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Abstract. In this note we first show using results of McDuff that for a Cr-manifold S, dif-
feomorphic to the interior of a compact manifold with boundary, the class of all Cr-diffeomorphisms
lying in a one parameter group of S generates the connected component of 1S in Diffr(S, S). Then
we use this result to obtain two extension theorems for stratified maps defined on some strata of a
stratified space X. Our extension theorems hold for Mather’s abstract stratified sets, for Whitney
(b)-regular, Bekka (c)-regular, Verdier (w)-regular and Lipschitz-regular stratified spaces.
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1. Introduction. If S is a closed Cr-manifold, i.e. compact and without boundary,
by denoting by Diffr(S, S) the group of all Cr-diffeomorphisms of S (r = 0, . . . ,∞), it
is well-known that the connected component Diffr

0 (S, S) of the identity map 1S : S → S
is a simple group (except possibly in the case r = dimS + 1) [3, 4, 10, 11, 12, 13, 20].

This theorem allows one to show that for a closed Cr-manifold, the image of the
exponential map, i.e. the class E of all Cr-diffeomorphisms lying in a one parameter
group of S, generates the whole of Diffr

0 (S, S).
On the other hand, if S is a non-compact manifold the “simplicity of Diffr

0 (S, S)”
fails to be true [14], so the property that E generates the whole of Diffr

0 (S, S) cannot be
deduced and remains unproved. In 1984 J. Milnor [15] claimed, but without proof, that
such a property ought to hold at least in the class of the C∞-manifolds diffeomorphic to
the interior of a compact manifold with boundary, (remark 1.7).

In this paper we first show, in §2, that Milnor’s claim holds for all such Cr-manifolds
and for every r ≥ 1 (theorem 1). That is, if S is a manifold diffeomorphic to the in-
terior intM of a compact manifold with boundary M , then E generates the whole of
Diffr

0 (S, S). In other words, every element f ∈ Diffr
0 (S, S) may be written as a compo-

sition of flows at time t = 1, f = φ1
1 ◦ · · · ◦ φs

1, of vector fields ζ1, . . . , ζs on S.

Then in §3 we apply theorem 1 in the context of regular stratifications to obtain two
stratified extension theorems (theorems 2 and 3), first for abstract stratified sets [8, 9],
a category which contains (b)-regular [21, 23] and (c)-regular stratifications [1, 2], and
then for (w)-regular stratifications [22] (proposition 1) a class containing also Lipschitz
stratifications [18].

1



CLAUDIO MUROLO

In theorem 2 we show that if X = (A,Σ) is an abstract stratified set and S = Ak−Ak−1

is the union of all k-strata of X every diffeomorphism f ∈ Diff1
0 (S, S) (which extends

continuously on Ak−1 also) extends continuously on a neighborhood U of S in A. In fact,
writing f = φ1

1 ◦ · · · ◦ φs
1, then thanks to the theorem of stratified lifting of vector fields

[8, 9], we can lift the vector fields ζi and hence the flows φi on a neighborhood U of
S in A, and therefore we obtain by composition an extension of f which is a stratified
homeomorphism defined on the neighborhood U of S in A (and which again extends
continuously on Ak−1). Because such an extension is not on the whole of A we call
theorem 2 of “weak extension”.

The weak extension theorem may be improved in order to construct extensions which
are stratified homeomorphisms, isotopic to the identity, of the whole stratified space X
(“strong extension”). This occurs for example in theorem 2 when Ak−1 is empty.

In a more general case this occurs if instead of a diffeomorphism f : S → S of S =
∪dim X=kX we consider a homeomorphism f = ∪jfXj

, union of diffeomorphisms fXj
∈

Diff1
0 (Xj , Xj), defined on a collection of strata {Xj}j of various dimensions provided

that all Xj are compact. This is the content of theorem 3.

Such stratified extension theorems can be used [17] to show a transversality theorem
(by isotopy) for substratified spaces of a stratified space, allowing us to develop geometric
homology and cohomology theories in which the ambient space X, its cycles and cocy-
cles are abstract stratified sets or Bekka (c)-regular stratifications (cf. [16] chapter IV),
analogous to the geometric theories of Goresky [6].

