Université de Marseille

Licence de Mathématiques, 3ème année, analyse numérique et optimisation SMI6U01TL. partiel du 13 mars 2020

L'examen contient 3 exercices. Le barème est sur 27 points, il n'est donc pas demandé de tout faire pour avoir 20... Les documents (polycopié du cours, notes de TD, notes personnelles) sont autorisés.

Exercice 1 (Factorisation d'une matrice s.d.p. à 2q+1 diagonales, conservation du profil, barème 7 points). Soit $A \in M_n(\mathbb{R})$ (n > 1) une matrice s.d.p.. On note L la matrice de la décomposition de Choleski de A. On rappelle que $A = LL^t$ et que L peut se calculer avec les formules suivantes (avec les notations habituelles pour les coefficients de A et L):

$$\ell_{1,1} = (a_{1,1})^{1/2}, \ \ell_{i,1} = \frac{1}{\ell_{1,1}} (a_{i,1}), \ i \in \{2, \dots, n\}.$$
 (1)

$$\ell_{j,j} = (a_{j,j} - \sum_{k=1}^{j-1} \ell_{j,k} \ell_{j,k})^{1/2}, \quad j \in \{2, \dots, n\},$$
(2)

$$\ell_{i,j} = \frac{1}{\ell_{j,j}} \left(a_{i,j} - \sum_{k=1}^{j-1} \ell_{i,k} \ell_{j,k} \right), \ i \in \{j+1,\dots,n\}, \ j \in \{2,\dots,n\}.$$
 (3)

1. Dans quel ordre faut il faire les opérations ci dessus pour obtenir L?

Corrigé – On calcule les colonnes de L dans l'ordre $1, \ldots, n$.

On calcule d'abord $\ell_{1,1}$ puis $\ell_{i,1}$ pour tout i > 1 par (1).

Puis lorsque les j-1 premières colonnes de L sont connues, on calcule $\ell_{j,j}$ (par (2)) et ensuite $\ell_{i,j}$ pour tout i>j (par (3)). Ceci est possible car $k \leq j-1$ dans (2)-(3). (On rappelle aussi que $\ell_{i,j}=0$ pour i< j.)

- 2. On suppose dans cette question que $a_{i,j} = 0$ si |i j| > 1 (on dit que A a "3 diagonales non nulles").
 - (a) (Conservation du profil) Montrer que $\ell_{i,j} = 0$ si i > j + 1.

Corrigé -

Ceci a été vu en cours. Cela peut aussi se montrer avec les formules (1)-(3)) avec une récurrence sur j.

Pour j=1, il suffit de remarquer $\ell_{i,1}=a_{i,1}/\ell_{1,1}=0$ si i>2.

Puis, on suppose que $\ell_{i,k}=0$ pour $k\in\{1,\ldots,j-1\}$ et i>k+1 La formule (3) donne alors $\ell_{i,j}=0$ pour i>j+1 (en effet, $a_{i,j}=0$ et $\ell_{i,k}=0$ dans (3) car pour $k\leq j-1$ on a i>k+1).

(b) Montrer qu'il suffit de 4n-3 opérations (additions, soustractions, multiplications, divisions, racines carrées) pour calculer L.

[Remarquer que l'on calcule seulement $\ell_{i,j}$ pour i=j et j+1 et que dans (3), comme i>j, on a $\ell_{i,k}\ell_{j,k}=0$ pour tout k.]

Corrigé – On note $N_1(j)$ le nombre d'opérations pour calculer $\ell_{j,j}$ et $N_2(i,j)$ le nombre d'opérations pour calculer $\ell_{i,j}$, i > j, de sorte que le nombre total est

$$N = \sum_{j=1}^{n} (N_1(j) + \sum_{i=j+1}^{n} N_2(i,j))$$

Un calcul simple donne $N_1(1)=1$, $N_1(j)=3$ pour j>1, $N_2(i,j)=0$ pour i>j+1, $N_2(j+1,j)=1$ pour $j\in\{1,\ldots,n-1\}$. On en déduit que N=1+3(n-1)+(n-1)=4n-3.

