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Abstract

We present various results of the last twenty years convgrgiwards énomotopical theory of computation
This new theory is based on two crucial notionpalygraphs(introduced by Albert Burroni) angolygraphic
resolutions(introduced by Frangois Métayer). There are two motivaifmm such a theory:

e providing invariants of computational systems to studysthsystems and prove properties about them;
e finding new methods to make computations in algebraic strastcoming from geometry or topology.

This means that this theory should be relevant for mathemat as well as for theoretical computer scientists,
since both may find useful tools or concepts for their own darmaming from the other one.
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Here are the main notions and results presented in this paper

1. A presentation of a monoidl/ is convergentf it is noetherianandconfluent Such a presentation can be
used to solve thevord problem ford/ [KN85a]. The notion ofritical peakis crucial here.

2. IfamonoidM has a finite convergent presentation, tiiérsatisfies thévomological conditiort’ P; [Sq87].
In particular, the homology groufs (A1) is of finite type.

3. IfamonoidM has a finite convergent presentation, thigrhasfinite derivation typgSOK94]. The notion
of 2-congruence on derivations crucial here.

4. Finite derivation type implies the conditidnP; [CO94, La95], but the converse does not hold [SOK94].
Hence, we shall present point 3 before point 2.

5. IfamonoidM has a finite convergent presentation, tAérsatisfies thébomological conditiort” P, [Ko90].
In particular, allH,, (M) are of finite type.

6. The notion of 2-congruence corresponds to a special ¢@spaygraph Polygraphs, which are also called
computadswere introduced for studying higher dimensional word peois [Po91, Bu93].

7. Polygraphic resolutiongrovide a natural framework for generalizing point 3 to legdimension [Me03].
The homology of such a polygraphic resolution coincide$ e homology of the monoid [LM].

8. We conjecture that any finite convergent presentatiawalkto build a polygraphic resolution of finite type.
This would provide an alternative (geometric) proof formic.

The following points should also fit in this framework, bugyhare not presented in this paper:

9. The notion ofGaussian groups related to the notion of convergent presentation. A gpéxample is the
group of braidsB,,. Kobayashi's method [Ko90] has been adapted to build réisolsiin this case [DLO3].
We would like to build polygraphic resolutions in that case.

10. Higher dimensional rewritinds used for encoding term rewriting [Bu93] or for computatia monoidal
categories [La03, Gu06]. We would like to build polygraptésolutions in that case. This would also give
an appropriate framework for a general theory of coherence.

Sections 1 and 2 present classical definitions and reswdtsinghe rest of the paper. Sections 3 and 4 present the
existing theory (in reverse historical order). Section &sents the new approach inspired by the previous ones.

The author wishes to thank the anonymous referee for hisutaeading and his helpful suggestions.

1 Presentations by generators and relations

1.1 Generators

A monoidis a setM together with an associatiygoductz, y — xy and aunit 1. If X c M, we write X* for the
submonoid of\/ generated byX, that is the set of finite produci§ zs - - -z, with 21, 22, ..., 2, € X, including
the empty product 1. It is the smallest submonoidbtontainingX .

e If X* = M, we say thatX generates\/, or thatX is aset of generatorfor M.

e If X is finite and generate®/, we say that\/ is afinitely generated monoid

e If X generated/ and no strict subset of does, we say thaX is aminimal set of generatorfer M.
Note thatM* = M. In particular, any finite monoid is finitely generated.

Proposition 1 If M is a finitely generated monoid anXl is a set of generators fa¥/, then there is a finite subset
of X which generated/. In particular, any minimal set of generators faf is finite.

Indeed, forany = zyxo - - - x, € M with z1,29,...,2, € X,we getafinite seX (y) = {z1,22,...,2,} C X.
IfY = {y1,92,...,y,} generated!, so does the finite st (Y) = X (y1) U X (y2) U--- U X (y,) C X. O
A groupis a monoidG such that each € G has arninversex~! € G. If X C G, we write (X)) for the subgroup

of G generated byX, that is(X U X ~1)*. If (X) = G, we say thaf\ generates the grou@. We can also define
the notion offinitely generated groupnd the notion ofminimal set of generators for a group

Note that a group is finitely generated if and only if it is fetjt generated as a monoid.



1.2 Presentations of monoids

If ¥ is analphabet that is a set oBymbols we write ¥* for the free monoid generated by, that is the set of
wordsaas - - - ay, With aq, as, ..., a,, € X, including theempty wordl. The notatior* is consistent with the
previous one, sincE* is also the submonoid &f* generated by..

If M is a monoid, then any mafy: ¥ — M extends to a unique morph.isfn: 3* — M. For instance, ifM is
the additive monoidN, andf is defined byf(«) = 1 for eacha € ¥, thenf(z) is thelength|z| of the wordz.

