructors while
preserving the type of positions and their typing.

k1 k2 k3

d1 d2

c

i

j1 j2

k1 k2 k3

cd

i



Polynomial monads
Laws

The operation μM is associative and unital with units ηM:

μM(c,� p → ηM(Typ M(c, p))) ≡ c
μM(ηM(i), d) ≡ d(η-pos (i))
μM(μM(c, d), e) ≡ μM(c, (� p → μM(d(p), (� q → e(pairμ(p, q))))))



Identity monad

The identity monad Id : M has a single unary constructor.

Its monad structure is trivial.



Baez-Dolan slice construction

The universe M is closed under the Baez-Dolan slice
construction. For any monad M : M and family X : FamM with

FamM :≡ Idx M → U

there is a monad M/X : M .

If X is a carrier of a M-algebra, the monad M/X captures the
different ways to compose a particular configuration of sources.

Iterating this construction, we capture the combinatorics of
• the composition of X-cells
• its laws
• the coherences satisfied by the laws
• …



Baez-Dolan slice construction

The universe M is closed under the Baez-Dolan slice
construction. For any monad M : M and family X : FamM with

FamM :≡ Idx M → U

there is a monad M/X : M .

If X is a carrier of a M-algebra, the monad M/X captures the
different ways to compose a particular configuration of sources.

Iterating this construction, we capture the combinatorics of
• the composition of X-cells
• its laws
• the coherences satisfied by the laws
• …



Baez-Dolan slice construction

The universe M is closed under the Baez-Dolan slice
construction. For any monad M : M and family X : FamM with

FamM :≡ Idx M → U

there is a monad M/X : M .

If X is a carrier of a M-algebra, the monad M/X captures the
different ways to compose a particular configuration of sources.

Iterating this construction, we capture the combinatorics of
• the composition of X-cells
• its laws
• the coherences satisfied by the laws
• …



Baez-Dolan slice construction

The indices of M/X are frames: constructors of M decorated
with elements in X:

x1
…

xn

y

Defined as quadruplets (i, y) ⊳ (c, x) of type

Idx M/X :≡ (i : Idx M) × (y : X(i)) × (c : Cns M(i)) × (x :
−→
X (c))



Baez-Dolan slice construction

The indices of M/X are frames: constructors of M decorated
with elements in X:

x1
…

xn

y

Defined as quadruplets (i, y) ⊳ (c, x) of type

Idx M/X :≡ (i : Idx M) × (y : X(i)) × (c : Cns M(i)) × (x :
−→
X (c))



Baez-Dolan slice construction

Constructors of M/X are well-founded trees of frames which
multiply to their indexing frame.

x1 x2 x3

i j

k n

o

y

c d

e g

a b c d e

f



Baez-Dolan slice construction

Constructors of M/X are well-founded trees of frames which
multiply to their indexing frame.

f

x1 x2 x3

a b

c d

e

y

a b c d e

f



Baez-Dolan slice construction

Constructors of M/X are well-founded trees of frames which
multiply to their indexing frame.

f

x1 x2 x3

a b

c d

e

y

a b c d e

f



Baez-Dolan slice construction

Trees are defined as an inductive type.

Provide a notion of pasting diagram.

A lot of proofs in this framework go by induction on pasting
diagrams.

Particularly suited to type theory.



Baez-Dolan slice construction

Trees are defined as an inductive type.

Provide a notion of pasting diagram.

A lot of proofs in this framework go by induction on pasting
diagrams.

Particularly suited to type theory.



Baez-Dolan slice construction

Trees are defined as an inductive type.

Provide a notion of pasting diagram.

A lot of proofs in this framework go by induction on pasting
diagrams.

Particularly suited to type theory.



Baez-Dolan slice construction

Trees are defined as an inductive type.

Provide a notion of pasting diagram.

A lot of proofs in this framework go by induction on pasting
diagrams.

Particularly suited to type theory.



0-algebras

A 0-algebra for a monad M is
• a family X0 : FamM,
• a family X1 : FamM/X0 .

such that for any constructor c : Cns M(i) and values x :
−→
X0(c),

there exists is a unique pair composed of

• a composite X1(c, x) : X0(i),
• a filler fill

X1
(c, x) : X1((i, X1(c, x)) ⊳ (c, x)).

x1 … xn

fill
X1
(c, x)

X1(c, x)

X1 is an entire and functional relation.



