Université de Marseille

Licence de Mathématiques, 3ème année, équations différentielles ordinaires Partiel du vendredi 25 octobre 2019

L'examen contient 3 exercices. Le barème est sur 26 points, il n'est donc pas demandé de tout faire pour avoir 20. Les documents (polycopié du cours, notes de TD, notes personnelles) sont autorisés.

Exercice 1 (Deux équations linéaires du 1er ordre, barème 7 points).

Soient a > 0 et $y_0 > 0$. On s'intéresse au problème de Cauchy suivant :

$$y'(t) = -ay(t), \ t > 0,$$
 (1)

$$y(0) = y_0. (2)$$

1. Donner la solution du problème (1)-(2) (c'est-à-dire la fonction $y \in C([0, +\infty[, \mathbb{R}) \cap C^1(]0, +\infty[, \mathbb{R}))$ solution de (1)-(2)).

Corrigé – La solution est donnée par $y(t) = y_0 e^{-at}$.

Soit b > 0. On s'intéresse maintenant au problème de Cauchy suivant, avec y donnée à la question 1:

$$z'(t) = -bz(t) + ay(t), \ t > 0, \tag{3}$$

$$z(0) = 0. (4)$$

- 2. On suppose, dans cette question, que $a \neq b$.
 - (a) Donner la solution de (3)-(4).

Corrigé – L'EDO à résoudre en z s'écrit $z'(t) = -bz(t) + ay_0e^{-at}$. Les solutions de l'équation homogène associée sont de la forme $z_h(t) = Ce^{-bt}$ avec $C \in \mathbb{R}$. On cherche une solution particulière sous la forme $z_p(t) = \alpha e^{-at}$ où $\alpha \in \mathbb{R}$ est à déterminer. On a alors $z_p'(t) = -a\alpha e^{-at}$ et donc le coefficient α doit satisfaire : $-a\alpha = -b\alpha + ay_0$. Ceci est possible car on a supposé $a \neq b$ et on a donc

$$\alpha = \frac{ay_0}{b-a}$$

Ecrivons alors la condition initiale pour déterminer C :

$$z(0) = z_h(0) + z_p(0) = C + \frac{ay_0}{b-a} = 0,$$

et donc $C = ay_0/(a-b)$, ce qui donne

$$z(t) = \frac{ay_0}{b-a} (e^{-at} - e^{-bt})$$
 (5)

(b) Donner les valeurs de $\lim_{t\to+\infty} z(t)$ et $\int_0^{+\infty} z(t)dt$.

Corrigé – En passant à la limite sur (5), on obtient $\lim_{t\to+\infty} z(t)=0$. En intégrant (5) entre 0 et $+\infty$, on obtient :

$$\int_{0}^{+\infty} z(t)dt = \frac{ay_0}{b-a} (\frac{1}{a} - \frac{1}{b}) = \frac{y_0}{b}.$$

- 3. On suppose, dans cette question, que a = b.
 - (a) Donner la solution de (3)-(4).

Corrigé – La solution particulière obtenue à la question précédente n'est possible que pour $a \neq b$. Dans le cas a = b, l'EDO s'écrit $z'(t) + az(t) = ay_0e^{-at}$ et le second membre appartient à l'espace vectoriel des solutions de l'équation homogène associée. On cherche alors une solution particulière de la forme $z_p(t) = \beta te^{-at}$ où $\beta \in \mathbb{R}$ est à déterminer. Une solution particulière est donc $z_p(t) = ay_0te^{-at}$ Cette solution vérifie aussi la condition initiale z(0) = 0 et par unicité de la solution, on en déduit que

$$z(t) = ay_0 t e^{-at}$$
.

(b) Donner les valeurs de $\lim_{t\to+\infty} z(t)$ et $\int_0^{+\infty} z(t)dt$.

Corrigé – On a $\lim_{t\to+\infty} z(t) = 0$. Par intégration par parties,

$$\int_{0}^{+\infty} z(t)dt = [-y_0 t e^{-at}]_{0}^{+\infty} + \int_{0}^{+\infty} y_0 e^{-at} dt = \frac{y_0}{a}.$$

Exercice 2 (Une équation non linéaire du 1er ordre, barème 5 points).

On s'intéresse au problème de Cauchy suivant :

$$y'(t) = 1 + t + \sin(t + y^{2}(t)), \ t > 0,$$
(6)

$$y(0) = 0. (7)$$

1. En appliquant les théorèmes du cours, montrer que le problème (6)-(7) admet une solution maximale.

Corrigé – La fonction $f:(t,y)\mapsto 1+t+\sin(t+y^2)$ est de classe C^∞ et donc localement lipschitzienne en sa deuxième variable. On peut donc appliquer le théorème de Cauchy-Lipschitz et le théorème d'unicité pour dire que le problème de Cauchy admet une solution maximale.

On note y la solution maximale donnée à la question $1, y \in C([0, T_m[, \mathbb{R}) \cap C^1(]0, T_m[, \mathbb{R}))$.