3. Soit q > 1. On suppose que $a_{i,j} = 0$ si |i - j| > q (on dit que A a "2q + 1 diagonales non nulles").

1

(a) (Conservation du profil) Montrer que $\ell_{i,j} = 0$ si i > j + q.

Corrigé – Cette question a été vue en cours. Il est aussi possible de raisonner comme à la question 2a. Pour j=1, il suffit de remarquer $\ell_{i,1}=a_{i,1}/\ell_{1,1}=0$ si i>q+1. Puis, on suppose que $\ell_{i,k}=0$ pour $k\in\{1,\ldots,j-1\}$ et i>k+q La formule (3) donne alors $\ell_{i,j}=0$ pour

Puis, on suppose que $\ell_{i,k} = 0$ pour $k \in \{1, \dots, j-1\}$ et i > k+q La formule (3) donne alors $\ell_{i,j} = 0$ pou i > j+q (en effet, $a_{i,j} = 0$ et $\ell_{i,k} = 0$ dans (3) car pour $k \leq j-1$ on $a \mid i > k+q$).

(b) Calculer le nombre opérations nécessaires pour obtenir L. On pourra se contenter de donner en fonction de q une estimation justifiée du terme de plus haut degré en n. Le calcul exact du nombre d'opérations est hors barème.

[Remarquer que dans (2) la somme va de $k = \max\{1, j-q\}$ à k = j-1 et que dans (3) la somme va de $k = \max\{1, i-q\}$ à k = j-1 (on rappelle que l'on calcule $\ell_{i,j}$ que pour $j \le i \le j+q$).]

Corrigé – On reprend les notations de la question 2b. Pour ce cas, les formules (2)-(3) donnant L sont : Pour j = 2, ..., n,

$$\ell_{j,j} = (a_{j,j} - \sum_{k=\max\{1,j-q\}}^{j-1} \ell_{j,k}\ell_{j,k})^{1/2}, \tag{4}$$

et pour i = j + 1, $\min\{j + q, n\}$,

$$\ell_{i,j} = \left(a_{i,j} - \sum_{k=\max\{1,i-q\}}^{j-1} \ell_{i,k}\ell_{j,k}\right) \frac{1}{\ell_{j,j}}.$$
 (5)

On distingue maintenant selon les valeurs de j et on calcule pour j donné, $N_1(j)$ et $N_2(j,i)$ (et non $N_2(i,j)$), on calcule donc ici $\ell_{j,i}$ pour $i \leq j$. En fait, on calcule donc la ligne j de L.

Cas $j \leq q$

Dans ce cas $\max\{1, j-q\} = 1$ et, si j > 1,

$$N_1(j) = 2(j-1) + 1 = 2j-1, \ N_2(j,i) = 2(i-1) + 1 = 2i-1.$$

Il faut calculer $\ell_{j,i}$ pour i allant de 1 à j, le nombre total d'opérations pour cette valeur de j est donc

$$N(j) = N_1(j) + \sum_{i=1}^{j-1} N_2(j,i) = 2j - 1 + \sum_{i=1}^{j-1} (2i - 1) = j^2.$$

Noter que ce calcul est exact même pour j = 1.

Cas j > q

Dans ce cas $\max\{1, j-q\} = j-q$ et

$$N_1(j) = 2(j-1-(j-q)+1)+1 = 2q+1,$$

 $N_2(j,i) = 2(i-1-(j-q)+1)+1 = 2(i-j+q)+1.$

Ici, Il faut calculer $\ell_{j,i}$ pour i allant de j-q à j, le nombre total d'opérations pour cette valeur de j est donc

$$N(j) = N_1(j) + \sum_{i=j-q}^{j-1} N_2(j,i) = 2q + 1 + \sum_{i=j-q}^{j-1} 2(i-j+q) + 1 = 2\sum_{i=1}^{q} k + q + 1 = (q+1)^2$$

On en déduit N:

$$N = \sum_{j=1}^{n} N(j) = \sum_{j=1}^{q} j^{2} + \sum_{j=q+1}^{n} (q+1)^{2} = \frac{q(q+1)(2q+1)}{6} + (n-q)(q+1)^{2}.$$

Exercice 2 (Matrices à diagonale dominante, barème 15 points). Soit $A \in \mathcal{M}_n(\mathbb{R})$, $n \geq 2$.