0-algebras

A 0-algebra for a monad M is
• a family X0 : FamM,
• a family X1 : FamM/X0 .

such that for any constructor c : Cns M(i) and values x :
−→
X0(c),

there exists is a unique pair composed of
• a composite X1(c, x) : X0(i),

• a filler fill
X1
(c, x) : X1((i, X1(c, x)) ⊳ (c, x)).

x1 … xn

fill
X1
(c, x)

X1(c, x)

X1 is an entire and functional relation.



0-algebras

A 0-algebra for a monad M is
• a family X0 : FamM,
• a family X1 : FamM/X0 .

such that for any constructor c : Cns M(i) and values x :
−→
X0(c),

there exists is a unique pair composed of
• a composite X1(c, x) : X0(i),
• a filler fill

X1
(c, x) : X1((i, X1(c, x)) ⊳ (c, x)).

x1 … xn

fill
X1
(c, x)

X1(c, x)

X1 is an entire and functional relation.



0-algebras

A 0-algebra for a monad M is
• a family X0 : FamM,
• a family X1 : FamM/X0 .

such that for any constructor c : Cns M(i) and values x :
−→
X0(c),

there exists is a unique pair composed of
• a composite X1(c, x) : X0(i),
• a filler fill

X1
(c, x) : X1((i, X1(c, x)) ⊳ (c, x)).

x1 … xn

fill
X1
(c, x)

X1(c, x)

X1 is an entire and functional relation.



Fundamental thm. of identity types

Theorem (Fundamental thm. of identity types)
Let A : U and B : A → U such that (x : A) × B(x) is contractible with
centre of contraction (x, p), then for any y : A,

B(y) ' (x = y)

Corollary
Let (X0 ,X1) be a M-0-algebra, for any constructor c : Cns M(i), values
x :

−→
X0(c), and value y : X0(i),

X1(

x1 … xn

y

) ' (X1(c, x) = y)



Fundamental thm. of identity types

Theorem (Fundamental thm. of identity types)
Let A : U and B : A → U such that (x : A) × B(x) is contractible with
centre of contraction (x, p), then for any y : A,

B(y) ' (x = y)

Corollary
Let (X0 ,X1) be a M-0-algebra, for any constructor c : Cns M(i), values
x :

−→
X0(c), and value y : X0(i),

X1(

x1 … xn

y

) ' (X1(c, x) = y)



Opetopic types

A M-opetopic type is the data of
• a family X : FamM
• a M/X-opetopic type

A M-opetopic type X is fibrant if it satisfies the following
coinductive property:
• (X0 ,X1) is an algebra.
• X>0 is a fibrant opetopic type.

OM denotes the type of M-opetopic types.



Opetopic types

A M-opetopic type is the data of
• a family X : FamM
• a M/X-opetopic type

A M-opetopic type X is fibrant if it satisfies the following
coinductive property:
• (X0 ,X1) is an algebra.
• X>0 is a fibrant opetopic type.

OM denotes the type of M-opetopic types.



Opetopic types

A M-opetopic type is the data of
• a family X : FamM
• a M/X-opetopic type

A M-opetopic type X is fibrant if it satisfies the following
coinductive property:
• (X0 ,X1) is an algebra.
• X>0 is a fibrant opetopic type.

OM denotes the type of M-opetopic types.



Opetopic types

Some definitions of higher algebraic structures:
• ∞-Grp = (X : OId) × is-fibrant(X)
• (∞, 1)-Cat = (X : OId) × is-fibrant(X>0)



∞-groupoids
0-cells

Let X be a fibrant Id-opetopic type (i.e., an ∞-groupoid).

The family X0 : FamId is equivalent to a type.

X0 is the type of objects.



∞-groupoids
0-cells

Let X be a fibrant Id-opetopic type (i.e., an ∞-groupoid).

The family X0 : FamId is equivalent to a type.

X0 is the type of objects.



∞-groupoids
0-cells

Let X be a fibrant Id-opetopic type (i.e., an ∞-groupoid).

The family X0 : FamId is equivalent to a type.

X0 is the type of objects.



∞-groupoids
1-cells

The family of 1-cells X1 : FamId/X0 is a binary relation on X0.

b
a

a

b

a b

X being fibrant,

X1(
b

a ) ' (a = b)



∞-groupoids
1-cells

The family of 1-cells X1 : FamId/X0 is a binary relation on X0.

b
a

a

b

a b

X being fibrant,

X1(
b

a ) ' (a = b)



∞-groupoids
2-cells

The family of 2-cells X2 : FamId/X0/X1 relates a source pasting
diagram of 1-cells with a target parallel 1-cell.

c
b

a

f

d

e

b

a c

e

f

d



∞-groupoids
2-cells

X being fibrant, pasting diagrams of 1-cells can be composed.

c
b

a
d

e

b

a c

ed



∞-groupoids
2-cells

X being fibrant, pasting diagrams of 1-cells can be composed.

c
b

a

de

d

e

b

a c

e

de

d



∞-groupoids
2-cells

X being fibrant, pasting diagrams of 1-cells can be composed.

c
b

a

de

d

e defill

b

a c

e

de

d
defill



∞-groupoids
3-cells

The family of 3-cells X3 : FamId/X0/X1/X2 relates a source
pasting diagram of 2-cells to a target 2-cell.

