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Deterministic automata

A word over the alphabet ¥ is an element of the free monoid X*.
A (one-way, complete,) deterministic automaton (Q, i, F,0) is
given by a set of states Q, an initial state i € Q, a subset of
accepting states F C @ and a transition function Q@ X ¥ — Q.
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Deterministic automata

A word over the alphabet ¥ is an element of the free monoid X*.
A (one-way, complete,) deterministic automaton (Q, i, F,0) is
given by a set of states Q, an initial state i € Q, a subset of
accepting states F C @ and a transition function Q@ X ¥ — Q.

Example
For ¥ = {a, b}
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Example
The automaton

recognises the word baba because

. b a b a
I —+Ss—t—s—1t
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Example
The automaton

recognises the word baba because
. b a b a
i—>s>St—os>t

but not the word bab because
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The Colcombet and Petrisan [CP20] point of view

An automaton is therefore an action of the monoid X* on @. The
functorial point of view of Colcombet and Petrisan [CP20] extends
the monoid-action-as-a-functor to encompass /i € Q and F C Q:

0a,a€EX

()

{#} —— Q@ —"—{0,1}
(where 6, = 6(—, a)).
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The Colcombet and Petrisan [CP20] point of view

An automaton is therefore an action of the monoid X* on @. The
functorial point of view of Colcombet and Petrisan [CP20] extends
the monoid-action-as-a-functor to encompass /i € Q and F C Q:

02,0€%

()

1= {x} ‘ Q ——{0,1}=0Q

(where 6, = 6(—, a)).
The data of an automaton is therefore equivalent to the data of a

bipointed functor
aex
F{ in —2— st —2= out »,in,out | —— (Set,1,Q)

Denote by Zy+ the (free) source category.
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Languages as functors

The full subcategory Os« of Zy« generated by in and out has only
arrows pw< € Os+(in, out) = X*:

v,vexr*®

()

>u,uEE* wa,wer*

n\s_/\out

Duvw<d
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Languages as functors

The full subcategory Os« of Zy« generated by in and out has only
arrows pw< € Os+(in, out) = X*:

v,vexr*®

()

>u,uEE* wa,wer*

n\s_/out

Duvw<d

Therefore, the restriction of an automaton
A : (Zg+,in,out) — (Set, 1,9Q)

to Os= sends bw< : in — out to 1 — Q which is the truth value of
whether w is recognised or not.
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Languages as functors

The full subcategory Os« of Zy« generated by in and out has only
arrows pw< € Os+(in, out) = X*:

v,vexr*®

()

>u,uEE* wa,wer*

n\s_/out

Duvw<d

Therefore, the restriction of an automaton
A : (Zg+,in,out) — (Set, 1,9Q)

to Os= sends bw< : in — out to 1 — Q which is the truth value of
whether w is recognised or not.
Languages thus correspond to bipointed functors

L: (Os-,in,out) — (Set, 1,Q)
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Before two-way: non-deterministic automata

A non-deterministic (one-way) automaton is a tuple (Q,/, F,A)
i.e. i€ Qisreplacedby I C Qand §: Q@ x £ — Q by a relation
A: QXL+ Q:

A,,acx

(where A, = {(q,r) € Q?|(q,a,r) € A}).
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Before two-way: non-deterministic automata

A non-deterministic (one-way) automaton is a tuple (Q,/, F,A)
i.e. i€ Qisreplacedby I C Qand §: Q@ x £ — Q by a relation
A: QXL+ Q:

A,,acx

(where A, = {(q,r) € Q*|(q,a,r) € A}).
Thus, non-deterministic automata are exactly bipointed functors

(Zg+,in, out) — (Rel, 1,1)
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Some other types of automata

» For any semiring S, S-weighted automata are
(Zg+,in,out) — (SMod, S, S) according to Colcombet and
Petrisan [CP20].

02,86

accepting weight

S initial vector Q

>

S

7/29



Some other types of automata

» For any semiring S, S-weighted automata are
(Zg+,in,out) — (SMod, S, S) according to Colcombet and
Petrisan [CP20].

02,86

S initial vector Q accepting weight 15

» Transducers are (Zx+,in,out) — (KI(M71), (1), (1)) where
M7 is a monad depending on an output alphabet T (also
[CP20])).