1. Dans cette question, on suppose que A vérifie (avec la notation habituelle pour les coefficients de A)

$$a_{i,i} > \sum_{j \neq i} |a_{i,j}| \text{ pour tout } i \in \{1, \dots, n\}.$$
 (6)

(a) Montrer que A est inversible.

[Soit $x \in \mathbb{C}^n$ tel que Ax = 0. En utilisant $(Ax)_i = 0$ avec $i \in \{1, ..., n\}$ tel que $|x_i| = \max_{j \in \{1, ..., n\}} |x_j|$, montrer que x = 0.]

Corrigé – Soit $x \in \mathbb{C}^n$ tel que Ax = 0.

On suppose $x \neq 0$ et on choisit $i \in \{1, \dots, n\}$ tel que $|x_i| = \max_{j \in \{1, \dots, n\}} |x_j|$. De $(Ax)_i = 0$ on déduit

$$|a_{i,i}|x_i| = |\sum_{j \neq i} a_{i,j}x_j| \le \sum_{j \neq i} |a_{i,j}||x_i|,$$

Ce qui impossible car $\sum_{i\neq i} |a_{i,i}| < a_{i,i}$ et $x_i \neq 0$. On a donc x=0, ce qui prouve que A est inversible.

(b) Montrer que la méthode de Jacobi (pour la résolution de Ax = b) converge.

Corrigé – On note B_J la matrice de la méthode de Jacobi. Soit λ une valeur propre de B_J et x un vecteur propre (non nul) correspondant. De $B_J x = \lambda x$, on déduit que, avec la decomposition habituelle de A, $\lambda D x = (E+F)x$.

On choisit $i \in \{1, ..., n\}$ tel que $|x_i| = \max_{j \in \{1, ..., n\}} |x_j|$ et on obtient (avec (6))

$$|\lambda|a_{i,i}|x_i| = |\sum_{j \neq i} a_{i,j}x_j| \le \sum_{j \neq i} |a_{i,j}||x_i| < a_{i,i}|x_i|.$$

Comme $a_{i,i}|x_i| > 0$ ceci donne $|\lambda| < 1$ et prouve que $\rho(B_J) < 1$ et donc que la méthode de Jacobi converge.

(c) Si A est symétrique, montrer que A est s.d.p.

Corrigé – Comme A est symétrique, les valeurs propres de A sont réelles. Soit λ une valeur propre de A et $x \in \mathbb{R}^n$ un vecteur propre (non nul) correspondant. On choisit $i \in \{1, ..., n\}$ tel que $|x_i| = \max_{j \in \{1, ..., n\}} |x_j|$. On peut supposer $x_i > 0$ (sinon on remplaçe x par -x). De $Ax = \lambda x$ on déduit

$$\lambda x_i = (Ax)_i = a_{i,i} x_i + \sum_{j \neq i} a_{i,j} x_j \ge a_{i,i} x_i - \sum_{j \neq i} |a_{i,j}| |x_j| \ge (a_{i,i} - \sum_{j \neq i} |a_{i,j}|) x_i > 0.$$

On a donc $\lambda x_i > 0$ et donc $\lambda > 0$, ce qui prouve que A est s.d.p..

Dans la suite de l'exercice, on suppose que A vérifie (6) avec "\ge " au lieu de "\ge ", c'est-à-dire

$$a_{i,i} \ge \sum_{j \ne i} |a_{i,j}| \text{ pour tout } i \in \{1, \dots, n\}.$$
 (7)

On dit que A est irréductible si pour tout $I, J \subset \{1, \dots, n\}$ tels que $I \cap J = \emptyset$, $I \neq \emptyset$, $J \neq \emptyset$, $I \cup J = \{1, \dots, n\}$, il existe $i \in I$ et $j \in J$ tels que $a_{i,j} \neq 0$.

2. Dans cette question, on suppose que la matrice A vérifie (7), qu'elle est irréductible et que :

Il existe
$$i_0 \in \{1, \dots, n\}$$
 tel que $a_{i_0, i_0} > \sum_{j \neq i} |a_{i_0, j}|$. (8)

(a) Montrer que A est inversible.