A presentatior(by generators and relatiofiss a pair(32, R) whereX is an alphabet anf is a subset oE* x ¥*,
that is a binary relation ol*. Thecongruence generated liyis defined as follows:

e uxv <> uyv whenevew,v € ¥*, andx Ry ory R x;
o  —5 ywhenevew = zg g L1 <R R Tn =Y.
We get aquotient monoid>* /<7, and acanonical surjectionrg : ¥* — ¥* /<%, Moreover,iff : ¥ — Misa
map such thaf (z) = f(y) whenever: R y, we get a unique morphisth: £* /<% — M suchthatf o mp = f.
e Ifthe map/ is bijective, we write)/ = ¥* /<% and we say tha, R) is apresentation of the monoity/.
This means that the s¢{X) generated/, and thatf (z) = f(y) ifand only ifz <7, .

e If fis bijective and if bott™ = {ay,...,a,} andR = {(z1,11),.. ., (4,y,)} are finite, then we write
M~ {ay,...,0p |21 = y1,...,24 = yq)" and we say that/ is afinitely presented monoid

o If fis bijective, f(X) is a minimal set of generators and no strict subsét generates the congruenes,,
then we say that:, R) is aminimal presentationf M.

Note that any monoid/ has astandard presentatio(®, R), whereX consists of one symbal, for eachz € M,
andR is defined byu; R 1 andaga, R a,, forallz,y € M. In particular, any finite monoid is finitely presented.
Lemma 1 Forany morphisny : ¥* /<%, — Q* /<%, thereis amorphismp : £* — Q* suchthatrgop = formg.
TR Ims
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Indeed, it suffices to defing(«) for eacha € X, using the fact that s is surjective ]

Proposition 2 If M is a finitely presented monoid add = ¥* /<7, whereX is finite, then there is a finite subset
of R which generates-7}. In particular, any minimal presentation af is finite.

Indeed, if($2, S) is a finite presentation a¥/, there is an isomorphisth: X* /<% = Q/<%. Applying lemma 1
to f andf~!, we get two morphismg : ©* — Q* andp : Q* — X* such that the following properties hold:

p(x) <% ¢(y) whenever: R v, ?(z) <& P(y) whenever: S y, x <% P(p(z)) foranyzr € ¥*.

Hence,—7} is generated by the finite relatid®( defined byp(x) R’ B(y) whenever: S y, anda R’ (¢ («)) for
eacha € 3. By the same argument as for proposition 1, we get a finiteedudis? which generates-7,. [

1.3 Presentations of groups

If 3 is an alphabet, we writ&") for thefree group(X U X)* /<% whereX = {@| « € X} is a disjoint copy ofS
andR is defined bywa R 1 andaa R 1 for eacha € X.

We identify eachn € ¥ with its congruence classg (o) € (3), so thatrr(a) = o=t and(X) = (X U S~1)*,
that is the subgroup &) generated by.. Hence, the notatiot®) is consistent with the previous one.

A presentation of groufs a pair(%, X), whereX C (X UX)*. Itis apresentation of the grou@ if G = (X)/H,
whereH is the normal subgroup df:) generated by z(X). This means thaf = (X UX)* /<7, whereRx is
defined bya@ Rx 1 andaa Rx 1foreacha € ¥, andx Rx 1 foreachr € X.

In particular, if both® = {aq,...,a,} andX = {z1,...,2,} are finite, we writed = (a1, ..., ap | T1,. .., Zq),
which means? & (ay,aq,...,0p, 0y |a1an = Lo = 1,..., 0,0, = L,ap0p = 1,21 = 1,...,24 = 1),
Note that a grou is finitely presented if and only if it is finitely presentedaamonoid.



1.4 Examples

Here are some basic examples of finite presentations of gramug monoids:
o 7 =By = (a) 2 (a,alaa = 1,aa = 1)* (free group generated by one element, or 2-braids);

o Zx7 = {a,b) = (a,a,b,b|a@ = 1,a@a = 1,bb = 1,bb = 1)* (free group generated by two elements);

o N2 = (a,b|ab = ba)" (free commutative monoid generated by two elements);

o 7%= (a,blaba='b™1) = (a,@,b,b|aa = 1,aa = 1,bb = 1,bb = 1, ab = ba)* (free commutative group);
o Z2Sy > (a|a*) = (a|a® = 1)* (integers modulo 2, or permutations of 2 elements);

e S3 = (a,b|a? b abab~ta"1b~1) = (a,b|a® = 1,b% = 1,aba = bab)" (permutations of 3 elements);

e B3 = (a,b|abab ta"'b"Y) = (a,@,b,b|a@ = 1,@a = 1,bb = 1,bb = 1, aba = bab)* (3-braids);

B3 = (a,b|aba = bab)* (positive 3-braids).

2 Word rewriting

2.1 Rewrite rules and reductions

If (¥, R) is a presentation, eagh= (z,y) € R can be seen asrawrite rulez 2 1, with sourcez andtargety:

T
)

An elementary reductiois a formal product.zv “% uyv whereu, v are words and: % y is a rule:

u T (%
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Y

A reductionz = y is a finite sequence = z¢g = z; = =9 - - Tn_1 — x, = y of elementary reductions:

T
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Y

Each rule is considered as an elementary reduction, andemgetary reduction is seen as a reduction of length 1.

If + = yandy > z are reductions, we write x s for thecomposed reduction — y - z. Furthermore, there is
anempty reduction: % 2 for any wordz € ¥*. So we get aategory of reduction&®, R)*.

Note also that for any word and for any reduction — 7, we can define two reductions: = uy andzu = yu.



2.2 Termination and confluence

Thereduction relation generated by is the smallest order relation containiRgvhich is compatible with product:
e uxv —pr uyv Whenevem,v € ¥* andx R y;
o r —5 ywheneverw = zg - &1 =R+ —R Tn =Y.

