Université de Marseille Licence de Mathématiques, 3ème année, analyse numérique et optimisation Partiel du 25 octobre 2017

La partiel contient 4 exercices. Le barème est sur 27 points, il n'est donc pas demandé de tout faire pour avoir 20...

Exercice 1 (Décompositions LU et de Choleski, barème 6 points).

Soit
$$M = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 8 & 10 \\ 1 & 10 & 18 \end{bmatrix}$$
.

- 1. Calculer les mineurs principaux de M. En déduire que M admet des décompositions LU et de Choleski.
- 2. Donner la décomposition LU de M.
- 3. Donner la décomposition de Choleski de M.

Exercice 2 (Système avec plus d'inconnues que d'équation, barème 3 points).

Soient $A \in \mathcal{M}_{n,p}(\mathbb{R})$ avec $p > n \ge 1$ et $b \in \mathbb{R}^n$.

- 1. On suppose qu'il existe au moins un vecteur x de \mathbb{R}^p tel que Ax = b. Montrer qu'il existe alors une infinité de vecteurs x de \mathbb{R}^p tel que Ax = b.
- 2. Donner un exemple avec n=2 et p=3 pour lequel il n'existe pas de vecteur x de \mathbb{R}^p tel que Ax=b.

Exercice 3 (Vitesse de convergence pour la méthode de Jacobi, barème 8 points).

Soient A une matrice carrée d'ordre n, inversible, et $b \in \mathbb{R}^n$, n > 1. On pose $\bar{x} = A^{-1}b$. On note D la partie diagonale de A, -E la partie triangulaire inférieure stricte de A et -F la partie triangulaire supérieure stricte de A. On suppose que D est inversible et on note B_J la matrice des itérations de la méthode de Jacobi, c'est-à-dire $B_J = D^{-1}(E+F)$. On rappelle que la méthode de Jacobi s'écrit

Initialisation: $x^{(0)} \in \mathbb{R}^n$,

Itérations : pour tout $k \ge 0$, $Dx^{(k+1)} = (E+F)x^{(k)} + b$.

On munit \mathbb{R}^n d'une norme notée $\|\cdot\|$. On note ρ le rayon spectral de B_J .

1. On suppose que B_J est diagonalisable dans \mathbb{R} (c'est-à-dire qu'il existe une base de \mathbb{R}^n formée de vecteurs propres de B_J). Montrer qu'il existe C>0, dépendant de A, b, $x^{(0)}$ et de la norme choisie sur \mathbb{R}^n , mais indépendant de k, telle que

$$\|x^{(k)} - \overline{x}\| \le C\rho^k \text{ pour tout } k \ge 0.$$

2. On ne suppose plus que B_J est diagonalisable. Montrer que pour tout $\varepsilon > 0$, il existe $C_{\varepsilon} > 0$, dépendant de A, b, $x^{(0)}$, ε et de la norme choisie sur \mathbb{R}^n , mais indépendant de k, telle que

$$||x^{(k)} - \overline{x}|| \le C_{\varepsilon}(\rho + \varepsilon)^k$$
 pour tout $k \ge 0$.

Dans la suite de cet exercice on prend n=2 et $A=\begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$.

3. Dans cette question, on choisit, pour norme dans \mathbb{R}^2 , la norme euclidienne, c'est-à-dire $\|x\|^2=x_1^2+x_2^2$ si $x=\begin{bmatrix}x_1\\x_2\end{bmatrix}$. Montrer qu'il existe C (dépendant de b et $x^{(0)}$, mais non de k) telle que

$$||x^{(k)} - \overline{x}|| = C\rho^k \text{ pour tout } k \ge 0.$$
 (1)

4. Montrer qu'il existe des normes dans \mathbb{R}^2 pour lesquelles la conclusion de la question 3 est fausse (c'est-à-dire pour lesquelles la suite $(\|x^{(k)} - \overline{x}\|/\rho^k)_{k \in \mathbb{N}}$ n'est pas une suite constante sauf éventuellement pour des valeurs particulières de $x^{(0)}$).

1

Exercice 4 (Méthode de la puissance, barème 10 points).

Soit $A \in \mathcal{M}_n(\mathbb{R})$ et $y^{(0)} \in \mathbb{R}^n \setminus \{0\}$. On rappelle que la méthode de la puissance consiste à construire une suite $(x^{(k)})_{k \in \mathbb{N}}$ de la manière suivante :

$$(x^{(k)})_{k \in \mathbb{N}}$$
 de la manière suivante :
Initialisation $x^{(0)} = \frac{y^{(0)}}{|y^{(0)}|} \in \mathbb{R}^n \setminus \{0\},$

Itérations pour
$$k \ge 0$$
, si $Ax^{(k)} \ne 0$, $x^{(k+1)} = \frac{Ax^{(k)}}{|Ax^{(k)}|}$

où |x| désigne la norme euclidienne du vecteur x.

En définissant la suite $(y^{(k)})_{k \in \mathbb{N}}$ par $y^{(k)} = A^k y^{(0)}$ pour tout $k \in \mathbb{N}$, on remarque que, si $y^{(k)} \neq 0$ pour tout k,

$$x^{(k)} = \frac{y^{(k)}}{|y^{(k)}|}$$
, pour tout $k \in \mathbb{N}$.

On note e_1, \ldots, e_n la base canonique de \mathbb{R}^n .

- $1. \ \ \text{Dans cette question, on pose} \ A = \begin{bmatrix} \lambda & \mu \\ 0 & \lambda \end{bmatrix} \ \text{avec} \ \lambda, \mu \in {\rm I\!R}, \lambda > 0, \mu \neq 0.$
 - (a) Montrer que A n'est pas diagonalisable.

On utilise la méthode de la puissance avec $y^{(0)} = \alpha_1 e_1 + \alpha_2 e_2, \alpha_2 \neq 0.$

- (b) Montrer que la méthode de la puissance définit bien une suite $(x^{(k)})_{k\in\mathbb{N}}$ et que $x^{(k)}$ est, pour tout $k\in\mathbb{N}$, colinéaire au vecteur $(\alpha_1+k\alpha_2\mu/\lambda)e_1+\alpha_2e_2$.
- (c) Calculer $\lim_{k\to+\infty} x^{(k)}$ et $\lim_{k\to+\infty} Ax^{(k)} \cdot x^{(k)}$.
- (d) Peut-on appliquer le théorème vu en cours sur la méthode de la puissance à cette matrice ?
- $\text{2. Dans cette question, on pose } A = \begin{bmatrix} \lambda & 0 & 0 \\ 0 & \mu & \gamma \\ 0 & 0 & \mu \end{bmatrix} \text{ avec } \lambda, \mu, \gamma \in {\rm I\!R}, \lambda > |\mu|, \gamma \neq 0.$
 - (a) Montrer que A n'est pas diagonalisable

On utilise la méthode de la puissance avec $y^{(0)} = \alpha_1 e_1 + \alpha_2 e_2 + \alpha_3 e_3$, $\alpha_1 \neq 0$.

- (b) Montrer que la méthode de la puissance définit bien une suite $(x^{(k)})_{k\in\mathbb{N}}$.
- (c) Calculer $\lim_{k\to+\infty} x^{(k)}$ et $\lim_{k\to+\infty} Ax^{(k)} \cdot x^{(k)}$.
- (d) Peut-on appliquer le théorème vu en cours sur la méthode de la puissance à cette matrice?