[Soit $x \in \mathbb{C}^n$ tel que Ax = 0. Poser

$$I = \{i \in \{1, ..., n\} \text{ tels que } |x_i| = \max_{j \in \{1, ..., n\}} |x_j|\},$$

montrer, en raisonnant par l'absurde, que $I = \{1, ..., n\}$. Conclure en utilisant (8).]

Corrigé – On suppose que $I \neq \{1, ..., n\}$ et on pose $J = \{1, ..., n\} \setminus I$. Comme A est irréductible , il existe $i \in I$ et $j \in J$ tels que $a_{i,j} \neq 0$.

 $De\ (Ax)_i=0\ on\ d\'eduit,\ comme\ |x_j|<|x_i|\ et\ a_{i,j}\neq 0\ (et\ donc\ |a_{i,j}x_j|<|a_{i,j}x_i|),$

$$a_{i,i}|x_i| = |\sum_{k \neq i} a_{i,k} x_k| \leq \sum_{k \neq i} |a_{i,k}| |x_k| < \sum_{k \neq i} |a_{i,k}| |x_i| \leq a_{i,i} |x_i|,$$

Ce qui est impossible. On a donc $I = \{1, ..., n\}$.

On peut conclure avec (8) en écrivant $(Ax)_{i_0}=0$. Comme $i_0\in I$, on a $|x_{i_0}|=\max_{j\in\{1,\dots,n\}}|x_j|$,

$$a_{i_0,i_0}|x_{i_0}| = |\sum_{k \neq i} a_{i,k} x_k| \le \sum_{k \neq i_0} |a_{i_0,k}| |x_k| < a_{i_0,i_0} |x_{i_0}|,$$

ce qui est une nouvelle fois impossible. La matrice A est donc inversible.

(b) Montrer que la méthode de Jacobi (pour la résolution de Ax = b) converge.

Corrigé – On note B_J la matrice de la méthode de Jacobi. Soit λ une valeur propre de B_J et x un vecteur propre (non nul) correspondant. On pose $I = \{i \in \{1, \ldots, n\} \text{ tels que } |x_i| = \max_{j \in \{1, \ldots, n\}} |x_j|\}$. On distingue deux cas

Cas 1 Si $I \neq \{1, ..., n\}$, on pose $J = \{1, ..., n\} \setminus I$. Comme A est irréductible, il existe $i \in I$ et $j \in J$ tels que $a_{i,j} \neq 0$.

De $\lambda Dx = (E+F)x$ on déduit, comme $|x_j| < |x_i|$ et $a_{i,j} \neq 0$ (et donc $|a_{i,j}x_j| < |a_{i,j}x_i|$),

$$|\lambda|a_{i,i}|x_i| = |\sum_{k \neq i} a_{i,k} x_k| \le \sum_{k \neq i} |a_{i,k}| |x_k| < \sum_{k \neq i} |a_{i,k}| |x_i| \le a_{i,i} |x_i|,$$

On en déduit que $|\lambda| < 1$.

Cas 2 Si $I = \{1, ..., n\}$, alors, de $\lambda Dx = (E + F)x$ on déduit, avec (8),

$$|\lambda|a_{i_0,i_0}|x_{i_0}| = |\sum_{j\neq i} a_{i_0,j}x_j| \le \sum_{j\neq i} |a_{i_0,j}||x_{i_0}| < a_{i_0,i_0}|x_{i_0}|.$$

Comme $a_{i_0,i_0}|x_{i_0}| > 0$ ceci donne $|\lambda| < 1$.

On a bien montré que $\rho(B_J) < 1$ et donc que la méthode de Jacobi converge.

(c) Si A est symétrique, montrer que A est s.d.p.

Corrigé – Comme A est symétrique, les valeurs propres de A sont réelles. Soit λ une valeur propre de A et $x \in \mathbb{R}^n$ un vecteur propre (non nul) correspondant. On pose $I = \{i \in \{1, ..., n\} \text{ tels que } |x_i| = \max_{j \in \{1, ..., n\}} |x_j| \}$.

