Site: \boxtimes Luminy \boxtimes St-Charles	☐ St-Jérôme ☐ Cht-Gombert	\square Aix-Montperrin \square Aubagne-SATIS
Sujet session de : \square 1er semestre \boxtimes 2ème semestre \boxtimes Examen		Durée de l'épreuve : 3H
Examen de : \square L1 \square L2 \boxtimes L3 \square M1 \square M2 \square LP \square DU		Nom diplôme : Licence de Mathémathiqu
Code Apogée : ENSMI6U2	Libellé du module : Equations différentielles	
Document autorisé : \square OUI \boxtimes NON		Calculatrices autorisées : \square OUI \boxtimes NON

Examen - Mercredi 10 mai 2017

Aucun document n'est autorisé. Les exercices sont indépendants et peuvent être traités dans n'importe quel ordre. Le barème est donné à titre indicatif. Le sujet est un recto-verso.

Exercice 1 [10 pt.] On considére les matrices

$$I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, J = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, K = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

- 1. Déterminer les exponentielles des matrices précédentes.
- 2. Pour $\theta \in \mathbb{R}$, on introduit la matrice $M_{\theta} = \cos(\theta)J + \sin(\theta)K$. Montrer que $M_{\theta}^2 = I$ et en déduire $e^{tM_{\theta}}$. Vérifier que M_{θ} est symétrique et déterminer ses valeurs propres.

On note $||x||_2 = \sqrt{x_1^2 + x_2^2}$ la norme euclidienne sur \mathbb{R}^2 . On définit la norme $||\cdot||_2$ sur les matrices de $M_{2\times 2}(\mathbb{R})$ par

$$||A||_2 = \sup_{||x||_2=1} ||Ax||_2$$

3. Soit B est une matrice symétrique positive. Montrer que pour tout $X_0 \in \mathbb{R}^2$, la solution du problème de Cauchy

$$X'(t) = -BX(t),$$

$$X(0) = X_0$$

vérifie $||X(t)||_2 \le ||X_0||_2$. En déduire que $||e^{-tB}||_2 \le 1$ pour tout t > 0.

- 4. Montrer si A est symétrique de valeurs propres λ_1, λ_2 alors, $||A||_2 = \max(|\lambda_1|, |\lambda_2|) = \rho(A)$.
- 5. Montrer que la matrice $B_{\theta} = I + M_{\theta}$ est une matrice symétrique positive (i.e. $(B_{\theta}X, X) \geq 0$). Calculer $\|e^{-tB_{\theta}}\|_{2}$.

Exercice 2 Considérons une particule de masse 1 soumise à des frottements et à une force dérivant d'un potentiel P. Sa position u au cours du temps vérifie

$$\ddot{u} = -P'(u) - k\dot{u}$$

où $k \geq 0$ est une constante et $P : \mathbb{R} \longrightarrow \mathbb{R}$ est une fonction que nous supposerons polynomiale, positive et coercive, c'est-à-dire telle que

$$\lim_{|x| \to +\infty} P(x) = +\infty.$$

Partie 1. [5 pt.]

- 1. On pose $v = \dot{u}$. Donner le système d'équation différentielle d'ordre 1 vérifié par le couple (u, v).
- 2. Montrer l'existence et l'unicité d'une solution maximale (u, v) associée à chaque donnée initiale $(u_0, v_0) \in \mathbb{R}^2$.
- 3. Calculer la dérivée en temps de la fonction $t \mapsto H(u(t), v(t))$ où

$$H(u,v) = \frac{v^2}{2} + P(u)$$

pour $(u, v) \in \mathbb{R}^2$.

4. Montrer que pour tout $C \in \mathbb{R}$, l'ensemble

$$\{(u,v) \in \mathbb{R}^2 : H(u,v) \le C\}$$

est compact.

5. En déduire que les solutions sont globales.

Partie 2. [5 pt.]

Dans cette partie, nous supposerons que k=0 et $P(x)=\frac{x^2}{2}$ pour tout $x\in\mathbb{R}$. Soit $(u_0,v_0)\in\mathbb{R}^2$.

- 6. À quel système physique ces équations sont-elles associées?
- 7. Résoudre le système d'équations.
- 8. Tracer dans l'espace des phases quelques trajectoires.
- 9. Donner les algorithmes permettant de calculer une solution approchée au temps T > 0 en N pas $(N \in \mathbb{N}^*)$, via les méthodes d'Euler explicite d'un part et Euler implicite d'autre part.
- 10. Soit $n \in \{0, ..., N-1\}$. En notant (u_n, v_n) et (u_{n+1}, v_{n+1}) les couples obtenus aux étapes n et n+1, exprimer $H(u_{n+1}, v_{n+1})$ en fonction de $H(u_n, v_n)$ et h = T/N pour les deux méthodes.
- 11. Tracer quelques trajectoires numériques dans l'espace des phases. Commenter le comportement des approximations numériques par rapport aux solutions exactes.

Partie 3. [7 pt.]

Dans cette partie, nous supposerons que k > 0 et $P(x) = (x-1)^2(x+1)^2$ pour tout $x \in \mathbb{R}$. Soit $(u_0, v_0) \in \mathbb{R}^2$.

- 12. Tracer l'allure du graphe de P.
- 13. Trouver les équilibres du système.
- 14. Calculer le système d'équation différentielle linéarisé autour de ces équilibres et en déduire leur stabilité.
- 15. (a) Montrer que H(u(t), v(t)) admet une limite finie en $+\infty$.
 - (b) Soit $f:[0,+\infty[\to\mathbb{R}]]$ une fonction de classe C^2 qui converge en $+\infty$ et telles que f'' est bornée, montrer que f' converge vers 0 en $+\infty$.
 - (c) En déduire que v(t) converge vers 0 lorsque t tend vers $+\infty$.
 - (d) Réutiliser le point (b) pour montrer que v'(t) converge vers 0 lorsque t tend vers $+\infty$.
 - (e) En déduire que (u, v) converge. Donner les limites possibles.