Université de Marseille

Licence de Mathématiques, 3ème année, Equation Différentielles Ordinaires SMI5U06TC. Examen du 20 juin 2022, 15h30-17h30, Grand Amphi, St-Charles

L'examen contient un seul exercice. Les documents (polycopié du cours, notes de TD, notes personnelles) sont autorisés. Chaque réponse devra être justifiée.

Exercice 1 (Existence locale ou globale, approximation par un schéma numérique). Soit $f \in C^1(\mathbb{R}, \mathbb{R})$. On suppose que f est croissante et que f(0) = 0. Soit $x_0 \in \mathbb{R}$. On considère le problème de Cauchy

$$x'(t) = -f(x(t)), \ t > 0, \tag{1}$$

$$x(0) = x_0. (2)$$

1. Montrer que le problème (1)-(2) admet une solution maximale et que cette solution est globale (c'est-à-dire définie sur $[0, +\infty[)$ [On pourra étudier le signe de f sur \mathbb{R}_+ et \mathbb{R}_- .].

Corrigé – Comme $f \in C^1(\mathbb{R}, \mathbb{R})$, le théorème de Cauchy-Lipschitz donne l'existence d'une solution maximale. Soit T le temps existence de la solution maximale. Comme f est croissante et que f(0) = 0, la fonction f est positive sur \mathbb{R}_+ et négative sur \mathbb{R}_- . On remarque aussi que 0 est solution de (1). Donc :

- $si \ x_0 = 0 \ alors \ x(t) = 0 \ pour \ tout \ t \in [0, T] \ et \ donc \ T = +\infty \ (pas \ d'explosion).$
- si $x_0 > 0$, on a aussi x(t) > 0 pour tout $t \in [0, T[$ par unicité, car la solution ne peut pas croiser x = 0, donc x est décroissante et bornée sur [0, T[et on a donc encore $T = +\infty$.
- Enfin si $x_0 < 0$, par le même argument, x(t) < 0 pour tout $t \in [0,T]$ par unicité, car la solution ne peut pas croiser x = 0, donc x est croissante et bornée sur [0,T] et on a donc encore $T = +\infty$.
- 2. On s'intéresse dans cette question à la stabilité de 0.

Rappel: On dit que 0 est une point stationnaire (uniformément) stable de (1) si pour tout $\varepsilon > 0$ il existe $\delta > 0$ tel que $|x(0)| \le \delta \Rightarrow \sup_{t \ge 0} |x(t)| \le \varepsilon$. On dit que 0 est un point stationnaire asymptotiquement stable de (1) si pour tout $\varepsilon > 0$ il existe $\delta > 0$ tel que $|x(0)| \le \delta \Rightarrow \sup_{t \ge 0} |x(t)| \le \varepsilon$ et $\lim_{t \to +\infty} x(t) = 0$.

(a) Montrer que 0 est un point stationnaire (uniformément) stable de (1).

Corrigé – Soit $\varepsilon > 0$, si $|x_0| < \varepsilon$, alors $|x(t)| < \varepsilon$ pour tout t > 0, ce qui montre la stabilité uniforme de 0.

(b) On suppose dans cette question que f est strictement croissante. Montrer que 0 est une point stationnaire asymptotiquement stable de (1).

Corrigé – Si $x_0 > 0$, la fonction x est (strictement) décroissante et minorée par 0, elle a donc une limite en $+\infty$ notée ℓ , et $0 \le \ell < x_0$. Cette limite doit être une solution stationnaire (il suffit par exemple de passer à la limite sur l'équation $x(t+1) - x(t) = x'(\theta_t) = -f(x(\theta_t))$ avec $\theta_t \in]t, t+1[$ donné par le théorème des accroissements finis pour voir que $f(\ell) = 0$). Comme f st strictement croissante et f(0) = 0, on en déduit $\ell = 0$.

Le même raisonnement fonctionne si $x_0 < 0$ (avec $x_0 < \ell \le 0$).

Le point 0 *est donc un point stationnaire asymptotiquement stable de* (1).

(c) On suppose dans cette question que f(s) = |s|s pour tout $s \in \mathbb{R}$. Peut-on montrer la stabilité de 0 en étudiant l'équation linéarisée?

Corrigé – Comme f'(0) = 0 l'équation linéarisée (au point 0) est x'(0) = 0. Le point 0 est un point stationnaire (uniformément) stable de l'équation linéarisée mais ceci ne montre pas la stabilité de 0 pour (1).

(d) Montrer (en donnant un exemple) que si f est croissante mais non strictement croissante le point stationnaire 0 peut ne pas être asymptotiquement stable.