In other wordsy —7, y whenever there is a reductien— vy, andz — r y whenever there is an elementary one.

We say that a word is reducibleif there is some worg such that: —r y. Otherwise, we say thatis reduced

We say that a property iB-hereditaryif, whenever it holds for each such thatt —r y, then it also holds fox.
In particular, such a property holds for all reduced words.

Proposition 3 For any presentationi::, R), the following properties are equivalent:
e There is no infinite reductiony —g 1 —r -+ —Rr T —Rr Tnt1 —r - (tErMination).
e Any R-hereditary property holds for all words (noetherian indion principle).

Indeed, ifz does not satisfy somB-hereditary property, then we can build an infinite redutstarting fromu.
Conversely, termination can be proved by noetherian inonctl

In that case, we say that the presentatiomastherian This implies that the source of a rule can never be empty.
Moreover, for any word, there is a reduced such thatr —7, 2’. This is proved by noetherian induction on

In order to prove that a presentatign, R) is noetherian, it suffices to exhibitarmination orderindor it, that is
a strict well-founded ordering which containgk? and which is compatible with product. For instaneemay be
defined byr < y whenevetz| < |y|, or |z| = |y| andz is strictly smaller thary for some lexicographical ordering.

Proposition 4 If the presentatiori>, R) is noetherian, then the following properties are equivélen
o If z —7} y andx —7, z wherey andz are reduced, thep = z (uniqueness of the reduced form).
o If z <7 y, there isz such thatr —7, z andy —7}, z (Church-Rosser property).
o If z —} yandx —7% z, there ist such thaty —% ¢ andz —7} t (confluence).
o If 2 —r yandx —r z, there ist such thaty —% ¢t andz —7; t (local confluence).

T
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Indeed, it is easy to see that each property implies the mextleurthermore, assuming local confluence, we prove
unigueness of the reduced form by noetherian induction:on

e If x isreduced, them is the unique reduced form af

e Otherwise, assumethat—>R y' andxz —g 2z’ wherey’ andz’ are reduced. Sinceis reducible, we gej, z
suchthatt —r y —% v andz —r z —% 2’. By local confluence, there issuch thaty — 7, t andz —>R t.
By termination, there is a reducédsuch that —7, ¢/, and by induction hypothesis, we g,ét— t'=z2.0

*
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If a notherian presentation satisfies one of the above ptiepewe say that it isonvergent



2.3 Critical peaks

A peak of source: is a pairp = (r, s) of elementary reductions whose common source is

\ﬁ
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Such a peak isonfluentf there ist such thaty —7, t andz —7, t. Note the following points:

If p = (r,s) is a confluent peak, so is= (s, r). Hence we can identify with p.
e If uwisaword ang = (r, s) is a confluent peak, so are the peaks= (ur, us) andpu = (ru, su).
e If z 5 yis an elementary reduction, then= (r, ) is a confluent peak.

e If z 5 yandz > t are elementary reductions, ther= (rz, zs) is a confluent peak.

In the latter case, we say that the elementary reductioasidzs aredisjoint

A peak iscritical if it is not of the formup or pu with « # 1, and if its reductions are neither equal nor disjoint.
Hence it is necessarily of one of the following two forms:

e anoverlap(pv, uo) whereuz 2 yandzv % z are rules and, z, v # 1;

e aninclusion(upv, o) wherex 2,y anduzv % z are rules andiz, zv # 1.

Y Y
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Proposition 5 If all critical peaks of a presentation are confluent, thehpaks are confluent.
This follows directly from the above remarks.

Corollary 1 If a presentation is notherian and all its critical peaks aenfluent, then it is convergent.

2.4 Decision problems

If (X, R) is a convergent presentation, we weitéor thereduced fornof z, that is the unique’ such that: —7; «’.
By Church-Rosser, we hawe—7, y if and only if 7 = 3.

Proposition 6 If (X, R) is a finite convergent presentation, thesy;, is a decidable relation.

It suffices indeed to compare reduced forms, which are olsl{aomputable in that casgl

If <7 is a decidable relation, one says théthas a decidable word problerin fact, this property does not depend
on the choice of the presentation. It may also happen in theafan infinite presentation. See for instance [LP91].

Proposition 7 Convergence is a decidable property for any finite noethmepigesentation.

Indeed, there are finitely many critical peaks in that case,they are obviously computablé.



2.5 Reduced presentations

We say that a convergent presentatiBn R) is reducedf each symbok € 3 is reduced, and for each rute? v,
the sourcer is only reducible by, whereas the targetis reduced. So we can identify the rylevith its sourcer.
Moreover, each critical pegkis an overlap and is determined by its sourc&o we can also identify with z.

For instance, the standard presentation of a monoid is cgemebut not reduced, becauseis not reduced.
Proposition 8 [KN85a] For any convergent presentation, there is a reduced onendgtmore symbols and rules.

In particular, any monoid/ has areduced standard presentatid®, R), whereX consists of one symbal, for
eachr # 1in M, andR is defined byu,a, R 1 whenevery = 1 andaga, R a,, Whenevery # 1.

Corollary 2 If M has a finite convergent presentation, then it has a finite cediconvergent presentation.

Note that a weaker notion afiinimal convergent presentatiamused in [LP91].

