
Tree automata and two-way automata as functors
Minimisation and unidirectionalisation

Victor Iwaniack

I2M, Université Aix-Marseille

Séminaire LDP, January 8th, 2026

1 / 29

Deterministic automata

A word over the alphabet Σ is an element of the free monoid Σ∗.
A (one-way, complete,) deterministic automaton (Q, i ,F , δ) is
given by a set of states Q, an initial state i ∈ Q, a subset of
accepting states F ⊂ Q and a transition function Q × Σ → Q.

Example
For Σ = {a, b}

istart s t
b

a

b

a

b

a

2 / 29

Deterministic automata

A word over the alphabet Σ is an element of the free monoid Σ∗.
A (one-way, complete,) deterministic automaton (Q, i ,F , δ) is
given by a set of states Q, an initial state i ∈ Q, a subset of
accepting states F ⊂ Q and a transition function Q × Σ → Q.

Example
For Σ = {a, b}

istart s t
b

a

b

a

b

a

2 / 29

Example
The automaton

istart s t
b

a

b

a

b

a

recognises the word baba because

i
b−→ s

a−→ t
b−→ s

a−→ t

but not the word bab because

i
b−→ t

a−→ f
b−→ s

3 / 29

Example
The automaton

istart s t
b

a

b

a

b

a

recognises the word baba because

i
b−→ s

a−→ t
b−→ s

a−→ t

but not the word bab because

i
b−→ t

a−→ f
b−→ s

3 / 29

The Colcombet and Petrişan [CP20] point of view
An automaton is therefore an action of the monoid Σ∗ on Q. The
functorial point of view of Colcombet and Petrişan [CP20] extends
the monoid-action-as-a-functor to encompass i ∈ Q and F ⊂ Q:

{∗} Q {0, 1}i

δa,a∈Σ

χF

(where δa = δ(−, a)).

The data of an automaton is therefore equivalent to the data of a
bipointed functorF

 in st out▷ ◁

a∈Σ
 , in, out

 (Set,1,Ω)

Denote by IΣ∗ the (free) source category.

4 / 29

The Colcombet and Petrişan [CP20] point of view
An automaton is therefore an action of the monoid Σ∗ on Q. The
functorial point of view of Colcombet and Petrişan [CP20] extends
the monoid-action-as-a-functor to encompass i ∈ Q and F ⊂ Q:

1 = {∗} Q {0, 1} = Ωi

δa,a∈Σ

χF

(where δa = δ(−, a)).
The data of an automaton is therefore equivalent to the data of a
bipointed functorF

 in st out▷ ◁

a∈Σ
 , in, out

 (Set,1,Ω)

Denote by IΣ∗ the (free) source category.
4 / 29

Languages as functors
The full subcategory OΣ∗ of IΣ∗ generated by in and out has only
arrows ▷w◁ ∈ OΣ∗(in, out) ∼= Σ∗:

in st out
▷u,u∈Σ∗

▷uvw◁

v ,v∈Σ∗

w◁,w∈Σ∗

Therefore, the restriction of an automaton

A : (IΣ∗ , in, out) → (Set,1,Ω)

to OΣ∗ sends ▷w◁ : in → out to 1 → Ω which is the truth value of
whether w is recognised or not.
Languages thus correspond to bipointed functors

L : (OΣ∗ , in, out) → (Set,1,Ω)

5 / 29

Languages as functors
The full subcategory OΣ∗ of IΣ∗ generated by in and out has only
arrows ▷w◁ ∈ OΣ∗(in, out) ∼= Σ∗:

in st out
▷u,u∈Σ∗

▷uvw◁

v ,v∈Σ∗

w◁,w∈Σ∗

Therefore, the restriction of an automaton

A : (IΣ∗ , in, out) → (Set,1,Ω)

to OΣ∗ sends ▷w◁ : in → out to 1 → Ω which is the truth value of
whether w is recognised or not.

