DIFFEOMORPHISMS LYING IN ONE PARAMETER GROUPS AND EXTENSION OF STRATIFIED HOMEOMORPHISMS

CLAUDIO MUROLO

ABSTRACT. In this note we first show using results of McDuff that for a C^r -manifold S, diffeomorphic to the interior of a compact manifold with boundary, the class of all C^r -diffeomorphisms lying in a one parameter group of S generates the connected component of 1_S in $Diff^r(S, S)$. Then we use this result to obtain two extension theorems for stratified maps defined on some strata of a stratified space X. Our extension theorems hold for Mather's abstract stratified sets, for Whitney (b)-regular, Bekka (c)-regular, Verdier (w)-regular and Lipschitz-regular stratified spaces.

A.M.S. CLASSIFICATIONS: Primary 58A35; 54C20; Secondary 57R52;

KEY WORDS: One parameter groups. Regular stratifications.

1. Introduction. If S is a closed C^r -manifold, i.e. compact and without boundary, by denoting by $Diff^r(S, S)$ the group of all C^r -diffeomorphisms of S $(r = 0, ..., \infty)$, it is well-known that the connected component $Diff_0^r(S, S)$ of the identity map $1_S : S \to S$ is a simple group (except possibly in the case $r = \dim S + 1$) [3, 4, 10, 11, 12, 13, 20].

This theorem allows one to show that for a closed C^r -manifold, the image of the exponential map, i.e. the class E of all C^r -diffeomorphisms lying in a one parameter group of S, generates the whole of $Diff_0^r(S, S)$.

On the other hand, if S is a non-compact manifold the "simplicity of $Diff_0^r(S, S)$ " fails to be true [14], so the property that E generates the whole of $Diff_0^r(S, S)$ cannot be deduced and remains unproved. In 1984 J. Milnor [15] claimed, but without proof, that such a property ought to hold at least in the class of the C^{∞} -manifolds diffeomorphic to the interior of a compact manifold with boundary, (remark 1.7).

In this paper we first show, in §2, that Milnor's claim holds for all such C^r -manifolds and for every $r \ge 1$ (theorem 1). That is, if S is a manifold diffeomorphic to the interior *intM* of a compact manifold with boundary M, then E generates the whole of $Diff_0^r(S,S)$. In other words, every element $f \in Diff_0^r(S,S)$ may be written as a composition of flows at time $t = 1, f = \phi_1^1 \circ \cdots \circ \phi_1^s$, of vector fields ζ^1, \ldots, ζ^s on S.

Then in §3 we apply theorem 1 in the context of regular stratifications to obtain two stratified extension theorems (theorems 2 and 3), first for abstract stratified sets [8, 9], a category which contains (b)-regular [21, 23] and (c)-regular stratifications [1, 2], and then for (w)-regular stratifications [22] (proposition 1) a class containing also Lipschitz stratifications [18].

In theorem 2 we show that if $\mathcal{X} = (A, \Sigma)$ is an abstract stratified set and $S = A_k - A_{k-1}$ is the union of all k-strata of \mathcal{X} every diffeomorphism $f \in Diff_0^1(S, S)$ (which extends continuously on A_{k-1} also) extends continuously on a neighborhood U of S in A. In fact, writing $f = \phi_1^1 \circ \cdots \circ \phi_1^s$, then thanks to the theorem of stratified lifting of vector fields $[\mathbf{8}, \mathbf{9}]$, we can lift the vector fields ζ^i and hence the flows ϕ^i on a neighborhood U of S in A, and therefore we obtain by composition an extension of f which is a stratified homeomorphism defined on the neighborhood U of S in A (and which again extends continuously on A_{k-1}). Because such an extension is not on the whole of A we call theorem 2 of "weak extension".

The weak extension theorem may be improved in order to construct extensions which are stratified homeomorphisms, isotopic to the identity, of the whole stratified space \mathcal{X} ("strong extension"). This occurs for example in theorem 2 when A_{k-1} is empty.

In a more general case this occurs if instead of a diffeomorphism $f: S \to S$ of $S = \bigcup_{\dim X=k} X$ we consider a homeomorphism $f = \bigcup_j f_{X_j}$, union of diffeomorphisms $f_{X_j} \in Diff_0^1(X_j, X_j)$, defined on a collection of strata $\{X_j\}_j$ of various dimensions provided that all X_j are compact. This is the content of theorem 3.