2.6 Examples
Here are some examples of finite reduced convergent préisesta

e N? = (a,b|ab — ba)*, with no critical peak;

1%

o 7o = (a|a® — 1)*, with 1 critical peak:a?;

e 7= {a,a|aa — 1,aa — 1)*, with 2 critical peaksuaa, aaa;

o Zx7={a,a,b,b|lag — 1,aa — 1,bb — 1,bb — 1), with 4 critical peaksuaa, @aa, bbb, bbb;
e S3=(a,b|la? — 1,b%> — 1,aba — bab)", with 5 critical peaksu?, b3, a?ba, aba?, ababa.

Note that we writer — y instead ofr = y, since we consider each relation as a rewrite rule.

In particular, if we writea? A 1, 5% 5 1, aba <, bab for the rules in the latter presentation, the confluence®f th
critical peaks is given by the following diagrams:

a’ba aba? ababa
\\\aC Ca 4 Cbha 4 \abC
a b? abab baba bab%a ab®ab
Aa | | aA Bby | bB Aba | | Cb bC| | abA baBa | aBab
a b bab? b%ab ba? a’b
/baB Bab\ bA\ /Ab
ba ab b

The following presentations are noetherian, but not cayere:
o 7%= (a,a,b,b|aa — 1,@a — 1,bb — 1,bb — 1,ab — ba)*, since@ab andabb are non confluent peaks;
e B = (a,b|aba — bab)", sinceababa is a non confluent peak.
Nevertheless, both monoids have finite (reduced) convépyesentations:
e 72 = (a,a,b,blaa — 1,@a — 1,bb — 1,bb — 1,ab — ba,ab — ba, ab — ba,ab — ba)*;
+

e B = (a,b,c|ab — c,ca — be,beb — cc, cch — ace)t.

The first presentation is obtained by introducdegivable relationsn order to make all critical peaks confluent.
This algorithm is called th&nuth-Bendix completionSee [KN85a]. In fact, the Knuth-Bendix completion does
not always terminates, but when it does, it produces a fioiteergent presentation which solves the word problem.

The second one is obtained by introducirsy@erfluous generatertogether with the ruleb — ¢, and by applying
the Knuth-Bendix completion. In fadg; has no convergent presentation with 2 generators. See [B]N85



3 Finite derivation type

3.1 2-congruences on reductions

Consider a presentation of mondil, R). We writer || s if = =5 y are parallel reductions. &-congruence on
reductionds an equivalence relation defined on parallel reductions and satisfying the followpngperties:

e urv ~ usv for any wordsu, v and for any reductions 3  such that- ~ s (compatibility with producd;
e rxs~ 1’ xs forany reductions: =5 y 23 z such that ~ / ands ~ s’ (compatibility with composition

e rzxys ~ xs  rt for any reductions: — y andz = ¢ (exchangg

v V’

Y

For instancel| is themaximalor full 2-congruence

If P is any set of pairs of parallel reductions, we define2hmongruence-p generated byP, that is the smallest
2-congruence containing. If P is finite, we say that the 2-congrueneeg is finitely generated

The exchange property expresses the fact that a 2-congrdees not see the relative order of disjoint reductions.
Because of this requirement, is not a 2-congruence, but it would be the case if we were denisig thestrict
monoidal category of reduction®, R)™ = (X, R)* /=, where= is theminimal 2-congruence-y.

3.2 2-congruences on derivations

If z 2 yisarule, we writey 7 & for thereverse rule A reduction for thesymmetrized presentatiéll, RUR°P),
whereR°P = {p°P | p € R}, is called aderivation The notatiorp°? is extended to all derivations as follows:

o (p°P)°P = pforeach ruler % yin R;

o (upv)°? = up°Py for any wordsu, v and for each: % yin R U R°P;

o (ry k7o k- k1) =7 5k 0P % 0P for any derivationzg > 2y 3 ag -z, S 2,

A 2-congruence on derivations a 2-congruence for (X, R U R°P) satisfying the following extra property:
e % 1°P ~ z andr°P x r ~ y for any derivation: — y (invertibility).

In fact, it suffices to check this property for each rule .
For instance|| is themaximalor full 2-congruence on derivations

If P is any set of pairs of parallel derivations, we can define2tdtengruence on derivationsp generated byP,
that is~¢, whereQ is defined byp * p°P @ x andp°? * p @ y for each ruler Ly, andr Q s whenever P s.

Again,= is not a 2 congruence on derivations, but it would be the dage were considering thstrict monoidal
groupoid of derivationgX, R) = (3, R U R°P)* /=, where= is theminimal 2-congruence on derivatiors;.

If P is finite, we say that the 2-congrueneg on derivations idinitely generated This implies thatzp is also
finitely generated as a 2-congruence(fr R U R°P), at least wherR is finite. We say that a monoit! hasfinite
derivation typaf M has a finite presentation such that the full 2-congruencesomations|| is finitely generated.

Theorem 1 [SOK94]Assumé\/ has finite derivation type antll = ¥* /7% where(X, R) is a finite presentation.
If P generates the full 2-congruenfi@n derivations for(X, R), there is a finite subset @ which generate§.

The proof is essentially the same as the one for propositiah 2

In fact, the statement given in [SOK94] is slightly weakemonly says that] is finitely generated.



