

Sensitivity analysis for generalized Navier-Stokes models

Seminar I2M, Marseille University

Nathalie Nouaime¹, Bruno Després², Maria Adela Puscas¹, Camilla Fiorini³

¹ Service de Thermo-hydraulique et de Mécanique des Fluides, Gif-sur-Yvette, France

² LJLL, Sorbonne Université, Paris, France

³ M2N, Conservatoire National des Arts et Métiers, Paris, France

Abstract

Sensitivity analysis plays a central role in the assessment of the impact of uncertainties on mathematical models arising in fluid mechanics. It provides quantitative information on how variations in physical or geometrical parameters affect the solution of the governing equations, and it is a key ingredient for uncertainty quantification, model validation, and robust numerical simulations.

Sensitivity analysis is performed for the incompressible Navier–Stokes equations [2, 3] and for the Navier–Stokes equations coupled with heat transfer [4, 5]. First-order sensitivities with respect to uncertain parameters are derived using intrusive methods based on Intrusive Polynomial Chaos Method (IPCM). Extensions to turbulent flow models, including Reynolds-averaged Navier–Stokes equations with $k-\varepsilon$ closure, are also considered, highlighting the difficulties introduced by nonlinear and non-quadratic terms.

In ongoing work, particular attention is devoted to fluid–structure interaction problems, which play a major role in nuclear engineering applications. In such systems, the strong coupling between fluid dynamics and structural mechanics makes sensitivity analysis especially challenging. Performing sensitivity analysis, including shape sensitivity [1], is shown to be essential for understanding the influence of physical and geometrical uncertainties on the global behavior of coupled fluid–structure systems.

References

- [1] S. ETIENNE, A. HAY, A. GARON, AND D. PELLETIER, *Shape sensitivity analysis of fluid-structure interaction problems*, in 36th AIAA Fluid Dynamics Conference and Exhibit, 2006, p. 3217.
- [2] N. NOUAIME, B. DESPRÉS, M. PUSCAS, AND C. FIORINI, *Stability of a continuous/discrete sensitivity model for the navier–stokes equations*, International Journal for Numerical Methods in Fluids, (2024).
- [3] N. NOUAIME, B. DESPRÉS, M. PUSCAS, AND C. FIORINI, *Sensitivity analysis for incompressible navier–stokes equations with uncertain viscosity using polynomial chaos method*, European Journal of Mechanics-B/Fluids, 111 (2025), pp. 308–318.
- [4] N. NOUAIME, B. DESPRÉS, M. PUSCAS, AND C. FIORINI, *Sensitivity analysis of navier–stokes equations with heat transfer using the first-order polynomial chaos method and fev discretization*, European Journal of Mechanics-B/Fluids, (2025), p. 204430.
- [5] N. NOUAIME, B. DESPRÉS, M. PUSCAS, AND C. FIORINI, *Impact of uncertain parameters on navier–stokes equations with heat transfer via polynomial chaos expansion*, International Journal for Numerical Methods in Fluids, (2026).