Such stratified extension theorems can be used [17] to show a transversality theorem (by isotopy) for substratified spaces of a stratified space, allowing us to develop geometric homology and cohomology theories in which the ambient space \mathcal{X} , its cycles and cocycles are abstract stratified sets or Bekka (c)-regular stratifications (cf. [16] chapter IV), analogous to the geometric theories of Goresky [6].

We conclude the paper by Remark 5 in which we conjecture a possible interesting improvement of McDuff's results (theorem 1 and Corollary 2, [14]), using which one would obtain a global and stronger extension theorem for maps between stratified spaces.

I thank D. Trotman for many helpful discussions while writing this paper.

2. The image of the exponential map Exp^r generates $Diff_0^r(S, S)$.

Let S = intM be a C^r -manifold diffeomorphic to the interior intM of a compact C^r -manifold M with boundary.

Since $S = intM = M - \partial M$ with M compact, the simplicity of $Diff_0^r(S, S)$ fails to be true, but, in this case, all normal subgroups of $Diff_0^r(S, S)$ are completely classified by D. McDuff [14] and are in bijective correspondence with the lattice of subsets of $\{1, \ldots, k\}$ where k is the number of the connected components N_1, \ldots, N_k of the boundary ∂M of M.

Thanks to the results of McDuff (Theorem 1 and Corollary 1.3), we will show that for such a manifold S, the diffeomorphisms which are images of the exponential map generate $Diff_0^r(S, S)$.

Let us fix $r \ge 1$, $r \ne \dim S + 1$, and denote by Exp^r the exponential map of S

$$Exp^r : \Gamma_0^r(S) \to Diff_0^r(S,S)$$
, $Exp^r(\zeta) = \phi_1$

defined on the set $\Gamma_0^r(S)$ of all C^r -vector fields ζ of S admitting a global flow $\phi : S \times \mathbb{R} \to S$ (denoted also by $\phi = \{\phi_t : S \to S\}_{t \in \mathbb{R}}$) which associates to each ζ the diffeomorphism $\phi_1 : S \to S$ at time t = 1.

Obviously every image $\phi_1 = Exp^r(\zeta)$ is in $Diff_0^r(S, S)$, i.e. lies in the connected component of 1_S and moreover for every (other) $t \in \mathbb{R}$, $\phi_t \in Diff_0^r(S, S)$, since $\phi_t = \psi_1 = Exp^r(\eta)$ is the exponential of the vector field $\eta = t \cdot \zeta$. ONE PARAMETER GROUPS AND EXTENSION OF STRATIFIED HOMEOMORPHISMS

On the other hand, denoting by $Exp^r(S) = \langle Exp^r(\Gamma_0^r(S)) \rangle$ the subgroup of $Diff_0^r(S, S)$ generated by the image of the exponential map, with the same (well-known) proof as in the compact case, we immediately have that :

REMARK 1. $Exp^r(S)$ is a normal subgroup of $Diff_0^r(S,S)$. \Box

THEOREM 1. If S = intM is a C^r -manifold (diffeomorphic to the) interior of a compact C^r -manifold M with boundary, then :

$$Exp^{r}(S) = Diff_{0}^{r}(S, S).$$

Proof. Let us write $S = M - \partial M$ with M a compact manifold with boundary. Then, the boundary ∂M of M is compact too and has a finite number of connected components, namely N_1, \ldots, N_k , i.e. : $\partial M = \bigsqcup_{j=1}^k N_j$ (where \sqcup means "disjoint union").

Using the same notations as in [14], we let $K = \{1, ..., k\}$, and for every $j \in K$,

$$G_j = \left\{ g \in Diff_0^r(S,S) \mid g = id \text{ in a neighborhood of } N_j \right\}$$

and for every subset $J \subseteq K$ (possibly empty) write

$$G_J = \left\{ g \in Diff_0^r(S,S) \mid g = id \text{ in a neighborhood of } \bigcup_{j \in J} N_j \right\} = \bigcap_{j \in J} G_j.$$

It is immediate to verify that G_J is a normal subgroup of $Diff_0^r(S, S)$ and that for every $I, J \subseteq K$ we have moreover : " $I \subseteq J \iff G_J \subseteq G_I$ ".