We conclude the paper by Remark 5 in which we conjecture a possible interesting
improvement of McDuff’s results (theorem 1 and Corollary 2, [14]), using which one would
obtain a global and stronger extension theorem for maps between stratified spaces.

I thank D. Trotman for many helpful discussions while writing this paper.

2. The image of the exponential map Expr generates Diffr
0 (S, S).

Let S = intM be a Cr-manifold diffeomorphic to the interior intM of a compact
Cr-manifold M with boundary.

Since S = intM = M−∂M with M compact, the simplicity of Diffr
0 (S, S) fails to be

true, but, in this case, all normal subgroups of Diffr
0 (S, S) are completely classified by D.

McDuff [14] and are in bijective correspondence with the lattice of subsets of {1, . . . , k}
where k is the number of the connected components N1, . . . , Nk of the boundary ∂M of
M .

Thanks to the results of McDuff (Theorem 1 and Corollary 1.3), we will show that for
such a manifold S, the diffeomorphisms which are images of the exponential map generate
Diffr

0 (S, S).

Let us fix r ≥ 1, r �= dimS + 1, and denote by Expr the exponential map of S

Expr : Γr
0(S) → Diffr

0 (S, S) , Expr(ζ) = φ1

defined on the set Γr
0(S) of all Cr-vector fields ζ of S admitting a global flow φ : S×R → S

(denoted also by φ = {φt : S → S}t∈R
) which associates to each ζ the diffeomorphism

φ1 : S → S at time t = 1.
Obviously every image φ1 = Expr(ζ) is in Diffr

0 (S, S), i.e. lies in the connected
component of 1S and moreover for every (other) t ∈ R, φt ∈ Diffr

0 (S, S), since φt = ψ1 =
Expr(η) is the exponential of the vector field η = t · ζ.
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On the other hand, denoting by Expr(S) =< Expr
(
Γr

0(S)
)

> the subgroup of
Diffr

0 (S, S) generated by the image of the exponential map, with the same (well-known)
proof as in the compact case, we immediately have that :

Remark 1. Expr(S) is a normal subgroup of Diffr
0 (S, S). �

Theorem 1. If S = intM is a Cr-manifold (diffeomorphic to the) interior of a
compact Cr-manifold M with boundary, then :

Expr(S) = Diffr
0 (S, S).

Proof. Let us write S = M −∂M with M a compact manifold with boundary. Then,
the boundary ∂M of M is compact too and has a finite number of connected components,
namely N1, . . . , Nk, i.e. : ∂M = �k

j=1Nj (where � means “disjoint union”).
Using the same notations as in [14], we let K = {1, . . . , k}, and for every j ∈ K,

Gj =
{

g ∈ Diffr
0 (S, S) | g = id in a neighborhood of Nj

}

and for every subset J ⊆ K (possibly empty) write

GJ =
{

g ∈ Diffr
0 (S, S)

∣
∣
∣ g = id in a neighborhood of

⋃

j∈J

Nj

}
=

⋂

j∈J

Gj .

It is immediate to verify that GJ is a normal subgroup of Diffr
0 (S, S) and that for

every I, J ⊆ K we have moreover : “ I ⊆ J ⇐⇒ GJ ⊆ GI”.
Therefore we obtain a lattice of normal subgroups

(
{GJ}J⊆K ,⊇

)
, corresponding

to the lattice
(
{J}J⊆K ,⊆

)
of subsets of K, and admitting the subgroup GK of all

diffeomorphisms with compact support in S as minimum element and the subgroup
G∅ = Diffr

0 (S, S) as maximum element.
McDuff shows (Theorem 1) that “E is a normal subgroup of Diffr

0 (S, S) if and only
if there exists a unique subset J ⊆ K such that GJ ⊇ E ⊇ [GJ , GJ ] (where [ , ] denotes
the subgroup of the commutators)”.

By considering Expr(S), which is a normal subgroup (remark 1), we deduce that
there exists a unique subset J0 of K such that

GJ0 ⊇ Expr(S) ⊇ [GJ0 , GJ0 ].