Languages thus correspond to bipointed functors

L : (OΣ∗ , in, out) → (Set,1,Ω)

5 / 29

Languages as functors
The full subcategory OΣ∗ of IΣ∗ generated by in and out has only
arrows ▷w◁ ∈ OΣ∗(in, out) ∼= Σ∗:

in st out
▷u,u∈Σ∗

▷uvw◁

v ,v∈Σ∗

w◁,w∈Σ∗

Therefore, the restriction of an automaton

A : (IΣ∗ , in, out) → (Set,1,Ω)

to OΣ∗ sends ▷w◁ : in → out to 1 → Ω which is the truth value of
whether w is recognised or not.
Languages thus correspond to bipointed functors

L : (OΣ∗ , in, out) → (Set,1,Ω)

5 / 29

Before two-way: non-deterministic automata

A non-deterministic (one-way) automaton is a tuple (Q, I ,F ,∆)
i.e. i ∈ Q is replaced by I ⊂ Q and δ : Q × Σ → Q by a relation
∆ : Q × Σ −7−→ Q:

1 Q 1Ip

∆a,a∈Σp

Fp

(where ∆a = {(q, r) ∈ Q2|(q, a, r) ∈ ∆}).

Thus, non-deterministic automata are exactly bipointed functors

(IΣ∗ , in, out) → (Rel, 1, 1)

6 / 29

Before two-way: non-deterministic automata

A non-deterministic (one-way) automaton is a tuple (Q, I ,F ,∆)
i.e. i ∈ Q is replaced by I ⊂ Q and δ : Q × Σ → Q by a relation
∆ : Q × Σ −7−→ Q:

1 Q 1Ip

∆a,a∈Σp

Fp

(where ∆a = {(q, r) ∈ Q2|(q, a, r) ∈ ∆}).
Thus, non-deterministic automata are exactly bipointed functors

(IΣ∗ , in, out) → (Rel, 1, 1)

6 / 29

Some other types of automata

▶ For any semiring S , S-weighted automata are
(IΣ∗ , in, out) → (SMod,S ,S) according to Colcombet and
Petrişan [CP20].

S Q Sinitial vector

δa,a∈Σ

accepting weight

▶ Transducers are (IΣ∗ , in, out) → (Kl(MT), ⟨1⟩ , ⟨1⟩) where
MT is a monad depending on an output alphabet T (also
[CP20]).

⟨1⟩ ⟨Q⟩ ⟨1⟩initial state

δa,a∈Σ

accepting function

7 / 29

Some other types of automata

▶ For any semiring S , S-weighted automata are
(IΣ∗ , in, out) → (SMod,S ,S) according to Colcombet and
Petrişan [CP20].

S Q Sinitial vector

δa,a∈Σ

accepting weight

▶ Transducers are (IΣ∗ , in, out) → (Kl(MT), ⟨1⟩ , ⟨1⟩) where
MT is a monad depending on an output alphabet T (also
[CP20]).

⟨1⟩ ⟨Q⟩ ⟨1⟩initial state

δa,a∈Σ

accepting function

7 / 29

Some more abstract automata

▶ Everything can be enriched (cf. [Iwa25]), in particular, in the
category Nom of nominal sets (cf. [Iwa24]) so that nominal
automata (generalised finite memory automata) correspond to
enriched bipointed functors (IΣ∗ , in, out) → (Nom,1,Ω).

▶ Learning automata : classical automata and transducers by
Colcombet, Petrişan, and Stabile [CPS21], generalised
transducers by Aristote [Ari23], and automata in toposes by
Barbé [Bar24]. Requires a new shape IQ,T instead of IΣ∗ .

8 / 29

Some more abstract automata

▶ Everything can be enriched (cf. [Iwa25]), in particular, in the
category Nom of nominal sets (cf. [Iwa24]) so that nominal
automata (generalised finite memory automata) correspond to
enriched bipointed functors (IΣ∗ , in, out) → (Nom,1,Ω).