Therefore we obtain a lattice of normal subgroups $(\{G_J\}_{J\subseteq K}, \supseteq)$, corresponding to the lattice $(\{J\}_{J\subseteq K}, \subseteq)$ of subsets of K, and admitting the subgroup G_K of all diffeomorphisms with compact support in S as minimum element and the subgroup $G_{\emptyset} = Diff_0^r(S, S)$ as maximum element.

McDuff shows (Theorem 1) that "E is a normal subgroup of $Diff_0^r(S, S)$ if and only if there exists a unique subset $J \subseteq K$ such that $G_J \supseteq E \supseteq [G_J, G_J]$ (where [,] denotes the subgroup of the commutators)".

By considering $Exp^{r}(S)$, which is a normal subgroup (remark 1), we deduce that there exists a unique subset J_0 of K such that

$$G_{J_0} \supseteq Exp^r(S) \supseteq [G_{J_0}, G_{J_0}].$$

On the other hand it is not difficult to verify that $G_i \not\supseteq Exp^r(S)$ for every $i \in K$.

In fact, for each i = 1, ..., k let us consider a non-zero vector field $\zeta_{N_i}^i$ on N_i admitting a global flow ϕ^i and lift it along a collar $C_i \equiv N_i \times [0, 1]$ (where N_i is identified to $N_i \times 0$). Let us consider then the vector field ζ^i defined on S by the formula:

$$\zeta^{i}(y) = \begin{cases} g(s) \cdot \zeta^{i}_{N_{i}}(x) & \text{if } y = (x, s) \in C_{i} = N_{i} \times]0, 1] \\ 0 & \text{if } y \in S - N_{i} \end{cases}$$

where $g \in C^r([0,1])$ is a smooth decreasing map verifying g(0) = 1 and $g^{(n)}(1) = 0$ $\forall n = 0, \ldots, r$ (i.e. g vanishes in s = 1 together all its derivatives).

Obviously, every vector field ζ^i admits again a global flow Φ^i (given on C_i by $\Phi^i((x,s),t) = \phi^i(x,g(s)t)$) and hence the diffeomorphism at time t = 1, $\Phi_1^i = Exp^r(\zeta^i)$

lies by definition in $Exp^r(S)$. But on the other hand since $\zeta_{N_i} \neq 0$ then $\phi^i_{1|N_i} \neq 1_{N_i}$ and so $\Phi^i_1 \notin G_i$.

Finally since for every $i \in K$, $G_i \not\supseteq Exp^r(S)$, we deduce that the only possible G_{J_0} which can contain $Exp^r(S)$ corresponds to the subset $J_0 = \emptyset$ and hence $G_{J_0} = G_{\emptyset} = Diff_0^r(S, S)$.

We have then,

$$Diff_0^r(S,S) \supseteq Exp^r(S) \supseteq [Diff_0^r(S,S), Diff_0^r(S,S)],$$

which concludes the proof since $Diff_0^r(S, S)$ is a perfect group ([14], Corollary 1.3).

3. Extension of stratified homeomorphisms.

All manifolds and diffeomorphisms in this section are considered of class C^1 , similarly smooth will mean C^1 and thus we will write simply $Diff_0$ and Exp respectively for $Diff_0^1$ and Exp^1 .

Theorem 1 above may be used for a stratified space $\mathcal{X} = (A, \Sigma)$ in order to obtain some theorems of extension of stratified maps defined on some strata of \mathcal{X} .

DEFINITION 1. We recall that a *stratification* of a topological space A is a locally finite partition Σ of A into C^1 connected manifolds (called the *strata* of A) which satisfy the *frontier condition* : if X and Y are strata such that X intersects the closure of Y, then X is contained in the closure of Y. We write then X < Y and denoting by $\partial Y = \overline{Y} - Y$ we have $\overline{Y} = Y \sqcup (\sqcup_{X < Y} X)$ and $\partial Y = \sqcup_{X < Y} X$, [8] (recall that $\sqcup =$ disjoint union).

Under such hypotheses the pair $\mathcal{X} = (A, \Sigma)$ is called a *stratified space* with *support* A and stratification Σ . The union of the strata of dimension $\leq k$ is called the *k*-skeleton, denoted by \mathcal{X}_k or A_k .

Extra regularity conditions may then be imposed on the stratification Σ , such as to be an *abstract stratified set* in the sense of Mather [8, 9] when A is not necessarily embedded in a manifold, or, when A is a subset of a C^1 manifold, to satisfy conditions (a) or (b) of Whitney [21, 23], or (c) of Bekka [2] or, when A is a subset of a C^2 manifold, to satisfy conditions (w) of Kuo-Verdier [7, 22], or (L) of Mostowski [18].