3.3 Case of a convergent presentation

If the presentatioli:, R) is convergent, we can chooselasurefor each critical peak = (r, s), that is a pair of
parallel reductiong® = (r * s\r, s x r\s). We write R° for the set of all those closures.

In the case of an overlap, we get the following pictures:

t
y T uo\pv
Uz
PUY  NUO P /r
yv uz il v
u
ua\pv\\ /pv\ua \L g
4
pv\uo \L z

In fact, the disk should be seen as a sphere, obtained byfidegthe upper boundarywith the lower one.
Lemma 2 For any peakp = (r, s), there is a closur@® = (r x s\r, s x r\s) such that x s\r ~pgo s*7\s.
The closure is obtained as in the proof of proposition 5. Thenuse exchange and compatibility with prodiict.

Lemma 3 r ~g. s for any parallel reductions: =3 7.
This is proved by noetherian induction as for propositionglng lemma 2 and compatibility with compositidn.

Theorem 2 [SOK94]If (X, R) is a convergent presentation, then - s for any parallel derivations: =3 .

Indeed, we can choose a reduction’ 7 for each word. By lemma 3, we get * A(y) ~gro A(z), so that

r* A(y) mre A(z) andr ~go r* A(y) * A(y)°P ~go A(z) * A(y)°P, and similarly fors. Hencey ~go s. O

r

r —= Y

A(:z:)\/\ A/A(y)
T=7

Corollary 3 If M has a finite convergent presentation, thehhas finite derivation type.

4 Derivations and homology

4.1 Homology of monoids

If M is amonoid, we writé.M for thering of M, which is the free abelian group generated by thé$etogether
with a product extending the one df. A (left) ZM-moduleis an abelian group together with a linear actiod6f

A complex ofZM-moduless an infinite sequenc€) & 4 A Cy---Cy & Cpy41 -+ - of ZM-linear maps such
that,, o 6,41 = 0, thatisim d,,,1 C kerd,, for eachn. Such a complex isxactif im d,,,1 = ker 6,, for eachn.

If S'is a set, thdéree actionof M on the sef\ - S = M x S'is defined by - (y, &) = (xy, £). We write for (1, &)
andz - ¢ for (z,€). Finally, we writeZM - S for the free ZM-module generated by, which is the free abelian
group generated by the séf - .S, together with a linear action @/ extending the one a¥/ on M - S.

A resolution ofZ by freeZM-modulesis an exact compleR — Z < C, & Ch b2 Cy---Cp, & Cry1---
whereZ stands for the&ZA/-module defined by th&ivial action of M on the abelian grou@, andC,, is a free
ZM-moduleZM - S,, for eachn. The head) < Z ensures that is surjective (by exactness).

Any partial resolution0 — Z < C, & Ch & Cy---Cy, & Cr+1 extends to a full one. In particular, such a full
resolution exists. Moreover, it isnique up to homotopical equivalencee [Ma63, Sp66, Br82] for more details.

By trivializing the action of M, we get a comple¥ - Sy 7. S &g So---7Z -8, 7. Spy1 -+ of free
abelian groups, which is not exact in general. Hence, we ¢@ngology groud,,(M) = kerd,,_1/imd,, for
eachn > 1. This abelian group does not depend on the choice of theutésol it is aninvariant of the monoid.



4.2 A partial resolution
We choose a presentation, R) of the monoidlM/, and ifz € X*, we writeZ for the corresponding elementid.
We defin€[z]; € ZM - 3 for any wordz as follows:
e [1]; = 0, and[azx]y = o + & - [x]; for each symbod and for any wordr.
Similarly, we defindr], € ZM - R for any derivation: — y as follows:
e [pla = pand[p°], = —p for each ruler 2 y in R;
o [upv]y = 1 - [p], for any wordsu, v and for each: 2 5 in R U R°P;
o [r1%7o% k1o = [r1]2 + [ra]2 + - + [ry]2 for any derivationrg = z1 3 o 21 25 .
Lemma 4 The following properties hold:
o [zy]1 = [x]1 + T - [y]: for any wordsz, y;
e [urv]y = @ - [r] for any wordsu, v and for any derivation: = y;
e [r*s]y = [r]a + [s]2 for any derivationse = y > 2.
Finally, we fix a setP of pairs of parallel derivations and we build the followingrpal complex ofZ M -modules:
0—ZEZMEZM -2 & 7ZM-REZM - P,
Theaugmentatior is defined by:(1) = 1, and theZM-linearboundariesare defined as follows:
e Jp(a) = a — 1 for each symbol € ¥;
e 01(p) = [y]1 — [z] for each ruler & yin R;
e 02(r, s) = [s]a — [r]2 for each pair of parallel derivatioris, s) € P.
Lemma 5 The following properties hold:
e do[z]; =z — 1 for any wordz;
e 51[r]2 = [y]1 — [x], for any derivationz 5 y.
Clearly, we have o §; = 0. By this lemma, we get the other conditions for a complgxi§; = 0 andd, o d = 0.
Lemma 6 [s]z — [r]2 € im §3 whenever ~p s.

To show this lemma, it suffices to check that the relatiguefined by ~ s whenever || s and[s]a—[r]2 € im da,
is a 2-congruence on derivations.

Theorem 3 [CO94, La95]if M = ¥* /7%, and P generates the full 2-congruence on derivations(for ), then
the complexX) — Z < ZM oMo 7zM - RZ7M - Pisa partial resolution ofZ by freeZM-modules.