On the other hand it is not difficult to verify that Gi �⊇ Expr(S) for every i ∈ K.
In fact, for each i = 1, . . . , k let us consider a non-zero vector field ζi

Ni
on Ni admitting

a global flow φi and lift it along a collar Ci ≡ Ni× [0, 1] (where Ni is identified to Ni×0).
Let us consider then the vector field ζi defined on S by the formula:

ζi(y) =






g(s) · ζi
Ni

(x) if y = (x, s) ∈ Ci = Ni×]0, 1]

0 if y ∈ S − Ni

where g ∈ Cr([0, 1]) is a smooth decreasing map verifying g(0) = 1 and g(n)(1) = 0
∀n = 0, . . . , r (i.e. g vanishes in s = 1 together all its derivatives).

Obviously, every vector field ζi admits again a global flow Φi (given on Ci by
Φi

(
(x, s), t

)
= φi(x, g(s)t) ) and hence the diffeomorphism at time t = 1, Φi

1 = Expr(ζi)
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lies by definition in Expr(S). But on the other hand since ζNi
�= 0 then φi

1|Ni
�= 1Ni

and
so Φi

1 �∈ Gi.
Finally since for every i ∈ K, Gi �⊇ Expr(S), we deduce that the only possible GJ0

which can contain Expr(S) corresponds to the subset J0 = ∅ and hence GJ0 = G∅ =
Diffr

0 (S, S).
We have then,

Diffr
0 (S, S) ⊇ Expr(S) ⊇ [Diffr

0 (S, S), Diffr
0 (S, S)] ,

which concludes the proof since Diffr
0 (S, S) is a perfect group ([14], Corollary 1.3). �

3. Extension of stratified homeomorphisms.

All manifolds and diffeomorphisms in this section are considered of class C1, similarly
smooth will mean C1 and thus we will write simply Diff0 and Exp respectively for Diff1

0

and Exp1.
Theorem 1 above may be used for a stratified space X = (A,Σ) in order to obtain

some theorems of extension of stratified maps defined on some strata of X.

Definition 1. We recall that a stratification of a topological space A is a locally
finite partition Σ of A into C1 connected manifolds (called the strata of A) which satisfy
the frontier condition : if X and Y are strata such that X intersects the closure of Y , then
X is contained in the closure of Y . We write then X < Y and denoting by ∂Y = Y − Y
we have Y = Y �

(
�X<Y X

)
and ∂Y = �X<Y X , [8] (recall that � = disjoint union).

Under such hypotheses the pair X = (A,Σ) is called a stratified space with support A
and stratification Σ. The union of the strata of dimension ≤ k is called the k-skeleton,
denoted by Xk or Ak.

Extra regularity conditions may then be imposed on the stratification Σ, such as
to be an abstract stratified set in the sense of Mather [8, 9] when A is not necessarily
embedded in a manifold, or, when A is a subset of a C1 manifold, to satisfy conditions (a)
or (b) of Whitney [21, 23], or (c) of Bekka [2] or, when A is a subset of a C2 manifold,
to satisfy conditions (w) of Kuo-Verdier [7, 22], or (L) of Mostowski [18].

The stratified extension theorems of this section will be done first for X an abstract
stratified set, then we show that the proofs work again for all types of regular stratified
spaces listed above.

Definition 2. Let X = (A,Σ) be a stratified space.
A family F = {(πX , ρX , TX)}X∈Σ is called a system of control data for X if for each

stratum X of X we have that:
1) TX is a neighbourhood of X in A (called tubular neighbourhood of X);
2) πX : TX → X is a continuous retraction of TX onto X (called projection on X);
3) ρX : TX → [0,∞[ is a continuous function such that X = ρ−1

X (0) (called the
distance function from X)

and, furthermore, for every pair of adjacent strata X < Y , by considering the restriction
maps πXY = πX|TXY

and ρXY = ρX|TXY
, to the subset TXY = TX ∩ Y , we have that :

5) the map (πXY , ρXY ) : TXY → X×]0,∞[ is a smooth submersion (it follows
in particular that dimX < dimY );

6) for every stratum Z of X such that Z > Y > X and for every z ∈ TY Z ∩ TXZ

the following control conditions are satisfied :
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i) πXY πY Z(z) = πXZ(z) (called the π-control condition)
ii) ρXY πY Z(z) = ρXZ(z) (called the ρ-control condition).