The stratified extension theorems of this section will be done first for X an abstract stratified set, then we show that the proofs work again for all types of regular stratified spaces listed above.

DEFINITION 2. Let $\mathcal{X} = (A, \Sigma)$ be a stratified space.

A family $\mathcal{F} = \{(\pi_X, \rho_X, T_X)\}_{X \in \Sigma}$ is called a system of control data for \mathcal{X} if for each stratum X of \mathcal{X} we have that:

1) T_X is a neighbourhood of X in A (called *tubular neighbourhood of X*);

- 2) $\pi_X : T_X \to X$ is a continuous retraction of T_X onto X (called *projection on* X);
- 3) $\rho_X : T_X \to [0, \infty[$ is a continuous function such that $X = \rho_X^{-1}(0)$ (called the distance function from X)

and, furthermore, for every pair of adjacent strata X < Y, by considering the restriction maps $\pi_{XY} = \pi_{X|T_{XY}}$ and $\rho_{XY} = \rho_{X|T_{XY}}$, to the subset $T_{XY} = T_X \cap Y$, we have that :

- 5) the map $(\pi_{XY}, \rho_{XY}) : T_{XY} \to X \times]0, \infty[$ is a smooth submersion (it follows in particular that dim $X < \dim Y$);
- 6) for every stratum Z of X such that Z > Y > X and for every $z \in T_{YZ} \cap T_{XZ}$ the following *control conditions* are satisfied :

i) $\pi_{XY}\pi_{YZ}(z) = \pi_{XZ}(z)$ (called the π -control condition)

ii) $\rho_{XY}\pi_{YZ}(z) = \rho_{XZ}(z)$ (called the ρ -control condition).

In what follows we will pose $T_X(\epsilon) = \rho_X^{-1}([0, \epsilon[), \forall \epsilon \ge 0, \text{ and without loss of generality} will assume <math>T_X = T_X(1)$ [5, 8].

If A is Hausdorff, locally compact and admits a countable basis for its topology, the pair $(\mathcal{X}, \mathcal{F})$ is called an *abstract stratified set*. Since one usually works with a unique system of control data of \mathcal{X} , in what follows we will omit \mathcal{F} .

If \mathcal{X} is an abstract stratified set, then A is metrizable and the tubular neighbourhoods $\{T_X\}_{X\in\Sigma}$ may (and will always) be chosen such that: " $T_{XY} \neq \emptyset$ if and only if X < Y or X > Y or X = Y" (see [8] page 41 and following).

Notice also that the notion of system of control data of X, introduced by Mather in [8], is a fundamental tool allowing one to obtain a good (i.e. *controlled* cf. [5, 8]) stratified lifting ζ_{T_X} on a tubular neighbourhood T_X of every vector field ζ_X given on a stratum X. Such a lifting ζ_{T_X} admits a global flow $\phi_{T_X} : T_X \times \mathbb{R} \to T_X$ (when ζ_X admits it) which is furthermore a continuous map.

DEFINITION 3. A stratified map $f : \mathcal{Y} \to \mathcal{X}$ between two stratified spaces $\mathcal{Y} = (B, \Sigma_{\mathcal{Y}})$ and $\mathcal{X} = (A, \Sigma)$ is a continuous map $f : B \to A$ which sends each stratum R of \mathcal{Y} into a unique stratum S of \mathcal{X} , such that the restriction $f_R : R \to S$ is smooth. We call such a map f a stratified homeomorphism if f is a global homeomorphism and each f_R is a diffeomorphism.

THEOREM 2 (OF WEAK STRATIFIED EXTENSION). Let $X = (A, \Sigma)$ be a compact abstract stratified set, A_k its k-skeleton and $S = A_k - A_{k-1}$ the union of all its k-strata.

Every homeomorphism $f : A_k \to A_k$, whose restriction f_S lies in $Diff_0(S, S)$, may be extended to a stratified homeomorphism $\tilde{f} : U \cup \partial S \to V \cup \partial S$ where U and V are two neighbourhoods of S in A.

Proof. Since A is compact then so is every closed subset, and in particular the union A_k of all its strata of dimension $\leq k$ [8, 9].

Let us write $\{X_j\}_j$ for the family of the strata of dimension k of X. Then $S = A_{k+1} - A_k = \bigsqcup_j X_j$ and $\partial S = \overline{S} - S = \bigcup_j \partial X_j$.