On distingue encore deux cas

Cas 1 Si $I \neq \{1, ..., n\}$, on pose $J = \{1, ..., n\} \setminus I$. Comme A est irréductible, il existe $i \in I$ et $j \in J$ tels que $a_{i,j} \neq 0$.

De $Ax = \lambda x$ on déduit, en supposant $x_i > 0$ (sinon, on change x en -x) et en utilisant $|a_{i,j}x_j| < |a_{i,j}x_j|$,

$$\lambda x_i = (Ax)_i = a_{i,i} x_i + \sum_{k \neq i} a_{i,k} x_k \ge a_{i,i} x_i - \sum_{k \neq i} |a_{i,k}| |x_k| > (a_{i,i} - \sum_{k \neq i} |a_{i,k}|) x_i > 0.$$

On a donc $\lambda x_i > 0$ et donc $\lambda > 0$.

Cas 2 Si $I = \{1, ..., n\}$, on obtient, en supposant $x_{i_0} > 0$ (sinon, on change x en -x) et en utilisant (8),

$$\lambda x_{i_0} = (Ax)_i = a_{i_0, i_0} x_{i_0} + \sum_{k \neq i_0} a_{i_0, k} x_k \ge a_{i_0, i_0} x_{i_0} - \sum_{k \neq i_0} |a_{i_0, k}| |x_k| \ge (a_{i_0, i_0} - \sum_{k \neq i_0} |a_{i_0, k}|) x_{i_0} > 0.$$

Ceci donne $\lambda > 0$.

On a bien montré que A est s.d.p..

3. Donner un exemple (avec n=3) pour lequel A est s.d.p., irréductible, vérifie (7) et la méthode de Jacobi ne converge pas (et donc ne vérifie pas (8)).

4

Corrigé – Cet exemple a été vu en TD, il suffit de prendre
$$A = \begin{bmatrix} 1 & a & a \\ a & 1 & a \\ a & a & 1 \end{bmatrix}$$
 avec $a = 1/2$.

4. Donner un exemple (avec n=3) pour lequel A vérifie (7)-(8), est à coefficients diagonaux strictement positifs et est non inversible (et est donc réductible).

$$\textit{Corrig\'e} - \textit{ Il suffit ici de prendre, par exemple, } A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}.$$

5. Montrer que pour les questions 3 et 4, il n'y a pas d'exemple avec n=2.

$$\textit{Corrig\'e} - \textit{Soit} \ A = \begin{bmatrix} \alpha & \gamma \\ \delta & \beta \end{bmatrix}.$$

Pour la question 3, on veut A s.d.p., irréductible, vérifiant (7). Come A est s.d.p., $\gamma = \delta$, $\alpha > 0$, $\beta > 0$ et $\gamma^2 < \alpha\beta$. Comme A vérifie (7), on a $|\gamma| \le \alpha$ et $|\gamma| \le \beta$. On en déduit que $|\gamma| < \alpha$ et/ou $|\gamma| < \beta$. Ce qui prouve que (8) est vérifié.

Pour la question 4, on veut que A vérifie (7)-(8) et que A soit à coefficients diagonaux strictement positifs. On a donc $\alpha > 0$, $\beta > 0$, $|\gamma| \le \alpha$ et $|\delta| \le \beta$. Comme A doit aussi être réductible, on a $\gamma = \delta = 0$ et donc A est inversible.

Exercice 3 (Méthode de la puissance, 5 points).

On considère la méthode de la puissance pour la matrice $A=\begin{pmatrix} \mu & 1 \\ 0 & \mu \end{pmatrix}$, avec $\mu\in\mathbb{R}^{\star}$:

$$\begin{split} x^{(0)} &= \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \in \mathbb{R}^2, x^{(0)} \neq 0, \\ x^{(k+1)} &= \frac{Ax^{(k)}}{|Ax^{(k)}|}, \text{ pour tout } k \in \mathbb{N}. \end{split}$$

(On rappelle que | · | désigne la norme euclidienne.)

1. Montrer que la suite $(x^{(k)})_{k \in N}$ est bien définie (ce qui revient à montrer que $Ax^{(k)} \neq 0$ pour tout k).

