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1 Context

Photoacoustic tomography (PAT) is a recent multi-wave image modality that shows great potential in
biological and clinical research. This modality combines an optical excitation (laser) of the tissue with an
ultrasound detection allowing to generate high-resolution images of optical absorption at large depths.

The optical absorption in biological tissues can be due to endogenous molecules such as hemoglobin
or melanin, and to injected contrast agents. This absorption results in a local increase of the tempera-
ture in the tissue, creating a small pressure increase which in turn generates an acoustic wave. In 3D
photoacoustic tomography (PAT), the ultrasound wavefield is measured, as an electrical signal, by sev-
eral sensors distributed on a surface surrounding the tissue. The reconstruction of the image is then
performed through the resolution of an inverse problem from the observed (measured) signals (see Fig.
1). The PAT modality is therefore intricate with its numerical reconstruction method and as such is an
instance of computational imaging systems that have transformed modern imaging.

(a) (b)

Figure 1: (a) Image of measured signals (time vs detector position) and (b) the corresponding numerical
vessel phantom

1.1 Physical modelling

Physically, the PAT can be modelled with two different phenomena:

The wave propagation in the tissue The initial pressure p0 : R3 → R generated by the optical ab-
sorption and to be recovered in the image is mapped to the whole pressure field at all times
p : R3 × [0, T ] → R by a linear operator H : p0 7→ p. This linear operator represents the wave
equation: a second order linear partial differential equation (PDE). Once discretized, the matrixH
is of size (N3 × nT )×N3 where N3 is the size of the grid discretizing the tissue domain and nT is
the number of time samples. In practice this matrix is huge and cannot be stored.
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The measurements In PAT the pressure field p is measured by n sensors outside the tissue. Each sensor
is associated to a 2D surface Si ⊂ R3 that records the pressure. The associated measurement
operatorMi maps the pressure p to the signal gi(t) =

∫
Si

p(x, t)dSi(x). The global measurement
operatorM = (Mi)

n
i=1 is thus the concatenation of all measurements g = (gi)

n
i=1.

Overall, the physical modeling leads to the following linear inverse problem:

g = Ap0 (1)

with A =MH and where g are the observed signals and p0 the initial pressure to be recovered. Once
discretized, the matrix A is of size (nnT ) × N3. Note that the optimization algorithms implemented
to solve (1) require the iterative application of A and its adjoint A∗. Great care must be taken when
implementing these matrix-vector products as they are critical for the efficiency of the reconstruction.

1.2 Numerical issues

Two issues make the resolution of this inverse problem difficult. First, the computation of H through
wave propagation simulations is numerically intensive (3D + time). Second, the adjoint A∗ is often
implemented through back-propagation which has a simple expression when the sensors are isotropic
and reduced to points. This however, requires to finely discretize the surfaces of each sensor, say with
m points (that has to be chosen such that m ∝ N2 points), leading to a matrix A with m more non-
zero coefficients. This prevents the reconstruction of the image p0 in decent times leading researchers to
resort to approximate sensor geometries which degrades the quality of reconstructed images.

2 Objectives

In preliminary works, we investigated an original approach, appearing to be new in the PAT community,
that allows to fastly reconstruct p0 without compromise on its quality. This approach is based on a fine
implementation of the matrix-vector products with A and A∗ in the optimization algorithms. With this
approach, one iteration of the algorithm now costs O(nN3) operations.

The objectives of the internship are to make this proof of concept a universal method that can be
used routinely in laboratories. We have, for instance, identified several needs:

• Although sensors are fully characterized in our method, they have an electrical impulse response
that is crucial to model and incorporate in our method.

• The current implementation is made for images in 2D albeit real images are 3D. In order to scale
the code in this setting, we need to implement the algorithms on massively parallel architectures
such as graphics processing units (GPU). A speed-up of a factor ×60 can be expected.

• The current implementation is based on fast Fourier transforms (FFT) that are extremely well im-
plemented on any scientific computing library making it universal. However, the Fourier trans-
form implicitly assumes periodic boundary conditions which forced us to significantly extend the
domain to avoid the periodic waves to pollute the signals. A possible solution would be to imple-
ment a Perfectly Matched Layer which might lead to significant speed-ups (' ×30) in 3D.

• We believe that the matrix vector-products in our method implemented in O(nN3) which depends
linearly in the number of sensors can be further reduce to O(rN3) with r � n using dimension-
ality reduction techniques. This would have a dramatic impact on the speed of reconstruction
algorithms. A speed-up of a factor ×10 can be expected.

• If time allows, we might also investigate the co-conception of the PAT device. This means to
adequately design the sensor locations to optimize the quality of the reconstructed images. This
would allow to reduce the number of measurements needed and speed up the acquisition of the
signals which is important in research and clinical applications.

Overall, the previous ideas might lead to a speed-up of order 104 which would make the algorithms
efficient enough to reconstruct high-quality images without any compromise on their quality. This in-
ternship could have a great impact on the PAT community.

The candidate will be trained and could develop skills in optimization, image processing, high per-
formance computing and approximation theory. These competences are actively being in demand in the
industry and the academic research.
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Internship information

The internship takes part in the project COCON3D which received a funding from the France Life Imag-
ing program (https://www.francelifeimaging.fr/).

The training period will take place in the Signal and Image team I2M
(https://www.i2m.univ-amu.fr/Equipe-Signal-et-Image-SI) of the Institut de Mathématiques
de Marseille (https://www.i2m.univ-amu.fr), which is a joint research center between Aix-Marseille
University, Ecole Centrale Marseille and CNRS (Centre National de la Recherche Scientifique). The Sig-
nal and Image team at I2M is easily accessible from downtown Marseille by public transportation (Metro
Line 1 in the direction of La Rose until the last station La Rose. Then Bus B3B direction Technopôle de
Château Gombert until the Technopôle Polytech Marseille stop).

As the interdisciplinary project is linked to the Laboratoire d’Imagerie Biomédicale (LIB) of Sorbonne
Université, videoconference meetings with the LIB as well as meeting in Paris will also be organized
with the student.

The internship might lead to a PhD thesis.

• Candidate profile: master of science with strong skills in statistics, signal processing, machine
learning, or optimization. Languages: Python/Matlab.

• Duration: 4 to 6 months

• Location: Signal and Image team I2M, Institut de Mathématiques de Marseille
(https://www.i2m.univ-amu.fr)

• Supervision: Paul Escande (paul.escande@univ-amu.fr), Caroline Chaux (caroline.chaux@
univ-amu.fr).

• Stipend: about 600 euros per month.

• Application: send resume, master grades and motivation letter to supervisors; please name docu-
ments as LASTNAME Firstname-Resume.*, LASTNAME Firstname-Grades.*
or LASTNAME Firstname-Letter.*
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