Since by the frontier condition, every stratum X of X verifies $\overline{X} = X \sqcup (\sqcup_{R < X} R)$ $(\sqcup_{R < X} R = \partial X)$, then for every X_j one and only one of two following cases occurs :

i) there exist no strata $R < X_j$, hence $\overline{X_j} - X_j = \emptyset$ and X_j is a compact manifold (X is then called of maximal depth).

ii) there exists a stratum $R < X_j$, hence $\overline{X_j} - X_j \neq \emptyset$, X_j is non compact, but it is diffeomorphic to the interior of a compact manifold with boundary [19].

By the known results if X_j is compact (see introduction), and by theorem 1 if X_j is non compact, we have in both cases that $Diff_0(X_j, X_j) = Exp(X_i) \forall j$. On the other hand because $S = \bigsqcup_j X_j$ is a disjoint union and each diffeomorphism $f \in Diff_0(S, S)$, being isotopic to the identity, must fix the connected components S (i.e. $f(X_j) = X_j$), then we also have $Diff_0(S, S) = Exp(S)$.

Let us fix now a map $f: A_k \to A_k$ as in the statement of the theorem.

Because $Diff_0(S, S) = Exp(S)$ and since the restriction f_S lies in $Diff_0(S, S)$, we can rewrite f_S by

 $f_S = \phi_1^1 \circ \cdots \circ \phi_1^s$ with $\phi_1^i = Exp(\zeta^i)$,

where for all $i = 1, ..., s, \zeta^i$ is a vector field on S admitting a global flow $\phi^i : S \times \mathbb{R} \to S$.

Now we want to extend $f_S : S \to S$ (and f) by lifting the vector fields ζ^i of the flows ϕ_t^i , and this will be possible by considering a controlled lifting of every ζ^i [5, 8].

For every i = 1, ..., s and for every connected component X of S, i.e. for every kstratum (above noted by X_j) of A, let us consider the restriction ζ_X^i of ζ^i on X and $\zeta_{T_X}^i = \{\zeta_{T_{XY}}^i\}_{Y \ge X}$ (with $T_{XY} = T_X \cap Y$) a stratified controlled lifting of ζ_X^i on a stratified tubular neighborhood $T_X = \bigcup_{Y \ge X} T_{XY}$ of a fixed system of control data $\mathcal{F} = \{(\pi_Z, \rho_Z, T_Z)\}_{Z \in \Sigma}$ of \mathcal{X} [8].

Because every vector field ζ_X^i has a global flow ϕ_X^i (restriction of ϕ^i), then thanks to the hypotheses of control, the same property holds for the lifting $\zeta_{T_X}^i$ and hence its flow $\Phi_{T_X}^i: T_X \times \mathbb{R} \to T_X$ is a stratified flow extending continuously ϕ_X^i [5, 8].

By considering then the tubular neighborhood $T_S = \bigcup_{\dim X = k} T_X$ of S in A and, for every $i = 1, \ldots, r$ the stratified one parameter group $\phi_{T_S}^i = \bigcup_{\dim X = k} \phi_{T_X}^i : T_S \times \mathbb{R} \to T_S$ we obtain that the map composition of the "sections at time t = 1" of the $\phi_{T_S}^i$, i.e. :

$$h = [\phi_{T_S}^1]_1 \circ \cdots \circ [\phi_{T_S}^s]_1 \quad : \quad T_S \longrightarrow T_S ,$$

is a stratified homeomorphism of the tubular neighborhood T_S , a diffeomorphism restricted to each stratum of T_S , and extends $f: S \to S$.

The proof follows, by applying to h and h^{-1} the lemma below.

LEMMA. Let $T_S \subseteq A$ be a stratified tubular neighborhood of S in $\mathcal{X} = (A, \Sigma)$ and let $h: T_S \to T_S$ be a continuous map whose restriction $h_S: S \to S$ to S extends continuously on $\partial S = \overline{S} - S$ by a continuous map $h_{\partial S}: \partial S \to \partial S$.

There exists a neighborhood U of S in A (contained in T_S) such that the map $h_U \cup h_{\partial S}$: $U \cup \partial S \to T_S \cup \partial S$ is continuous.