Corrigé – Comme $\mu \neq 0$, Ker $(A) = \{0\}$. On en déduit par récurrence que $Ax^{(k)} \neq 0$ pour tout k.

2. On suppose dans cette question que $\mu > 0$. Montrer que la suite $(x^{(k)})_{k \in \mathbb{N}}$ est convergente. Donner sa limite ainsi que la limite de la suite $(Ax^{(k)} \cdot x^{(k)})_{k \in \mathbb{N}}$.

[On pourra remarquer que $x^{(k)}=\frac{A^kx^{(0)}}{|A^kx^{(0)}|}$ et calculer $A^kx^{(0)}$ en fonction de k, x_1 et x_2 .]

Corrigé –

On remarque que $Ax^{(0)} = \begin{bmatrix} \mu x_1 + x_2 \\ \mu x_2 \end{bmatrix}$. Ceci nous suggère que $A^k x^{(0)} = \begin{bmatrix} \mu^k x_1 + k \mu^{k-1} x_2 \\ \mu^k x_2 \end{bmatrix}$. Cette formule se vérifie par récurrence, En effet on suppose que $A^k x^{(0)} = \begin{bmatrix} \mu^k x_1 + k \mu^{k-1} x_2 \\ \mu^k x_2 \end{bmatrix}$, on en déduit

$$A^{k+1}x^{(0)} = \begin{bmatrix} \mu(\mu^k x_1 + k\mu^{k-1} x_2)) + \mu^k x_2 \\ \mu^{k+1} x_2 \end{bmatrix} = \begin{bmatrix} \mu^{k+1} x_1 + (k+1)\mu^k x_2 \\ \mu^{k+1} x_2 \end{bmatrix}.$$

On cherche maintenant la limite de $x^{(k)}$. En notant $\{e_1,e_2\}$ la base canonique de \mathbb{R}^2

$$x^{(k)} = \frac{(\mu^k x_1 + k\mu^{k-1} x_2)e_1 + \mu^k x_2 e_2}{|(\mu^k x_1 + k\mu^{k-1} x_2)e_1 + \mu^k x_2 e_2|} = \frac{(x_1 + (k/\mu)x_2)e_1 + x_2 e_2}{|(x_1 + (k/\mu)x_2)e_1 + x_2 e_2|}.$$

Si $x_2=0$, on en déduit $\lim_{k\to +\infty} x^{(k)}=sign(x_1)e_1$ et donc $\lim_{k\to +\infty} Ax^{(k)}\cdot x^{(k)}=\mu$. Si $x_2\neq 0$, on en déduit $\lim_{k\to +\infty} x^{(k)}=sign(x_2)e_1$ et donc $\lim_{k\to +\infty} Ax^{(k)}\cdot x^{(k)}=\mu$. Pour la limite de $Ax^{(k)}\cdot x^{(k)}$, on a utilisé le fait que $Ae_1=\mu e_1$ et $e_1\cdot e_1=1$. 3. On suppose dans cette question que $\mu < 0$. Les $(x^{(k)})_{k \in N}$ et $(Ax^{(k)} \cdot x^{(k)})_{k \in N}$ sont-elles convergentes?. Si oui, donner les limite de ces suites.

 $Corrigé-Dans\ ce\ cas,\ la\ formule\ pour\ x^{(k)}\ est$

$$x^{(k)} = (-1)^k \frac{(x_1 + (k/\mu)x_2)e_1 + x_2e_2}{|(x_1 + (k/\mu)x_2)e_1 + x_2e_2|}.$$

 $x^{(k)} = (-1)^k \frac{(x_1 + (k/\mu)x_2)e_1 + x_2e_2}{|(x_1 + (k/\mu)x_2)e_1 + x_2e_2|}.$ La suite $(x^{(k)})_{k \in \mathbb{N}}$ n'est pas convergente, mais les suites $(x^{(2k)})_{k \in \mathbb{N}}$ et $(x^{(2k+1)})_{k \in \mathbb{N}}$ sont convergentes. La suite $(Ax^{(k)} \cdot x^{(k)})_{k \in \mathbb{N}}$ est convergente et sa limite est μ .