▶ Learning automata : classical automata and transducers by
Colcombet, Petrişan, and Stabile [CPS21], generalised
transducers by Aristote [Ari23], and automata in toposes by
Barbé [Bar24]. Requires a new shape IQ,T instead of IΣ∗ .

8 / 29

The general functorial framework

A language is an enriched functor L : O → D , an L-automaton is a
extension of L along O ↪−→ I (the behavioural context).

O D

I

L

A

An automaton morphism is an enriched natural transformation that
is the identity of L when restricted to O.

L-automata therefore form a non-full subcategory

Auto(L) ≤ [I,D]

of the category of enriched functors.

9 / 29

The general functorial framework

A language is an enriched functor L : O → D , an L-automaton is a
extension of L along O ↪−→ I (the behavioural context).

O D

I

L

A

An automaton morphism is an enriched natural transformation that
is the identity of L when restricted to O.
L-automata therefore form a non-full subcategory

Auto(L) ≤ [I,D]

of the category of enriched functors.

9 / 29

Table of Contents

Introduction
One-way automata as functors
Some other types of automata
The general functorial framework

Two-way automata
Two-way (non-deterministic) automata
Category IntRel and the functorial approach
Application: unidirectionalisation

Tree automata
Definition
Tree automata as (some) functors
Application: minimisation of tree automata

10 / 29

Two-way (non-deterministic) automata

A two-way non-deterministic automaton is a tuple
(Q+,Q−, I ,F ,∆) where (Q+ ⊕ Q−, I ,F ,∆) is a non-deterministic
automaton with I ,F ⊂ Q+.

Example

i

+
start

q

−
r

+

f

+

a a a

as a mere non-deterministic automaton, rejects the word a, but
accepts it as two-way:

[i]a → a[q] → [r]a → a[f]

11 / 29

Two-way (non-deterministic) automata

A two-way non-deterministic automaton is a tuple
(Q+,Q−, I ,F ,∆) where (Q+ ⊕ Q−, I ,F ,∆) is a non-deterministic
automaton with I ,F ⊂ Q+.

Example

i

+
start

q

−
r

+

f

+

a a a

as a mere non-deterministic automaton, rejects the word a, but
accepts it as two-way:

[i]a → a[q] → [r]a → a[f]

11 / 29

The category IntRel

Let w = a1a2 · · · an be a word.
For a one-way automaton, the composition of relations

∆w := ∆a1∆a2 · · ·∆an

gives the behaviour of the automaton while reading w i.e.

q∆w r iff there is a computation starting in state q and ending in
state r while reading w .

For two-way automata, this has to be done in the category IntRel
as observed by Hines [Hin03].

12 / 29

The category IntRel

Let w = a1a2 · · · an be a word.
For a one-way automaton, the composition of relations

∆w := ∆a1∆a2 · · ·∆an

gives the behaviour of the automaton while reading w i.e.

q∆w r iff there is a computation starting in state q and ending in
state r while reading w .

For two-way automata, this has to be done in the category IntRel
as observed by Hines [Hin03].

12 / 29

The category IntRel

Definition
The category IntRel has objects tuples (A+,A−), (B+,B−), etc.
of sets, and morphisms from (A+,A−) to (B+,B−) are relations

R : A+ ⊕ B− −7−→ A− ⊕ B+

equivalent to squares of relations

A+ B+

A− B−

R++

p
R+− p R−+p

R−−p

13 / 29

Composition in IntRel
Take composable arrows R : (A+,A−) → (B+,B−) and
S : (B+,B−) → (C+,C−)

A+ B+ C+

A− B− C−

R++

p
R+− p

S++

p
S+−pR−+ p

R−−p

S−+p

S−−p

Their composite RS : (A+,A−) → (C+,C−) is defined using all
the possible paths in the preceding diagram:

A+ C+

A− C−

R++(S+−R−+)∗S++

p
R+−∪

R++(S+−R−+)∗S+−R−−
p S−+∪

S−−R−+(S+−R−+)∗S++

p

S−−(R−+S+−)∗R−−p

14 / 29

Composition in IntRel
Take composable arrows R : (A+,A−) → (B+,B−) and
S : (B+,B−) → (C+,C−)

A+ B+ C+

A− B− C−

R++

p
R+− p

S++

p
S+−pR−+ p

R−−p

S−+p

S−−p

Their composite RS : (A+,A−) → (C+,C−) is defined using all
the possible paths in the preceding diagram:

A+ C+

A− C−

R++(S+−R−+)∗S++

p
R+−∪

R++(S+−R−+)∗S+−R−−
p S−+∪

S−−R−+(S+−R−+)∗S++

p
S−−(R−+S+−)∗R−−p

14 / 29

Birget-Hines’ theorem

Let ∆∗
a : Q

+ ⊕ Q− −7−→ Q+ ⊕ Q− denote the relation such that

q∆∗
ar iff there is a computation from q to r while reading the

single-letter word a.

∆∗
a is a morphism (Q+,Q−) → (Q+,Q−) of IntRel, and we let

∆∗
a1a2···an := ∆∗

a1
∆∗

a2
· · ·∆∗

an with composition in IntRel.

Theorem (Hines [Hin03] based on Birget [Bir89])
q∆∗

w r iff there is a computation in the two-way automaton
(Q+,Q−, I ,F ,∆) while reading the word w , starting in state q and
ending in state r .

15 / 29

Birget-Hines’ theorem

Let ∆∗
a : Q

+ ⊕ Q− −7−→ Q+ ⊕ Q− denote the relation such that

q∆∗
ar iff there is a computation from q to r while reading the

single-letter word a.

∆∗
a is a morphism (Q+,Q−) → (Q+,Q−) of IntRel, and we let

∆∗
a1a2···an := ∆∗

a1
∆∗

a2
· · ·∆∗

an with composition in IntRel.

Theorem (Hines [Hin03] based on Birget [Bir89])
q∆∗

w r iff there is a computation in the two-way automaton
(Q+,Q−, I ,F ,∆) while reading the word w , starting in state q and
ending in state r .

15 / 29

Two-way automata as functors

In IntRel, a morphism (1, 0) → (Q+,Q−) corresponds to a square
of relations

1 Q+

0 Q−

Sp
0p R−+p

0
p

i.e. is given by a subset S ⊂ A+ and a relation R−+ : Q− −7−→ Q+.

If R−+ is empty, it gives a subset of initial states; similarly,

R : (Q+,Q−) → (1, 0)

such that R+− = 0 gives a subset of accepting states.

16 / 29

Two-way automata as functors

In IntRel, a morphism (1, 0) → (Q+,Q−) corresponds to a square
of relations

1 Q+

0 Q−

Sp
0p R−+p

0
p

i.e. is given by a subset S ⊂ A+ and a relation R−+ : Q− −7−→ Q+.
If R−+ is empty, it gives a subset of initial states; similarly,

R : (Q+,Q−) → (1, 0)

such that R+− = 0 gives a subset of accepting states.

16 / 29

Two-way automata as functors

Theorem
Two-way automata correspond surjectively to bipointed functors

A : (IΣ∗ , in, out) → (IntRel, (1, 0), (1, 0))

such that A(▷)−+ = 0 and A(◁)+− = 0.
The correspondence sends (Q+,Q−, I ,F ,∆) to

(1, 0) (Q+,Q−) (1, 0)
(I ,0)

∆∗
a ,a∈Σ

(F ,0)

17 / 29

Lifting some pointwise adjunctions
If F ⊣ G : D → E is an adjunction, sending an automaton

F (X) Q Yi

δa,a∈Σ

χ

to the automaton

X G (Q) G (Y)i⊣

G(δa),a∈Σ

G(χ)

defines a functor Auto(L) → Auto(L⊣) which admits a left adjoint.