Proof. The support A of the abstract stratified set \mathcal{X} is metrizable so we can fix a metric $d(\ ,\)$ on A. Denote moreover by \mathcal{F} the system of control data of \mathcal{X} and by $\{\pi_X: T_X \to X\}_{X \in \Sigma}$ its family of projections.

Because $S = A_k - A_{k-1} = \bigcup_{\dim X = k} X$ then the stratified tubular neighborhood T_S of S is a disjoint union $T_S = \bigsqcup_{\dim X = k} T_X$ where each T_X is the stratified tubular neighborhood the k-stratum X and where the elements of the family $\{T_X\}_{\dim X = k}$ are pairwise disjoint. We can consider then a global projection map $\pi_S = \bigcup_{\dim X = k} \pi_X : T_S \to S$ of T_S on S and we will denote, for every $y \in T_S$, $y' = \pi_S(y)$.

Let us consider the following subset of T_S :

$$U = \left\{ y \in T_S \mid d(y, y') < \frac{1}{2}d(y', \partial S) \text{ and } d(h(y), h(y')) < d(y', \partial S) \right\}.$$

Since $\partial S = \overline{S} - S$ is disjoint from S and T_S , for every $y \in T_S$ we have $d(y', \partial S) > 0$ and so U is clearly not empty and, by continuity of h, is an open neighborhood of S in A.

Since the restriction $h_S : S \to S$ extends continuously on ∂S by the continuous map $h_{\partial S}$, then for every fixed $x \in \partial S$ and $\epsilon > 0$ there exists a $\delta \in [0, \frac{\epsilon}{2}[$ such that $d(h(z), h(x)) < \frac{\epsilon}{2}$, $\forall z \in B(x, \delta) \cap S$.

If now $y \in U \cap B(x, \frac{\delta}{2})$ by definition of U we immediately have

 $d(y,y') < \frac{1}{2}d(y',\partial S) < \frac{1}{2}d(y',x) \quad \text{and} \quad d(y',x) < d(y',y) + d(y,x) < \frac{1}{2}d(y',x) + d(y,x)$

by which

$$d(y',x) < 2d(y,x) < \delta \,, \qquad \text{thus} \quad y' \in B(x,\delta) \cap S \,, \qquad \text{and hence} \quad d(h(y'),h(x)) < \frac{\epsilon}{2} \,.$$

On the other hand, again by definition of U we also have

$$d((h(y), h(y')) < d(y', \partial S) < d(y', x) < \delta < \frac{\epsilon}{2}$$

which allows one to conclude that $\forall y \in B(x, \frac{\delta}{2})$ we have :

$$d(h(y), h(x)) < d((h(y), h(y')) + d(h(y'), h(x)) < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$
. \Box

THEOREM 3. Let $X = (A, \Sigma)$ be an abstract stratified set. If $\{X_j\}_j$ is a family of compact strata of X, then every homeomorphism $f : \bigsqcup_j X_j \to \bigsqcup_j X_j$, whose restriction f_{X_j} lies in $Diff_0(X_j, X_j)$, extends to a stratified homeomorphism $\tilde{f} : A \to A$, isotopic to the identity, on the whole of A.

Proof. Let us write every restriction $f_{X_j} \in Diff_0(X_j, X_j)$ as

$$f_{X_j} = [\phi_{X_j}^1]_1 \circ \dots \circ [\phi_{X_j}^{r_j}]_1$$
 where $[\phi_{X_j}^r]_1 = Exp(\zeta_{X_j}^r), \quad \forall r = 1, \dots, r_j$

and $\zeta_{X_i}^r$ is a smooth vector field on X_j (for all $r = 1, \ldots, r_j$).

Then by the properties of abstract stratified sets [8, 9] for every $\zeta_{X_j}^r$ there exists a stratified (controlled) vector field $\zeta_{T_{X_j}}^r$ a lifting of $\zeta_{X_j}^r$ on the tubular neighbourhood T_{X_j} of X_j . Such a lifted vector field admits (thanks to the control conditions) a stratified global flow $\phi_{T_{X_j}}^r$ on T_{X_j} [8] which is moreover continuous on T_{X_j} and extends $\phi_{X_j}^r$.