If M has finite derivation type, we get a partial resolutioiZdfy freeZ M -modules wheré&:, R and P are finite.
In that case, we say that satisfies thénomological conditiorF' Ps.

Corollary 4 If M has finite derivation type, then the homology grélig M) is of finite type.
Indeed ker 05 is a subgroup oZ - P whereP is finite. Hencels (M) = ker 02/ im 0 is of finite type.[]

The converse does not hold. A counterexample is given in [$)Kusing theorem1. See also [CO96].
Corollary 5 If M has a finite convergent presentation, then the homologygi M ) is of finite type.

This follows from theorem 1 and corollary 41

A direct proof of this statement was given in [Sq87]. See fl&91].

Corollary 6 If M has a convergent presentation without critical peak, thgri)M ) = 0 for all n > 3.

Indeed, ifP = () thenZM - P = 0, so that) «— Z < ZM & ZM - ¥ b2 ZM - R — 0is a full resolutiond
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4.3 A contracting homotopy

To prove theorem 3, we build@ntracting homotopywhich consists of four morphisms of abelian groups:
75 oM B zM -2 B 7ZM-RB3 ZM - P.
Those morphisms, which need not to’b&/ -linear, must satisfy the following four conditions:

e con=idy;

do oo +moe=idzn;

0107 + 700 0o = idzarx;

02 072 + 71 001 = idznm-R.

In that case indeed,is surjective by the first condition. Similarlyer ¢ = im 4, follows from the second condition,
ker 0g = im §; from the third one, an#ler §; = im d» from the last one.

We choose @anonical formin each congruence class fery, and we writer for the canonical form of a word.
Note thatz does not need to be reduced, but the following propertied toolany wordse, y:

—

7=%  Iy=zy=ay, F=gifandonlyifz =7.

We choose @anonical derivation: “’ 7 for each word:. Note thatA(«) does not need to be a reduction.
The first morphism is defined by(1) = 1, and the next two morphisms are defined as follows:

e o(u) = [u]; foranyu € M;

e 11 (u-a) = —[A(u)]; foranyu € M anda € X.
The first conditiore o = idy is obviously satisfied, and the next two conditions folloarfrlemma 5.
Finally, we define théeft derivationux Au(z) ux by induction onz:

e A, (1) is the empty derivatio for any wordu;

o Ay(ax) = Alua)x * Ayo(x) for any wordsu, x and for each symbal.

Note that in generalp, () is not the derivatiorh (ux). Note also that\,, (z) depends only o@ andz.
Lemma7 vi(u - [z]1) = —[Au(z)]2 for anyu € M and for any wordz.

Using this lemma, we get; (01 (% - p)) = [Au(z)]2 — [Au(y)]2 for anyw € M and for each rule: % y, so that
u-p=m(01(u-p)) = [upla + [Au(y)l2 = [Au(@)]2 = [up * Au(y)l2 — [Au(z)]2, Wherelup « Au(y) || Au(z).

up

ur ————= uy

MA@\ AA)

o~~~

uT = uy

If || coincides with~ p, we can definex(u - p) using lemma 6, in such a way that the last condition is satisfie
Hence, we have proved theorem 3.
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4.4 Case of a convergent presentation

If (3, R) is areduced convergent presentation, we can define theitiesolising reductions instead of derivations.
First, we use the s&? of critical peaks as a set of generatorsker ¢,, and we definé, as follows:

e 53(p) = [s]2 + [r\s]2 — [r]2 — [s\r]2 for each critical peak = (r, s).
T‘/ \S
Yy z
S\A . %\s

Moreover, for the contracting homotopy, we can choose tHaaed formz and theleftmost reduction: Al z
which consists in reducing the leftmost reducible prefix €ifst. In that case, we gét, () = A(ux). See [LP91].
Consider for instance the presentatfye (a, b | a? 4 1,62 2 1, aba < bab)*. In that case, we get:

Y ={a,b}, R={A,B,C}, P ={(Aa,aA), (Bb,bB),(Aba,aC),(Ca,abA),(Cba,abC)}.

The partial resolutiof «— Z < ZM 2 7M -2 & 7M - R 2 7M - Pis defined by the following equations:

ww = a1 [0 T
0 1B) = ~bobh o
01(C) = b+b-atba-b—a—a-b—ab-a,

82(Aa, aA) a-A— A,
5(Bb,bB) = b-B— B,
03(Aba,aC) = a@-C+C+ba-B— A,
65(Ca,abA) = ab-A—C—b-C — B,
62(Cha,abC) = ab-C+a-B+A—C—ba-B—b-A.

The partial comple¥ % 7.v27.r27. Pis obtained by replacing eaghby 1 in the above equations:

O2(Aa,aA) = 0,

8(@) S 61(A) = —2a, 82(31),[)3) = 07
{8O(b) — 0 o (B) = —2b, Do(Aba,aC) = 2C+ B— A,
0 ’ n(C) = b—a, &(Ca,abA) = A— B -—2C,

02(Cba,abC) = 0.

Hence, we get the following invariants:
e H,(S3) & Z/27 sinced, = 0 andim 0, is the free abelian group generatediby « andb + «;
e H5(S3) =2 0 sinceker 01, as well asm s, is the free abelian group generated2ty + B — A.