In what follows we will pose TX(ε) = ρ−1
X ([0, ε[) ,∀ ε ≥ 0, and without loss of generality

will assume TX = TX(1) [5, 8].

If A is Hausdorff, locally compact and admits a countable basis for its topology, the
pair (X, F) is called an abstract stratified set. Since one usually works with a unique system
of control data of X, in what follows we will omit F.

If X is an abstract stratified set, then A is metrizable and the tubular neighbourhoods
{TX}X∈Σ may (and will always) be chosen such that: “TXY �= ∅ if and only if X < Y or
X > Y or X = Y ” (see [8] page 41 and following).

Notice also that the notion of system of control data of X, introduced by Mather
in [8], is a fundamental tool allowing one to obtain a good (i.e. controlled cf. [5, 8])
stratified lifting ζTX

on a tubular neighbourhood TX of every vector field ζX given on a
stratum X. Such a lifting ζTX

admits a global flow φTX
: TX ×R → TX (when ζX admits

it) which is furthermore a continuous map.

Definition 3. A stratified map f : Y → X between two stratified spaces Y = (B,ΣY)
and X = (A,Σ) is a continuous map f : B → A which sends each stratum R of Y into
a unique stratum S of X, such that the restriction fR : R → S is smooth. We call such
a map f a stratified homeomorphism if f is a global homeomorphism and each fR is a
diffeomorphism.

Theorem 2 (of weak stratified extension). Let X = (A,Σ) be a compact
abstract stratified set, Ak its k-skeleton and S = Ak − Ak−1 the union of all its k-strata.

Every homeomorphism f : Ak → Ak , whose restriction fS lies in Diff0(S, S), may
be extended to a stratified homeomorphism f̃ : U ∪ ∂S → V ∪ ∂S where U and V are two
neighbourhoods of S in A.

Proof. Since A is compact then so is every closed subset, and in particular the union
Ak of all its strata of dimension ≤ k [8, 9].

Let us write {Xj}j for the family of the strata of dimension k of X. Then S =
Ak+1 − Ak = �j Xj and ∂S = S − S = ∪j ∂Xj .

Since by the frontier condition, every stratum X of X verifies X = X �
(
�R<XR

)

(�R<XR = ∂X), then for every Xj one and only one of two following cases occurs :
i) there exist no strata R < Xj , hence Xj − Xj = ∅ and Xj is a compact manifold

(X is then called of maximal depth).
ii) there exists a stratum R < Xj , hence Xj − Xj �= ∅, Xj is non compact, but it is

diffeomorphic to the interior of a compact manifold with boundary [19].
By the known results if Xj is compact (see introduction), and by theorem 1 if Xj is

non compact, we have in both cases that Diff0(Xj , Xj) = Exp(Xi) ∀ j. On the other
hand because S = �jXj is a disjoint union and each diffeomorphism f ∈ Diff0(S, S),
being isotopic to the identity, must fix the connected components S (i.e. f(Xj) = Xj),
then we also have Diff0(S, S) = Exp(S).

Let us fix now a map f : Ak → Ak as in the statement of the theorem.
Because Diff0(S, S) = Exp(S) and since the restriction fS lies in Diff0(S, S), we

can rewrite fS by
fS = φ1

1 ◦ · · · ◦ φs
1 with φi

1 = Exp(ζi) ,

where for all i = 1, . . . , s , ζi is a vector field on S admitting a global flow φi : S×R → S.
Now we want to extend fS : S → S (and f) by lifting the vector fields ζi of the flows

φi
t, and this will be possible by considering a controlled lifting of every ζi [5, 8].
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For every i = 1, . . . s and for every connected component X of S, i.e. for every k-
stratum (above noted by Xj) of A, let us consider the restriction ζi