In fact, the definition of this functor Auto(L) → Auto(L⊣) only
requires the unit at X i.e. only an object X ′ and an isomorphism

D(X ′,Q) ∼= E (X ,G (Q))

natural in Q.

18 / 29

Lifting some pointwise adjunctions
If F ⊣ G : D → E is an adjunction, sending an automaton

F (X) Q Yi

δa,a∈Σ

χ

to the automaton

X G (Q) G (Y)i⊣

G(δa),a∈Σ

G(χ)

defines a functor Auto(L) → Auto(L⊣) which admits a left adjoint.
In fact, the definition of this functor Auto(L) → Auto(L⊣) only
requires the unit at X i.e. only an object X ′ and an isomorphism

D(X ′,Q) ∼= E (X ,G (Q))

natural in Q.
18 / 29

Application: the Shepherdson construction

We have

IntRel((1, 0),−) ∼= Set(1, IntRel((1, 0),−))

so we obtain1 a functor sending a two-way automaton

(1, 0) (Q+,Q−) (1, 0)
(I ,0)

∆∗
a ,a∈Σ

(F ,0)

to the deterministic automaton

1 Rel(1 ⊕ Q−,Q+) Ω
(I ,0)⊣

IntRel((1,0),∆∗
a),a∈Σ

IntRel((1,0),(F ,0))

1Idea of Tito Nguyen !
19 / 29

Table of Contents

Introduction
One-way automata as functors
Some other types of automata
The general functorial framework

Two-way automata
Two-way (non-deterministic) automata
Category IntRel and the functorial approach
Application: unidirectionalisation

Tree automata
Definition
Tree automata as (some) functors
Application: minimisation of tree automata

20 / 29

Definition
The alphabet is now graded i.e. Σ is endowed with an arity
function | · | : Σ → N so that letters are now functional symbols.
Words are replaced by trees or terms over Σ.

A deterministic, bottom-up tree automaton is given by a set of
states Q, for each symbol f ∈ Σ a “rewriting rule” function
δf : Q |f | → Q, and a subset of accepting states F ⊂ Q.

Example
Consider Σ := {⊤ : 0,⊥ : 0,∨ : 2,∧ : 2,¬ : 1}. Let Q = {t, f }
with the usual Boolean algebra structure, and F = {t} ⊂ Q.

∧

⊤ ¬

⊥

7→

∧

t ¬

f

7→

∧

t t

7→ t

21 / 29

Definition
The alphabet is now graded i.e. Σ is endowed with an arity
function | · | : Σ → N so that letters are now functional symbols.
Words are replaced by trees or terms over Σ.
A deterministic, bottom-up tree automaton is given by a set of
states Q, for each symbol f ∈ Σ a “rewriting rule” function
δf : Q |f | → Q, and a subset of accepting states F ⊂ Q.

Example
Consider Σ := {⊤ : 0,⊥ : 0,∨ : 2,∧ : 2,¬ : 1}. Let Q = {t, f }
with the usual Boolean algebra structure, and F = {t} ⊂ Q.

∧

⊤ ¬

⊥

7→

∧

t ¬

f

7→

∧

t t

7→ t

21 / 29

Definition
The alphabet is now graded i.e. Σ is endowed with an arity
function | · | : Σ → N so that letters are now functional symbols.
Words are replaced by trees or terms over Σ.
A deterministic, bottom-up tree automaton is given by a set of
states Q, for each symbol f ∈ Σ a “rewriting rule” function
δf : Q |f | → Q, and a subset of accepting states F ⊂ Q.

Example
Consider Σ := {⊤ : 0,⊥ : 0,∨ : 2,∧ : 2,¬ : 1}. Let Q = {t, f }
with the usual Boolean algebra structure, and F = {t} ⊂ Q.