2. Montrer que $y(t) \ge 0$ pour tout $t \in [0, T_m[$.

Corrigé – On a y(0) = 0 et $y'(t) \ge 0$ pour tout $t \in]0, T_m[$, donc $y(t) \ge 0$ pour tout $t \in [0, T_m[$.

3. Montrer que $T_m = +\infty$.

Corrigé – On a $y'(t) = 1 + t + \sin(t + y(t)^2) \le 2 + t$. Donc $y(t) \le 2t + \frac{t^2}{2} \le 2T_m + \frac{T_m^2}{2}$ pour tout $t \in [0, T_m[$, ce qui montre l'existence globale par le théorème sur la solution maximale.

Exercice 3 (Une équation linéaire du 2eme ordre, barème 14 points). Soient I un intervalle ouvert de \mathbb{R} et $a,b \in C(I,\mathbb{R})$. On s'intéresse à l'équation, pour $y \in C^2(I,\mathbb{R})$,

$$y''(t) + a(t)y'(t) + b(t)y(t) = 0, \ t \in I.$$
(8)

1. Rappeler brièvement pourquoi l'ensemble des solutions de l'équation (8) forme un espace vectoriel (sur IR). Quelle est la dimension de cette espace vectoriel?

Corrigé – Le fait que l'ensemble des solutions de l'équation (8) forme un espace vectoriel est dû à la linéarité de l'équation (8). En effet, si les fonctions y et z sont solutions de (8), la fonction y + z est encore solution de l'équation (8). De même si y est solution de (8) et $\alpha \in \mathbb{R}$, la fonction αy est encore solution de l'équation (8). La dimension de cette espace vectoriel est 2.

Pour la suite de l'exercice, on note E l'ensemble des solutions de l'équation (8). On se donne deux solutions de l'équation (8), notées y_1 et y_2 et on définit la fonction z de I dans \mathbb{R} par

$$z(t) = y'_1(t)y_2(t) - y'_2(t)y_1(t)$$
, pour tout $t \in I$.

2. Donner (en fonction des données du problème) l'équation différentielle du 1er ordre satisfaite par z sur I.

Corrigé – On remarque que, pour tout
$$t \in I$$
, $z'(t) = y_1''(t)y_2(t) - y_2''(t)y_1(t) = (-a(t)y_1'(t) - b(t)y_1(t))y_2(t) + (a(t)y_2'(t) + b(t)y_2(t))y_1(t) = -a(t)z(t)$.

3. Montrer que $z(t) \neq 0$ pour tout $t \in I$ sauf si z est la fonction identiquement nulle.

Corrigé – La fonction z est solution de l'équation différentielle du 1er ordre $z'(t) = -a(t)z(t), t \in I$.

La fonction identiquement nulle est solution de cette équation différentielle. Comme les trajectoires des solutions de cette équation différentielle ne se rencontrent pas, on en déduit bien que $z(t) \neq 0$ pour tout $t \in I$ si z n'est pas la fonction identiquement nulle.

Une autre façon de répondre à la question est de remarquer que la solution générale de l'équation différentielle satisfaite par z est $z(t) = Ce^{A(t)}$ ou A est une primitive de a et $C \in \mathbb{R}$. Cette fonction de s'annule pas sauf si C = 0 (et on a alors $z \equiv 0$).

4. On suppose dans cette question que z est la fonction identiquement nulle. Soit $t_0 \in I$. On considère le système de deux équations à deux inconnues réelles (notées α_1 et α_2)

$$\alpha_1 y_1(t_0) + \alpha_2 y_2(t_0) = 0,$$

$$\alpha_1 y_1'(t_0) + \alpha_2 y_2'(t_0) = 0.$$

En utilisant $z(t_0) = 0$, montrer que ce système n'est pas inversible et donc qu'il existe $(\alpha_1, \alpha_2) \in \mathbb{R}^2$ solution de ce système et tel que $(\alpha_1, \alpha_2) \neq (0, 0)$.

En déduire que pour tout $t \in I$, $\alpha_1 y_1(t) + \alpha_2 y_2(t) = 0$. (Les fonctions y_1 et y_2 sont donc dépendantes.) [Utiliser le théorème d'unicité vu en cours pour les équations du 2-ème ordre]

Corrigé - la matrice de ce système est

$$A = \begin{bmatrix} y_1(t_0) & y_2(t_0) \\ y'_1(t_0) & y'_2(t_0) \end{bmatrix}.$$

Comme $det(A) = -z(t_0) = 0$, le système n'est pas inversible. Ceci prouve que $Ker(A) \neq \{0\}$ et donc qu'il existe $(\alpha_1, \alpha_2) \in \mathbb{R}^2$ solution de ce système et tel que $(\alpha_1, \alpha_2) \neq (0, 0)$.

On pose, pour tout $t \in I$, $y(t) = \alpha_1 y_1(t) + \alpha_2 y_2(t)$. La fonction y est solution de (8). Elle est nulle ainsi que sa dérivée en 0. Le théorème d'uncité vu en cours pour les équations du 2eme ordre donne alors $y \equiv 0$.

Pour la suite de l'exercice, on suppose que z n'est pas la fonction identiquement nulle.