Corrigé – Un exemple possible consiste à prendre $f \in C^1(\mathbb{R}, \mathbb{R})$ croissante et telle que f = 0 sur l'intervalle [-1,1]. Tous les points de l'intervalle [-1,1] sont des points stationnaires et donc pour tout $\delta > 0$ $|x(0)| \le \delta \not\Rightarrow \lim_{t \to \infty} x(t) = 0$.

On suppose maintenant $x_0 > 0$.

Soit h > 0. On discrétise le problème (1)-(2) par les schémas d'Euler explicite et implicite de pas h.

Pour $k \ge 0$, on pose $t_k = kh$ et on note y_k la solution approchée au temps t_k donnée par le schéma d'Euler explicite et z_k celle donnée par le schéma d'Euler implicite.

Enfin, on pose $x_k = x(t_k)$ (où x est la solution exacte du problème (1)-(2)).

3. Excrire les formules permettant le calcul de $\{y_k, k \ge 0\}$ et $\{z_k, k \ge 0\}$.

```
Corrigé - y_0 = x_0, z_0 = x_0.

EE: Pour k \ge 0, y_{k+1} = y_k - hf(y_k).

EI: Pour k \ge 0, z_{k+1} = z_k - hf(z_{k+1}) et donc z_{k+1} + hf(z_{k+1}) = z_k.
```

- 4. (Etude du schéma implicite)
 - (a) Montrer que pour tout $a \in \mathbb{R}$ il existe un unique $z \in \mathbb{R}$ tel que z + hf(z) = a. En déduire que la suite $(z_k)_{k \in \mathbb{N}}$ est bien définie.

Corrigé – La fonction de ($\mathbb R$ dans $\mathbb R$) $z\mapsto z+hf(z)$ est strictement croissante, continue, tend vers $+\infty$ quand z tend vers $+\infty$ et tend vers $-\infty$ quand z tend vers $-\infty$, elle est donc bijective de $\mathbb R$ dans $\mathbb R$, ce qui prouve que tout $a\in\mathbb R$ il existe un unique $z\in\mathbb R$ tel que z+hf(z)=a. La suite $(z_k)_{k\in\mathbb N}$ est donc bien définie.

(b) Montrer par récurrence sur k que $z_k \ge x_k$ pour tout $k \in \mathbb{N}$.

Corrigé – La fonction x est décroissante et f est croissante, $x_{k+1} - x_k = -\int_{t_k}^{t_{k+1}} f(x(t))dt \le -hf(x_{k+1})$ et donc $x_{k+1} + hf_{x_{k+1}} \le x_k$. Comme $z_{k+1} + hf(z_{k+1}) = z_k$ et que la fonction $s \mapsto s + hf(x)$ est croissante, on en déduit que $z_{k+1} \ge x_{k+1}$ si $z_k \ge x_k$. On a donc bien prouvé par récurrence que $z_k \ge x_k$ pour tout $k \in \mathbb{N}$ (car $z_0 = x_0$).

5. (Etude du schéma explicite)

On pose $M = \max\{f'(s), s \in [0, x_0]\}$ et on suppose 0 < h < 1/M (noter que $0 \le M < +\infty$).

(a) Montrer que la fonction $s \mapsto s - hf(s)$ est strictement croissante sur l'intervalle $[0, x_0]$.

Corrigé – pour $s \in \mathbb{R}$, on pose g(s) = s - hf(s) de sorte que g'(s) = 1 - hf'(s). Il suffit alors de remarquer que hf'(s) < 1 si $s \in [0, x_0]$ pour conclure que g est strictement croissante sur l'intervalle $[0, x_0]$.

(b) Montrer que $0 < y_k \le x_0$ pour tout $k \in \mathbb{N}$.

Corrigé – On raisonne par récurrence sur k. On a bien $0 < y_0 \le x_0$. Puis si $0 < y_k \le x_0$, $y_{k+1} = y_k - hf(y_k) \le y_k \le x_0$ (car $f(y_k) \ge 0$) et $y_{k+1} = y_k - hf(y_k) > 0$ car la fonction $s \mapsto s - hf(s)$ est strictement croissante sur l'intervalle $[0, y_k]$.

(c) Montrer que $y_k \leq x_k$ pour tout $k \in \mathbb{N}$.

Corrigé – On raisonne encore par récurrence. On a bien $y_0 \le x_0$.

On suppose $y_k \leq x_k$, comme x est décroissante et f est croissante,

$$x_{k+1} - x_k = -\int_{t_k}^{t_{k+1}} f(x(t))dt \ge -hf(x_k)$$
 et donc

 $x_{k+1} \ge x_k - hf(x_k).$

Puis, $y_{k+1} = y_k - hf(y_k) \le x_k - hf(x_k)$ car la fonction $s \mapsto s - hf(s)$ est croissante sur l'intervalle $[y_k, x_k] \subset [0, x_0]$ et donc $y_{k+1} \le x_{k+1}$.