∧

⊤ ¬

⊥

7→

∧

t ¬

f

7→

∧

t t

7→ t

21 / 29

Lawvere theories and models

A tree automaton is exactly a Σ-algebra with a distinguished subset
F .

According to Lawvere, a Σ-algebra corresponds to a monoidal
functor

L(Σ,∅) → Set

where L(Σ,∅) is the opposite of the category of finitely freely
generated Σ-algebras:

⟨0⟩ ⟨1⟩ ⟨2⟩ · · ·t

(x ,y)

!
(v(X1),w(X1))

!

u(X1,X2)

i.e. L(Σ,∅)(⟨m⟩ , ⟨n⟩) is the set of n-tuples of trees/terms with m
free variables. In fact, ⟨n⟩ ∼= ⟨1⟩n in L(Σ,∅).

22 / 29

Lawvere theories and models

A tree automaton is exactly a Σ-algebra with a distinguished subset
F .
According to Lawvere, a Σ-algebra corresponds to a monoidal
functor

L(Σ,∅) → Set

where L(Σ,∅) is the opposite of the category of finitely freely
generated Σ-algebras:

⟨0⟩ ⟨1⟩ ⟨2⟩ · · ·t

(x ,y)

!
(v(X1),w(X1))

!

u(X1,X2)

i.e. L(Σ,∅)(⟨m⟩ , ⟨n⟩) is the set of n-tuples of trees/terms with m
free variables. In fact, ⟨n⟩ ∼= ⟨1⟩n in L(Σ,∅).

22 / 29

Tree automata as (some) functors
We freely add an object out to L(Σ,∅) to form the category TΣ
with TΣ(⟨n⟩ , out) = L(Σ,∅)(⟨n⟩ , ⟨1⟩), TΣ(out, ⟨n⟩) = ∅:

⟨0⟩ ⟨1⟩ ⟨2⟩ · · ·

out

t

(x ,y)

!
(v(X1),w(X1))

!
u(X1,X2)

t◁

v(X1)◁

u(X1,X2)◁

Theorem
Tree automata over Σ are in bijective correspondence with pointed
functors

A : (TΣ, out) → (Set,Ω)

such that
L(Σ,∅) ↪−→ TΣ

A−→ Set

is monoidal.

23 / 29

Tree automata as (some) functors
We freely add an object out to L(Σ,∅) to form the category TΣ
with TΣ(⟨n⟩ , out) = L(Σ,∅)(⟨n⟩ , ⟨1⟩), TΣ(out, ⟨n⟩) = ∅:

⟨0⟩ ⟨1⟩ ⟨2⟩ · · ·

out

t

(x ,y)

!
(v(X1),w(X1))

!
u(X1,X2)

t◁

v(X1)◁

u(X1,X2)◁

Theorem
Tree automata over Σ are in bijective correspondence with pointed
functors

A : (TΣ, out) → (Set,Ω)

such that
L(Σ,∅) ↪−→ TΣ

A−→ Set

is monoidal.
23 / 29

General idea of minimisation in the functorial framework

Recall the general framework

O D

I

L

A

where an automaton morphism is a natural transformation that is
the identity of L when restricted to O.

To minimise we have to

1. Find the initial ∅(L) and terminal 1(L) automata, for instance
as left resp. right Kan extensions.

2. Factorise (pointwise) the unique automaton morphism
∅(L) ⇒ 1(L); the image-functor Min(L) is actually an
L-automaton that is a subquotient of any other L-automaton.

24 / 29

General idea of minimisation in the functorial framework

Recall the general framework

O D

I

L

A

where an automaton morphism is a natural transformation that is
the identity of L when restricted to O.
To minimise we have to

1. Find the initial ∅(L) and terminal 1(L) automata, for instance
as left resp. right Kan extensions.

2. Factorise (pointwise) the unique automaton morphism
∅(L) ⇒ 1(L); the image-functor Min(L) is actually an
L-automaton that is a subquotient of any other L-automaton.