5. Soient $t_0 \in I$ et $c, d \in {\rm I\!R}$. A l'équation (8), on ajoute la condition

$$y(t_0) = c, \ y'(t_0) = d.$$
 (9)

(On rappelle qu'il existe une unique solution à (8)-(9).)

En utilisant $z(t_0) \neq 0$, montrer qu'il existe $\alpha_1, \alpha_2 \in \mathbb{R}$ tels que la solution de (8)-(9) s'écrit

$$y(t) = \alpha_1 y_1(t) + \alpha_2 y_2(t), \text{ pour tout } t \in I.$$
(10)

En déduire que les fonctions y_1, y_2 forment une base de E.

Corrigé – Soient $\alpha_1, \alpha_2 \in \mathbb{R}$. La fonction y définie par (10) est solution de (8)-(9) si et seulement si

$$\alpha_1 y_1(t_0) + \alpha_2 y_2(t_0) = c,$$

$$\alpha_1 y_1'(t_0) + \alpha_2 y_2'(t_0) = d.$$

Comme $z(t_0) \neq 0$, ce système (dont les inconnues sont α_1, α_2) est inversible et admet donc une (unique) solution. On obtient ainsi la solution de (8)-(9).

Quand c et d décrivent \mathbb{R} , on obtient toutes les solutions de (8). Ceci prouve que les fonctions y_1, y_2 engendrent E et, comme dim E = 2, forment une base de E.

Soit $g \in C(I, \mathbb{R})$.On s'intéresse maintenant à l'équation

$$y''(t) + a(t)y'(t) + b(t)y(t)) = g(t), \ t \in I.$$
(11)

6. On cherche une solution de (11) sous la forme $y(t) = \alpha_1(t)y_1(t) + \alpha_2(t)y_2(t)$ avec la condition $\alpha_1'(t)y_1(t) + \alpha_2'(t)y_2(t) = 0$ pour tout $t \in I$.

Montrer que y est solution de (11) si et seulement si $\alpha_1'(t)y_1'(t) + \alpha_2'(t)y_2'(t) = g(t)$ pour tout $t \in I$.

En déduire qu'il est effectivement possible de trouver des fonctions α_1 et α_2 telles que y soit solution de (11) et qu'on obtient ainsi toutes les solutions de (11).

Corrigé – Comme $y'(t) = \alpha_1(t)y_1'(t) + \alpha_2(t)y_2'(t)$ et $y''(x) = \alpha_1'(t)y_1'(t) + \alpha_2'(t)y_2'(t) + \alpha_1(t)y_1''(t) + \alpha_2(t)y_2''(t)$ et que y_1 , y_2 sont solutions de (8), on obtient que y est solution de (11) si et seulement si $\alpha_1'(t)y_1'(t) + \alpha_2'(t)y_2'(t) = g(t)$ (pour tout $t \in I$).

Il suffit donc de trouver des fonctions α_1 et α_2 telles que, pour tout $t \in I$,

$$\alpha_1'(t)y_1(t) + \alpha_2'(t)y_2(t) = 0,$$

$$\alpha_1'(t)y_1'(t) + \alpha_2'(t)y_2'(t) = g(t).$$

Comme $z(t) \neq 0$, ce système est inversible et on trouve donc les fonctions α_1' et α_2' en fonction de y_1 et y_2 . Ceci nous donne aussi (en prenant les primitives) les fonctions α_1 et α_2 .

Comme les primitives sont définies à une constante près, on obtient bien toutes les solutions de (11).

- 7. Dans cette question, on prend $I = \mathbb{R}$, a(t) = 0, b(t) = 1 et g(t) = sint.
 - (a) Donner deux fonctions y_1 , y_2 formant une base de E.

Corrigé – L'équation caractéristique pour cette équation est $r^2 + 1 = 0$. Les solutions sont $r = \pm i$. Une base de E est obtenue en prenant $y_1(t) = \cos t$ et $y_2(t) = \sin t$

(b) Donner toutes les solutions de (11) (il est autorisé de deviner la forme d'une solution particulière, sinon utiliser la méthode de la question 6...).

Corrigé – Comme $g = y_2$, on cherche une solution particulière sous la forme $y(t) = \alpha t cos t + \beta t sin t$ (avec $\alpha, \beta \in \mathbb{R}$). Comme

$$y'(t) = -\alpha t \sin t + \beta t \cos t + \alpha \cos t + \beta \sin t,$$

et

$$y''(t) = -y(t) - 2\alpha \sin t + 2\beta t \cos t,$$

la fonction y est solution de (11) si seulement si $\alpha=-1/2$ et $\beta=0$. Une solution particulière est donc

$$y(t) = -\frac{1}{2}t\cos t$$
, pour tout $t \in \mathbb{R}$.

La solution générale de (11) *est donc, pour* $\alpha_1, \alpha_2 \in \mathbb{R}$ *,*

$$y(t) = -\frac{1}{2}t\cos t + \alpha_1\cos t + \alpha_2\sin t$$
, pour tout $t \in \mathbb{R}$.