X of ζi on X and ζi
TX

=
{ζi

TXY
}Y ≥X (with TXY = TX∩Y ) a stratified controlled lifting of ζi

X on a stratified tubular
neighborhood TX = ∪Y ≥XTXY of a fixed system of control data F = {(πZ , ρZ , TZ)}Z∈Σ

of X [8].
Because every vector field ζi

X has a global flow φi
X (restriction of φi), then thanks to

the hypotheses of control, the same property holds for the lifting ζi
TX

and hence its flow
Φi

TX
: TX × R → TX is a stratified flow extending continuously φi

X [5, 8].
By considering then the tubular neighborhood TS = ∪dim X=kTX of S in A and, for

every i = 1, . . . , r the stratified one parameter group φi
TS

= ∪dim X=kφi
TX

: TS × R → TS

we obtain that the map composition of the “sections at time t = 1” of the φi
TS

, i.e. :

h = [φ1
TS

]1 ◦ · · · ◦ [φs
TS

]1 : TS −→ TS ,

is a stratified homeomorphism of the tubular neighborhood TS , a diffeomorphism re-
stricted to each stratum of TS , and extends f : S → S.

The proof follows, by applying to h and h−1 the lemma below. �

Lemma. Let TS ⊆ A be a stratified tubular neighborhood of S in X = (A,Σ) and let
h : TS → TS be a continuous map whose restriction hS : S → S to S extends continuously
on ∂S = S − S by a continuous map h∂S : ∂S → ∂S.

There exists a neighborhood U of S in A (contained in TS) such that the map hU∪h∂S :
U ∪ ∂S → TS ∪ ∂S is continuous.

Proof. The support A of the abstract stratified set X is metrizable so we can fix
a metric d( , ) on A. Denote moreover by F the system of control data of X and by
{πX : TX → X}X∈Σ its family of projections.

Because S = Ak − Ak−1 = �dim X=kX then the stratified tubular neighborhood
TS of S is a disjoint union TS = �dim X=kTX where each TX is the stratified tubular
neighborhood the k-stratum X and where the elements of the family {TX}dim X=k are
pairwise disjoint. We can consider then a global projection map πS = ∪dim X=kπX :
TS → S of TS on S and we will denote, for every y ∈ TS , y′ = πS(y).

Let us consider the following subset of TS :

U =
{

y ∈ TS

∣
∣ d(y, y′) <

1
2
d(y′, ∂S) and d(h(y), h(y′)) < d(y′, ∂S)

}
.

Since ∂S = S − S is disjoint from S and TS , for every y ∈ TS we have d(y′, ∂S) > 0
and so U is clearly not empty and, by continuity of h, is an open neighborhood of S in A.

Since the restriction hS : S → S extends continuously on ∂S by the continuous
map h∂S , then for every fixed x ∈ ∂S and ε > 0 there exists a δ ∈ ]0, ε

2 [ such that
d(h(z), h(x)) < ε

2 , ∀ z ∈ B(x, δ) ∩ S.

If now y ∈ U ∩ B
(
x, δ

2

)
by definition of U we immediately have

d(y, y′) < 1
2d(y′, ∂S) < 1

2d(y′, x) and d(y′, x) < d(y′, y) + d(y, x) < 1
2d(y′, x) + d(y, x)

by which

d(y′, x) < 2d(y, x) < δ , thus y′ ∈ B(x, δ) ∩ S , and hence d(h(y′), h(x)) < ε
2 .

On the other hand, again by definition of U we also have

d((h(y), h(y′)) < d(y′, ∂S) < d(y′, x) < δ <
ε

2
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which allows one to conclude that ∀ y ∈ B(x, δ
2 ) we have :

d(h(y), h(x)) < d((h(y), h(y′)) + d(h(y′), h(x)) <
ε

2
+

ε

2
= ε . �

Theorem 3. Let X = (A,Σ) be an abstract stratified set. If {Xj}j is a family of
compact strata of X, then every homeomorphism f : �jXj → �jXj, whose restriction fXj

lies in Diff0(Xj , Xj), extends to a stratified homeomorphism f̃ : A → A, isotopic to the
identity, on the whole of A.

Proof. Let us write every restriction fXj ∈ Diff0(Xj , Xj) as

fXj = [φ1
Xj

]1 ◦ . . . ◦ [φrj

Xj
]1 where [φr

Xj
]1 = Exp(ζr

Xj
), ∀ r = 1, . . . , rj

and ζr
Xj

is a smooth vector field on Xj (for all r = 1, . . . , rj).
Then by the properties of abstract stratified sets [8, 9] for every ζr

Xj
there exists a

stratified (controlled) vector field ζr
TXj

a lifting of ζr
Xj

on the tubular neighbourhood TXj

of Xj . Such a lifted vector field admits (thanks to the control conditions) a stratified
global flow φr

TXj
on TXj [8] which is moreover continuous on TXj and extends φr

Xj
.