éa,aEZ

<1> initial state <Q> accepting function<1>
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Some more abstract automata

» Everything can be enriched (cf. [lwa25]), in particular, in the
category Nom of nominal sets (cf. [lwa24]) so that nominal
automata (generalised finite memory automata) correspond to
enriched bipointed functors (Zg+, in,out) — (Nom, 1, Q).
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Some more abstract automata

» Everything can be enriched (cf. [lwa25]), in particular, in the
category Nom of nominal sets (cf. [lwa24]) so that nominal
automata (generalised finite memory automata) correspond to
enriched bipointed functors (Zg+, in,out) — (Nom, 1, Q).

» Learning automata : classical automata and transducers by
Colcombet, Petrisan, and Stabile [CPS21], generalised
transducers by Aristote [Ari23], and automata in toposes by
Barbé [Bar24]. Requires a new shape Zq 1 instead of Zs-.
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The general functorial framework

A language is an enriched functor L : O — &, an L-automaton is a
extension of L along O — 7 (the behavioural context).

o-Lt,g9

[

An automaton morphism is an enriched natural transformation that
is the identity of L when restricted to O.
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The general functorial framework

A language is an enriched functor L : O — &, an L-automaton is a
extension of L along O — 7 (the behavioural context).

o-Lt,g9

[

An automaton morphism is an enriched natural transformation that
is the identity of L when restricted to O.
L-automata therefore form a non-full subcategory

Auto(L) < [Z, 9]

of the category of enriched functors.
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Two-way (non-deterministic) automata

A two-way non-deterministic automaton is a tuple
(QT,Q,I,F,A) where (QT ® Q,/, F,A) is a non-deterministic
automaton with /, F C Q™.
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Two-way (non-deterministic) automata

A two-way non-deterministic automaton is a tuple
(QT,Q,I,F,A) where (QT ® Q,/, F,A) is a non-deterministic
automaton with /, F C Q™.

Example

a

as a mere non-deterministic automaton, rejects the word a, but
accepts it as two-way:

[la — alq] — [r]a — a[f]
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The category IntRel

Let w = ajar---a, be a word.
For a one-way automaton, the composition of relations

Ay, =00, A,
gives the behaviour of the automaton while reading w i.e.

g, r iff there is a computation starting in state g and ending in
state r while reading w.
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The category IntRel

Let w = ajar---a, be a word.
For a one-way automaton, the composition of relations

Ay, =00, A,
gives the behaviour of the automaton while reading w i.e.

g, r iff there is a computation starting in state g and ending in
state r while reading w.

For two-way automata, this has to be done in the category IntRel
as observed by Hines [Hin03].
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The category IntRel

Definition

The category IntRel has objects tuples (A™, A7), (B*,B™), etc.

of sets, and morphisms from (A", A7) to (BT, B™) are relations
R:AT®&B™ - A &B*

equivalent to squares of relations

++
At By gt

el e

A" «—— B~
e
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Composition in IntRel

Take composable arrows R : (AT, A”) — (B*,B™) and
S:(BY,B7)—=(CH,C)

AT R gt ST o

AT e
A- i B~ <?_1_— c-
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Composition in IntRel

Take composable arrows R : (AT, A”) — (B*,B™) and
S:(BY,B7)—=(CH,C)

AT R gt ST o

T e
A «—+— B «—+— C~
R™~ S5~
Their composite RS : (AT, A7) — (CT, C™) is defined using all
the possible paths in the preceding diagram:

A+ RTH(ST—R—+)*st++ c+
RT—U i % S—tu
RYH(ST-R™F)*St—R—— STTRTH(STTRT)*Stt
AT +———— C~
ST (RSt )*R——
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Birget-Hines' theorem

Let AZ: QT Q™ —+ QT ® Q@ denote the relation such that

qA%r iff there is a computation from g to r while reading the
single-letter word a.

A% is a morphism (QT, Q) — (Q1, Q™) of IntRel, and we let
JANS = A} AL -+ A} with composition in IntRel.

aiaz---an
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Birget-Hines' theorem

Let AZ: QT Q™ —+ QT ® Q@ denote the relation such that

qA%r iff there is a computation from g to r while reading the
single-letter word a.