We cannot computl;(Ss) at this stage, sincg; is missing, but we know that it can be generated by 4 elements,
sinceker 0, is the free abelian group generated(by:, aA), (Bb,bB), (Cba, abC) and(Aba, aC) — (Ca, abA).

In fact, another notion is needed in order to extend thegdagsolution. Acritical 3-peakis an overlap of 3 rules:

Theorem 4 [Sq87]If M = ¥* /<7, where(X, R) is a reduced convergent presentation without critical 2dge
then the compleft — Z < ZM 2 7M-x 2 ZM-R 2 ZM - P — Ois aresolution ofZ by freeZ M -modules.

Corollary 7 If M has a reduced convergent presentation without criticak3dp thert,, (M) = 0 for all n > 4.

Theorem 4 is used in [Sq87] to comptig( /) for some finitely presented monald which has a decidable word
problem, but no finite convergent presentation. In that,G@sefinite presentation is used. See also [LP91, KK97].
However, this theorem is useless for most examples, singerieral, there are critical 3-peaks.
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45 A full resolution

Using a reduced convergent presentatibnR), it is possible to build a full resolution.

A word z is critical if x is reducible, but every proper prefix ofs reduced. Am-chainis a wordx = ujus - - - uy,
whereu; is a symbol, all wordsus, us, ..., u, are reduced, and all wordg us, usus, . . ., u,_1u, are critical.
In particularuy, us, . .., u, # 1. In that case, it is easy to see that the decompositienuyus - - - u,, IS unique.

We write 2() for the set of alln-chains. Note thaE(!) can be identified with the alphabgt andX(®) with R.
Moreover,X(®) is a subset of the set of all critical peaks, a&ifd is a subset of the set of all critical 3-peaks.

Theorem 5 [Ko90] If M = E*/<—>* Where(Z R) is a reduced convergent presentation, then there is a résolu
of the form0 — Z & ZM &2 zM - x® 2Lz - 2@ .. zZM - £ &2z . 50D L

In particular, if (3, R) is finite, so is the se£(™ for eachn. Hence M satisfies théiomological conditionF P, .
Corollary 8 If M has a finite convergent presentation, then the homologyibi( A1) is of finite type for alln.
The proof of theorem 5 given in [Ko90] is purely algebraicjames not use any notion of reduction or derivation.
We are looking for a geometric (or homotopical) proof of tt@sult. This will be the point of section 5.

4.6 Bar resolution

If we apply theorem 5 to the reduced standard presentatiamadnoid)/, we get thenormalized bar resolution
In that case, an-chain is a sequence, s, . .., z, in M with 21,22, ..., 2, # 1. We write[z4] - - - |«,,] for the
corresponding generator 1/ - ©(™). Then, the normalized bar resolution is given by the follegviormula:

Op—alwn| - |zn] = @1 - [wa] - - |wa] + Z V1] zica @i |Tigel - |2a] + (1) @] - - [2a-)-

Here, we use the conventionthat |- - - |z,,] = 0 whenever; = 1 for somei. In particular, we get:

e dolz] =

o Oifzly] = [ | = ley] + [2];

o Oofzlylz] =z - [yl2] — [wyl2] + [z]yz] — [z[y];

o d3(zlylz|t] = @ - [yl=lt] — [wyl=lt] + [zlyz|t] — [z[yl=t] + [z[y]z].

The geometric interpretation of the normalized bar resmfuis asimplicial setwhose vertices are elements/af:

TYz

In this picture, the tetrahedron corresponds$atiy|z], and the two hidden faces correspond:tty] and[zy|z].
Those two faces are counted negatively in the bounddmyy|z].

Similarly, the complexz & 7. x(1) 2 7,.52) ... 7.5 2= 7. 5(+1) ... is defined by the following formula:

On—rlza]| - |zn] = [w2] - [on] + Z Vlza| - |wica|wimip | wival - Jon] + (1) @] - Jzn-1]-

This complex corresponds to a simplicial set with only oneese
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5 Polygraphic approach

5.1 n-categories

An n-categoryis given by a chain of set§, C X; C --- C X,, together with:
e two mapsX; & X, (i-dimensional sourdeand X; & X, (i-dimensional targgtdefined for each < n;
e aproducts x; y defined for eachh < n whenever;, y € X,, andr;(z) = o;(y).

We writez %, y whenevew; (u) = 2 andr;(u) = y. We writez ||; y whenever;(z) = o;(y) andr;(z) = 7;(y).
The following properties must hold:
xr .
e 1 —,; v whenevel < n andz € X;;

o t %, t' andt %, t' (so thatr ||; y) whenever < j,t %; ' andz =, y;

Uk 4

e x %, zandu *; v € X; whenevei < j, x %; y -; z andu,v € X;;

! ’ ’
o wx; 2 TNy whenevel < j,t 5t St xS yands’ By

o Tx; u=u=usx* ywhenever =; y;
u v w
o (ux;v)*;w=ux; (v* w)whenevew —; y —; z —; t;

’ ’
(ujv)#; (u'*;0") = (uk;u')x; (v*;0") whenever < j,t =, t' 5, ", 0 =,y —; zanda' =, y' 5, 2/,

I,/

Yy

[ ] o t”

Z/

<
N | = | = |8
< IS

The last property corresponds to a higher dimensionalweisi the exchange property.