Let us modify the modulus (but only the modulus) of ζr
TXj

in TXj by a smooth and

decreasing function g : [0, 1] → [0, 1] such that g(s) = 1 if s ≤ 1
2 and g(s) = 0 if s ≥ 1, in

such a way to obtain the new vector field ζ̃r
TXj

(x) = g(ρXj (x))ζr
TXj

(x) admitting again a

global flow (namely φ̃r
TXj

) and which moreover extends smoothly by zero on A − TXj
(1).

Writing ζ̃r
j for such an extended vector field and φ̃r

j : A × R → A for its flow (which
is obviously the identity off TXj (1) × R), we obtain then for every j the stratified home-
omorphism of A

f̃j = [φ̃1
j ]1 ◦ · · · ◦ [φ̃rj

j ]1 : A −→ A

extending the diffeomorphism fXj and which is the identity on A − TXj (1).
Finally by recalling that the tubular neighbourhood {TXj}j may be chosen pairwise

disjoint we find the claimed extension f̃ : A → A, of f : �jXj → �jXj , on the whole of
A, by gluing toghether all lifting f̃j i.e., by setting :

f̃(x) =






f̃j(x) if x ∈ �jTXj
(1);

x if x ∈ A − �jTXj (1). �

Remark 2. The hypotheses of theorem 3 are verified for example when, as in theorem
2, f is given on a k-skeleton Ak of X and Ak−1 = ∅ or again when all strata Xj on which
f is defined are of maximal depth in X (see i) in theorem 2).

Remark 3. Whitney stratifications and Bekka (c)-regular stratifications always ad-
mit a system of control data [8] and [2], so these latter may be structured as abstract
stratified sets. Hence the extension theorems 2 and 3 and Remark 2 hold for (b)- and
(c)-regular stratifications.

Proposition. Theorems 2 and 3 hold again by considering for X = (A,Σ) a (w)-
regular stratification (instead of an abstract stratified set).

Proof. Notice that for X a (w)-regular stratification, the lifting of vector fields giving
stratified continuous flows may be again obtained [22] (without using systems of control
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data). The proofs may then be obtained by slight modification of the proofs of theorems
2 and 3 in which we consider some arbitrary families of stratified tubular neighbourhoods
{TX}X , of smooth projections {πX : TX → X}X , and distance functions {ρX : TX →
[0,∞[}X not necessarily caming from a system of control data. �

Remark 4. Because Lipschitz regularity of a stratification implies (w)-regularity
[18] then the extension theorems 2 and 3 hold again for Lipschitz stratifications.

Remark 5. With the same notations as in the proof of the weak extension theorem,
suppose that f|Ak−1 = 1Ak−1 is the identity map. As one can see through easy examples, it
is not true in general that f = φ1

1◦· · ·◦φs
1 and limx→∂S f(x) = 1∂S(x) imply that for every

i = 1, . . . , s the vector field ζi of φi
t tends to the zero vector field on ∂S = S − S ⊆ Ak−1.

However, it would seem reasonable to think that in the case where the diffeomorphism
f ∈ Diff0(S, S) lies in a sufficiently small neighborhood of 1S , one could improve the
choice of all φi to have that their vector fields ζi verify the continuity limx→∂S ζi(x) = 0
(∀i = 1, . . . , s) on ∂S.

In this case, an extension by 0 on the remaining part A − TS may be obtained for a
vector field ζ̃i, which is a perturbation of ζi (slightly more complicated than in theorem 3),
so that the weak stratified extension theorem would be improved giving a (global) strong
stratified extension theorem of the diffeomorphism f : S → S on the whole stratified
space A. On the other hand, we have to remark that the possibility of deducing that for
all i, limx→∂S ζi(x) = 0, depends on an extension of McDuff’s results (theorem 1 and
corollary 1.3 [14]), which seems to us non trivial.
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