A% is a morphism (QT, Q) — (Q1, Q™) of IntRel, and we let
A} ayea, = A5 AL, -+ AL with composition in IntRel.
Theorem (Hines [Hin03] based on Birget [Bir89])

qA,r iff there is a computation in the two-way automaton
(QT,Q,I,F,A) while reading the word w, starting in state q and
ending in state r.
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Two-way automata as functors

In IntRel, a morphism (1,0) — (Q™*, Q™) corresponds to a square
of relations

11— QF

e
0«4— Q

i.e. is given by a subset S C AT and a relation R~ : Q~ + Q™.
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Two-way automata as functors

In IntRel, a morphism (1,0) — (Q™*, Q™) corresponds to a square
of relations

135 QF

e
0«4— Q

i.e. is given by a subset S C A" and a relation R~ : Q~ - Q™.
If R=T is empty, it gives a subset of initial states; similarly,

R: (@, Q) —(1,0)

such that RT— = 0 gives a subset of accepting states.
g pting
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Two-way automata as functors

Theorem
Two-way automata correspond surjectively to bipointed functors

A : (Zg+,in, out) — (IntRel, (1,0), (1,0))
such that A(>)~t =0 and A(<)™ =0.
The correspondence sends (@™, Q~,/, F,A) to

A¥,a€x

1.0) — 2 (@) — 2 (1,0)
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Lifting some pointwise adjunctions
If F4G:2 — & is an adjunction, sending an automaton

IEISDN
i X
F(X) Q Y
to the automaton
G(024),aex
X —7 L 6Q) —X , 6(y)

defines a functor Auto(L) — Auto(L™) which admits a left adjoint.
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Lifting some pointwise adjunctions
If F4G:2 — & is an adjunction, sending an automaton

IEISDN
i X
F(X) Q Y
to the automaton
G(024),aex
X —7 L 6Q) —X , 6(y)

defines a functor Auto(L) — Auto(L™) which admits a left adjoint.

In fact, the definition of this functor Auto(L) — Auto(L™) only
requires the unit at X i.e. only an object X’ and an isomorphism

(X', Q) = £(X, G(Q))

natural in Q.
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Application: the Shepherdson construction
We have

IntRel((1,0), —) = Set(1, IntRel((1,0), —))

so we obtain! a functor sending a two-way automaton

NS »

)

1, @+, ey £,

(F,0)

(1,0) ——— (1,0)

to the deterministic automaton

IntRel((1,0),A%),acx

()

.
O, Rel(1® @, Q")

IntRel((1,0),(F,0))

1 s Q

1dea of Tito Nguyen |
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Definition
The alphabet is now graded i.e. ¥ is endowed with an arity
function |- | : ¥ — N so that letters are now functional symbols.
Words are replaced by trees or terms over X.
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Definition
The alphabet is now graded i.e. ¥ is endowed with an arity
function |- | : ¥ — N so that letters are now functional symbols.
Words are replaced by trees or terms over X.
A deterministic, bottom-up tree automaton is given by a set of
states Q, for each symbol f € ¥ a “rewriting rule” function
8¢ - QIfl - @, and a subset of accepting states F C Q.
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Definition
The alphabet is now graded i.e. ¥ is endowed with an arity
function |- | : ¥ — N so that letters are now functional symbols.
Words are replaced by trees or terms over X.
A deterministic, bottom-up tree automaton is given by a set of
states Q, for each symbol f € ¥ a “rewriting rule” function
8¢ - QIfl - @, and a subset of accepting states F C Q.

Example
Consider ¥ :={T:0,L:0,V:2,A:2,-:1}. Let Q = {¢t,f}
with the usual Boolean algebra structure, and F = {t} C Q.

/N /\w/\w

- =t

I_
-
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Lawvere theories and models

A tree automaton is exactly a X-algebra with a distinguished subset
F.
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Lawvere theories and models

A tree automaton is exactly a X-algebra with a distinguished subset
F.
According to Lawvere, a -algebra corresponds to a monoidal
functor

.,?i);@) — Set

where Z5 ¢) is the opposite of the category of finitely freely
generated Y -algebras:

|

1 — — u(X1,X2)
<O> <1> — (v(X1),w(X1)) — <2>

(%)

i.e. Z5x0)((m),(n)) is the set of n-tuples of trees/terms with m

~Y

free variables. In fact, (n) = (1)" in Zs p).
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Tree automata as (some) functors