Fibrancy makes the of composition of 1-cells associative and
unital.



∞-groupoids
3-cells

d
c

b

a

i

g

e

f

h l
k

j

Figure: A 3-dimensional frame



∞-groupoids
3-cells

d
c

b

a

(ef )g

ef

e

f

g 

(ef )gfill

ef fill



∞-groupoids
3-cells

d
c

b

a

(ef )g

e

f

g



X is fibrant therefore
(ef )g = efg



∞-groupoids
3-cells

d
c

b

a

(ef )g

e

f

g



X is fibrant therefore
(ef )g = efg



The universe
0-cells

Types and their fibrant relations assemble into the
(∞, 1)-category

U o : OId

Its family of objects U o
0 is the universe of types U :

U o
0 (∗) ≡ U



The universe
0-cells

Types and their fibrant relations assemble into the
(∞, 1)-category

U o : OId

Its family of objects U o
0 is the universe of types U :

U o
0 (∗) ≡ U



The universe
1-cells

The family of 1-cells

U o
1 : Idx Id/Uo

0
→ U

is a binary relation on U .

For example,

U o
1 (

B
A ) ' (R : (a : A) (b : B) → U) × is-fibrant(R)



The universe
1-cells

The family of 1-cells

U o
1 : Idx Id/Uo

0
→ U

is a binary relation on U .

For example,

U o
1 (

B
A ) ' (R : (a : A) (b : B) → U) × is-fibrant(R)



The universe
2-cells

The family of 2-cells

U o
2 : Idx Id/Uo

0/U
o
1
→ U

relates a source pasting diagram of 1-cells to a target 1-cell.

For example,

U o
2 (

C
B

F

A
D

E ) ' (R : (a : A) (b : B) (c : C)
→ (d : D(a, b)) (e : E(b, c)) (f : F(a, c)) → U)
× is-fibrant(R)



The universe
2-cells

The family of 2-cells

U o
2 : Idx Id/Uo

0/U
o
1
→ U

relates a source pasting diagram of 1-cells to a target 1-cell.

For example,

U o
2 (

C
B

F

A
D

E ) ' (R : (a : A) (b : B) (c : C)
→ (d : D(a, b)) (e : E(b, c)) (f : F(a, c)) → U)
× is-fibrant(R)



The universe
Fibrant relations

Formally, the domain of our relations are frames of the
universal fibration U o

• → U o.

a1 … an

c

b

A1 … An

C

B



The universe
Fibrant relations

Formally, the domain of our relations are frames of the
universal fibration U o

• → U o.

a1 … an

c

b

A1 … An

C

B



The universe
Fibrant relations

Formally, the domain of our relations are frames of the
universal fibration U o

• → U o.

a1 … an

c

b

A1 … An

C

B



The universe
Fibrant relations

Formally, the domain of our relations are frames of the
universal fibration U o

• → U o.

a1 … an

c

b

A1 … An

C

B



Conclusion

Fibrant opetopic types are internal presentations of types which
enables the definition of higher algebraic structures on
arbitrary types.

The geometry of opetopes is particularly suited to a
type-theoretical approach.

Paves the way for the development of higher category theory in
univalent opetopic foundations.



Conclusion

Fibrant opetopic types are internal presentations of types which
enables the definition of higher algebraic structures on
arbitrary types.

The geometry of opetopes is particularly suited to a
type-theoretical approach.

Paves the way for the development of higher category theory in
univalent opetopic foundations.



Conclusion

Fibrant opetopic types are internal presentations of types which
enables the definition of higher algebraic structures on
arbitrary types.

The geometry of opetopes is particularly suited to a
type-theoretical approach.

Paves the way for the development of higher category theory in
univalent opetopic foundations.



Thank you for your attention.



Slice monad constructors

The type of constructors of the slice monad is an inductive type
with two constructors:

lf : (x : Idx M) → Cns M/ (x ⊳ ηM x)

nd : (x : Idx M) (y : Cns M x) {z :
−−−−→
Cns M y}

→ (t :
−−−−−→
Cns M/ (y Ê z))

→ Cns M/ (x ⊳ μM y z)