An n-monoidis ann-category such thaX is the singletori. In that case, the produgtx, y can be writtency.
For instance, a 1-monoid is a monoid, and a 2-monoid is a strdmoidal category. Note also that a monaid
can be seen as anmonoidl c M C M C --- C M,andevenas aso-monoidlc M c M C---CMC---

5.2 n-polygraphs

A 1-polygraphis agraph which is given by two set&, andX; together with two mapE, & £, andX, & ¥;.
Such a graph generatefree categoryor category of pathsX, C ¥3. The set is also written>3.

Similarly, ann+1-polygraphis given inductively by am-polygraph¥§ ¢ £  --- € ¥¥_, C ¥, and a set
¥,.+1 together with two map&?* 2 %, ; and¥* & %, such that, (a) ||,_1 7n(a) whenever € %, ;.
Such am+1-polygraph generatesfeeen+1-category>§ C X7 C --- C Xy C X5, ;. See [Bu93].

An n-polygraph such that, = 3§ = 1 is called amonoidaln-polygraph For instance, a monoidal 1-polygraph
is given by an alphabet. Similarly, a monoidal 2-polygraph is given by a presewniaty, R), and a monoidal
3-polygraph is given by a sét of pairs of parallel reductions for such a presentation.
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5.3 Polygraphic resolutions

A (monoidal) polygraphic resolutioof a monoid}M is a monoidabo-polygraphl ¢ 5 ¢ ¥ C--- C ¥F C - --
together with a surjective morphisfa : 37 — M satisfying the following extra properties:

e foranyz,y € %, we havef; (z) = fi(y) if and only if there is some %, y in X3;
e for eachn > 1 and for anyr, y € ¥, we haver |, y if and only if there is some %, y in X

In particular, if R is the relation on words defined by R iy whenever there is some %, y in Xy, and if P the
relation on reductions defined byP s whenever there is some®, s in 33, we have the following properties:

e M =37 /<7, and—7, coincides with—7;
e Pis a set of pairs of parallel reductions which generatesuti@fcongruence on reductions.

In fact, a polygraphic resolution can also be seen as a menpbico-categoryf : ¥* — M. The extra properties
expresses thatis atrivial fibration, which is a noncommutative version of the exactness camtditr a complex.

Theorem 6 [Me03] Any monoid has a polygraphic resolution, which is uniqueaipdmotopical equivalence.
See [MeO03] or [LM] for more details on the notionstodmotopyand ofhomotopical equivalence
Given such a polygraphic resolution df, we define the following complex of abelian groupbélianization):
z27.%, ?_12.22?_22.23...2.271?22.271“...

Here,dy = 0 andd, () = [y], — [z],, for eachz =%, yin X, 1, where[u],, € Z - %, is defined for each > 0
and for anyu € ¥ in such a way that the following properties hold:

e [a], = « for each symbok € ¥,,;

e [u], = 0foranyu € X} with i < n. In particular[1],, = 0;

o [ux;v], = [u], + [v], foranyz %; y 2, zin ©F with i < n.
Theorem 7 [LM] If 1 € ¥ € ¥5 C --- C ¥} C --- is a polygraphic resolution of the monoid, then the
homology of its abelianization coincides with the homolofy/.
This is proved by constructing ax-polygraph on which the monoidl/ acts freely.

Corollary 9 If M has a partial polygraphic resolutioh C ¥5 € ¥4 C --- C X7 such thats,, is finite, then the
homology grougd,, (M) is of finite type.

5.4 Case of a convergent presentation

The results of the previous sections suggest the followeregalization:

Conjecture 1 If amonoidM has a reduced convergent presentatidh R), thenM has a polygraphic resolution

lc¥yc¥yc---CXy C--- where eaclt,, is defined in terms of generalized critical peaks. In paiticu
Y1 =13, Yo = RUR®P, Y3 = Q U Q°P where( is the relation defined in 3.2.

Moreover, if the presentatioft, R) is finite, so i, for eachn.

This would give an alternative proof for corollary 8, butéesns to be more difficult than theorem 5.

Indeed, this construction would apply to the reduced stahgeesentation, and this would give a polygraphic
version of the normalized bar resolution. In that c&ewould contain (among others) thechains[z1] - - - |2,,].
Here are some conjectural formulas for such a resolutiothdmondegenerate case wheteyz, 2t # 1:

o []ly) 2, [ay], so thatd, [ly] = [wy] — [2] — [y);

o [elyll] 1 [rylz] U5 (@)[yl2] + [2]y2], so thaws lylz) = [y]=] + [ely2] — [o]y] — [wyl2);

x|y|z|t
o (lyl2llt] *1 [2y21t]) =2 (2llyl2E] 51 [ely=lt]) = ()lyl=l] o faly=t) 228 (el )l = [myl2lt) 5
([2)yl[z]t] =1 [x]yl=t]), so thatDs[x|y|z|t] = [zylz|t] + [zly|2t] — [z|y[2] — [x|yz|t] — [yl=]t].
Note that the formulas fap,, are the same as for the normalized bar reduction, exceptgimbal change of sign.
Note also that the formulas definiag andrs are significantly more complicated than the formula defidigand
it gets worst in higher dimension, due to the difficulty of ciélsing simplicial sets as polygraphs. See [St87, Bu00Q].
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