We freely add an object out to Z(5s ) to form the category Tx
with Tx((n) ,out) = Z5 9)({n) , (1)), Tx(out, (n)) = 0:

0 F15 1) Soes== )
—t — (v(X1),w(X1))
T —w) o

V(X1 )<1

ta ! u(X1,X2)4
out
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Tree automata as (some) functors

We freely add an object out to Z(5s ) to form the category Tx
with Tx((n) ,out) = Z5 9)({n) , (1)), Tx(out, (n)) = 0:

o) 1= ) o

2)
—t— — (v(X1),w(X1)) <
T —w) bt
V(X1)<1
SO
out
Theorem
Tree automata over ¥ are in bijective correspondence with pointed
functors
A (Tg,out) — (Set, Q)
such that
.,?Y);@) — Tx i} Set
is monoidal.
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General idea of minimisation in the functorial framework

Recall the general framework
0ot 9

[

where an automaton morphism is a natural transformation that is
the identity of L when restricted to O.
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General idea of minimisation in the functorial framework

Recall the general framework

o-tsg

[

where an automaton morphism is a natural transformation that is
the identity of L when restricted to O.
To minimise we have to
1. Find the initial (L) and terminal 1(L) automata, for instance
as left resp. right Kan extensions.
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Recall the general framework

o-tsg

[

where an automaton morphism is a natural transformation that is
the identity of L when restricted to O.
To minimise we have to
1. Find the initial (L) and terminal 1(L) automata, for instance
as left resp. right Kan extensions.
2. Factorise (pointwise) the unique automaton morphism
O(L) = 1(L); the image-functor Min(L) is actually an
L-automaton that is a subquotient of any other L-automaton.
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General idea of minimisation in the functorial framework

Recall the general framework

o-Lt,9

%

where an automaton morphism is a natural transformation that is
the identity of L when restricted to O.
To minimise we have to
1. Find the initial (L) and terminal 1(L) automata, for instance
as left resp. right Kan extensions.
2. Factorise (pointwise) the unique automaton morphism
O(L) = 1(L); the image-functor Min(L) is actually an
L-automaton that is a subquotient of any other L-automaton.

Min(L) is then called the minimal L-automaton.
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Application: minimisation of tree automata
Fix a tree language
L:(Ss,(0),out) — (Set,1,Q)

where Sy is the full subcategory of 75 generated by (0) and out so
that

Sy ((0) ,out) = Tx((0) ,out) = £ ((0), (1)) = {(closed) trees}
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Application: minimisation of tree automata
Fix a tree language
L:(Ss,(0),out) — (Set,1,Q)

where Sy is the full subcategory of 75 generated by (0) and out so
that

Sy ((0) ,out) = Tx((0) ,out) = £ ((0), (1)) = {(closed) trees}

Then we check that

1. Both Kan extensions exist, but only the left one is monoidal
when restricted to Z(x ). Thus, the minimal L-automaton
Min(L) exists.
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where Sy is the full subcategory of 75 generated by (0) and out so
that

Sy ((0) ,out) = Tx((0) ,out) = £ ((0), (1)) = {(closed) trees}

Then we check that

1. Both Kan extensions exist, but only the left one is monoidal
when restricted to Z(x ). Thus, the minimal L-automaton
Min(L) exists.

2. Min(L) is monoidal when restricted to (5 g).
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Application: minimisation of tree automata

Fix a tree language
L:(Ss,(0),out) — (Set,1,Q)

where Sy is the full subcategory of 75 generated by (0) and out so
that

Sy ((0) ,out) = Tx((0) ,out) = £ ((0), (1)) = {(closed) trees}

Then we check that

1. Both Kan extensions exist, but only the left one is monoidal
when restricted to Z(x ). Thus, the minimal L-automaton
Min(L) exists.

2. Min(L) is monoidal when restricted to (5 g).

Therefore there is a tree automaton Min(L) which divides any
other tree automaton recognising L.
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Perspectives

» Enrich everything; in particular, study nominal two-way
automata and nominal tree automata.

» For the former this means enriching the Int construction from
Joyal, Street, and Verity [JSV96].

» For the latter it means finding a good notion of finitary
signature in a topos (link with monads with arity?).
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