24 / 29

General idea of minimisation in the functorial framework

Recall the general framework

O D

I

L

A

where an automaton morphism is a natural transformation that is
the identity of L when restricted to O.
To minimise we have to

1. Find the initial ∅(L) and terminal 1(L) automata, for instance
as left resp. right Kan extensions.

2. Factorise (pointwise) the unique automaton morphism
∅(L) ⇒ 1(L); the image-functor Min(L) is actually an
L-automaton that is a subquotient of any other L-automaton.

24 / 29

General idea of minimisation in the functorial framework

Recall the general framework

O D

I

L

A

where an automaton morphism is a natural transformation that is
the identity of L when restricted to O.
To minimise we have to

1. Find the initial ∅(L) and terminal 1(L) automata, for instance
as left resp. right Kan extensions.

2. Factorise (pointwise) the unique automaton morphism
∅(L) ⇒ 1(L); the image-functor Min(L) is actually an
L-automaton that is a subquotient of any other L-automaton.

Min(L) is then called the minimal L-automaton.

24 / 29

Application: minimisation of tree automata

Fix a tree language

L : (SΣ, ⟨0⟩ , out) → (Set,1,Ω)

where SΣ is the full subcategory of TΣ generated by ⟨0⟩ and out so
that

SΣ(⟨0⟩ , out) = TΣ(⟨0⟩ , out) = LΣ(⟨0⟩ , ⟨1⟩) = {(closed) trees}

Then we check that

1. Both Kan extensions exist, but only the left one is monoidal
when restricted to L(Σ,∅). Thus, the minimal L-automaton
Min(L) exists.

2. Min(L) is monoidal when restricted to L(Σ,∅).

Therefore there is a tree automaton Min(L) which divides any
other tree automaton recognising L.

25 / 29

Application: minimisation of tree automata

Fix a tree language

L : (SΣ, ⟨0⟩ , out) → (Set,1,Ω)

where SΣ is the full subcategory of TΣ generated by ⟨0⟩ and out so
that

SΣ(⟨0⟩ , out) = TΣ(⟨0⟩ , out) = LΣ(⟨0⟩ , ⟨1⟩) = {(closed) trees}

Then we check that
1. Both Kan extensions exist, but only the left one is monoidal

when restricted to L(Σ,∅). Thus, the minimal L-automaton
Min(L) exists.

2. Min(L) is monoidal when restricted to L(Σ,∅).
Therefore there is a tree automaton Min(L) which divides any
other tree automaton recognising L.

25 / 29

Application: minimisation of tree automata

Fix a tree language

L : (SΣ, ⟨0⟩ , out) → (Set,1,Ω)

where SΣ is the full subcategory of TΣ generated by ⟨0⟩ and out so
that

SΣ(⟨0⟩ , out) = TΣ(⟨0⟩ , out) = LΣ(⟨0⟩ , ⟨1⟩) = {(closed) trees}

Then we check that
1. Both Kan extensions exist, but only the left one is monoidal

when restricted to L(Σ,∅). Thus, the minimal L-automaton
Min(L) exists.

2. Min(L) is monoidal when restricted to L(Σ,∅).

Therefore there is a tree automaton Min(L) which divides any
other tree automaton recognising L.

25 / 29

Application: minimisation of tree automata

Fix a tree language

L : (SΣ, ⟨0⟩ , out) → (Set,1,Ω)

where SΣ is the full subcategory of TΣ generated by ⟨0⟩ and out so
that

SΣ(⟨0⟩ , out) = TΣ(⟨0⟩ , out) = LΣ(⟨0⟩ , ⟨1⟩) = {(closed) trees}

Then we check that
1. Both Kan extensions exist, but only the left one is monoidal

when restricted to L(Σ,∅). Thus, the minimal L-automaton
Min(L) exists.

2. Min(L) is monoidal when restricted to L(Σ,∅).
Therefore there is a tree automaton Min(L) which divides any
other tree automaton recognising L.

25 / 29

References I

[Ari23] Quentin Aristote. Functorial Approach to Minimizing and
Learning Deterministic Transducers with Outputs in
Arbitrary Monoids. Nov. 2023. url:
https://ens.hal.science/hal-04172251.

[Bar24] Killian Barbé. “Learning Functorial Automata in Topoi”.
MA thesis. Université Paris Cité, 2024. url:
https://www.irif.fr/~kbarbe/files/msc.pdf.

[Bir89] Jean-Camille Birget. “Concatenation of Inputs in a
Two-Way Automaton”. In: Theoretical Computer Science
63.2 (Feb. 1989), pp. 141–156. issn: 0304-3975. doi:
10.1016/0304-3975(89)90075-3.

[CP20] Thomas Colcombet and Daniela Petrişan. “Automata
Minimization: A Functorial Approach”. In: Logical
Methods in Computer Science 16.1 (Mar. 2020), Issue 1,
18605974. issn: 1860-5974. doi:
10.23638/LMCS-16(1:32)2020.

https://ens.hal.science/hal-04172251
https://www.irif.fr/~kbarbe/files/msc.pdf
https://doi.org/10.1016/0304-3975(89)90075-3
https://doi.org/10.23638/LMCS-16(1:32)2020

References II

[CPS21] Thomas Colcombet, Daniela Petrişan, and
Riccardo Stabile. “Learning Automata and Transducers:
A Categorical Approach”. In: 29th EACSL Annual
Conference on Computer Science Logic (CSL 2021).
Vol. 183. Leibniz International Proceedings in Informatics
(LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2021, 15:1–15:17. isbn:
978-3-95977-175-7. doi:
10.4230/LIPIcs.CSL.2021.15.

[Hin03] Peter Hines. “A Categorical Framework for Finite State
Machines”. In: Mathematical Structures in Computer
Science 13.3 (June 2003), pp. 451–480. issn: 1469-8072,
0960-1295. doi: 10.1017/S0960129503003931.

https://doi.org/10.4230/LIPIcs.CSL.2021.15
https://doi.org/10.1017/S0960129503003931

References III

[Iwa24] Victor Iwaniack. “Automata in W-Toposes, and General
Myhill-Nerode Theorems”. In: Coalgebraic Methods in
Computer Science. Cham: Springer Nature Switzerland,
2024, pp. 93–113. isbn: 978-3-031-66438-0. doi:
10.1007/978-3-031-66438-0_5.

[Iwa25] Victor Iwaniack. “Automates Topossiques”. These de
Doctorat. Université Côte d’Azur, June 2025. url:
https://theses.fr/2025COAZ5026.

[JSV96] André Joyal, Ross Street, and Dominic Verity. “Traced
Monoidal Categories”. In: Mathematical Proceedings of
the Cambridge Philosophical Society 119 (Apr. 1996),
pp. 447–468. doi: 10.1017/S0305004100074338.

https://doi.org/10.1007/978-3-031-66438-0_5
https://theses.fr/2025COAZ5026
https://doi.org/10.1017/S0305004100074338

Perspectives

▶ Enrich everything; in particular, study nominal two-way
automata and nominal tree automata.

▶ For the former this means enriching the Int construction from
Joyal, Street, and Verity [JSV96].

▶ For the latter it means finding a good notion of finitary
signature in a topos (link with monads with arity?).

	Introduction
	One-way automata as functors
	Some other types of automata
	The general functorial framework

	Outline
	Two-way automata
	Two-way (non-deterministic) automata
	Category and the functorial approach
	Application: unidirectionalisation

	Tree automata
	Definition
	Tree automata as (some) functors
	Application: minimisation of tree automata

	References