Let us modify the modulus (but only the modulus) of $\zeta_{T_{X_j}}^r$ in T_{X_j} by a smooth and decreasing function $g: [0,1] \to [0,1]$ such that g(s) = 1 if $s \leq \frac{1}{2}$ and g(s) = 0 if $s \geq 1$, in such a way to obtain the new vector field $\tilde{\zeta}_{T_{X_j}}^r(x) = g(\rho_{X_j}(x))\zeta_{T_{X_j}}^r(x)$ admitting again a global flow (namely $\tilde{\phi}_{T_{X_j}}^r$) and which moreover extends smoothly by zero on $A - T_{X_j}(1)$.

Writing $\tilde{\zeta}_j^r$ for such an extended vector field and $\tilde{\phi}_j^r : A \times \mathbb{R} \to A$ for its flow (which is obviously the identity off $T_{X_j}(1) \times \mathbb{R}$), we obtain then for every j the stratified homeomorphism of A

$$\tilde{f}_j = [\tilde{\phi}_j^1]_1 \circ \dots \circ [\tilde{\phi}_j^{r_j}]_1 : A \longrightarrow A$$

extending the diffeomorphism f_{X_i} and which is the identity on $A - T_{X_i}(1)$.

Finally by recalling that the tubular neighbourhood $\{T_{X_j}\}_j$ may be chosen pairwise disjoint we find the claimed extension $\tilde{f}: A \to A$, of $f: \sqcup_j X_j \to \sqcup_j X_j$, on the whole of A, by gluing together all lifting \tilde{f}_j i.e., by setting :

$$\tilde{f}(x) = \begin{cases} \tilde{f}_j(x) & \text{if } x \in \sqcup_j T_{X_j}(1); \\ \\ x & \text{if } x \in A - \sqcup_j T_{X_j}(1). \end{cases}$$

REMARK 2. The hypotheses of theorem 3 are verified for example when, as in theorem 2, f is given on a k-skeleton A_k of \mathcal{X} and $A_{k-1} = \emptyset$ or again when all strata X_j on which f is defined are of maximal depth in \mathcal{X} (see i) in theorem 2).

REMARK 3. Whitney stratifications and Bekka (c)-regular stratifications always admit a system of control data [8] and [2], so these latter may be structured as abstract stratified sets. Hence the extension theorems 2 and 3 and Remark 2 hold for (b)- and (c)-regular stratifications.

PROPOSITION. Theorems 2 and 3 hold again by considering for $X = (A, \Sigma)$ a (w)-regular stratification (instead of an abstract stratified set).

Proof. Notice that for \mathcal{X} a (w)-regular stratification, the lifting of vector fields giving stratified continuous flows may be again obtained [22] (without using systems of control

data). The proofs may then be obtained by slight modification of the proofs of theorems 2 and 3 in which we consider some arbitrary families of stratified tubular neighbourhoods $\{T_X\}_X$, of smooth projections $\{\pi_X : T_X \to X\}_X$, and distance functions $\{\rho_X : T_X \to [0, \infty]\}_X$ not necessarily caming from a system of control data. \Box

REMARK 4. Because Lipschitz regularity of a stratification implies (w)-regularity [18] then the extension theorems 2 and 3 hold again for Lipschitz stratifications.

REMARK 5. With the same notations as in the proof of the weak extension theorem, suppose that $f_{|A_{k-1}} = 1_{A_{k-1}}$ is the identity map. As one can see through easy examples, it is not true in general that $f = \phi_1^1 \circ \cdots \circ \phi_1^s$ and $\lim_{x \to \partial S} f(x) = 1_{\partial S}(x)$ imply that for every $i = 1, \ldots, s$ the vector field ζ^i of ϕ_t^i tends to the zero vector field on $\partial S = \overline{S} - S \subseteq A_{k-1}$. However, it would seem reasonable to think that in the case where the diffeomorphism $f \in Diff_0(S, S)$ lies in a sufficiently small neighborhood of 1_S , one could improve the choice of all ϕ^i to have that their vector fields ζ^i verify the continuity $\lim_{x\to\partial S} \zeta^i(x) = 0$ $(\forall i = 1, \ldots, s)$ on ∂S .

In this case, an extension by 0 on the remaining part $A - T_S$ may be obtained for a vector field $\tilde{\zeta}^i$, which is a perturbation of ζ^i (slightly more complicated than in theorem 3), so that the *weak stratified extension theorem* would be improved giving a (global) strong stratified extension theorem of the diffeomorphism $f: S \to S$ on the whole stratified space A. On the other hand, we have to remark that the possibility of deducing that for all i, $\lim_{x\to\partial S} \zeta^i(x) = 0$, depends on an extension of McDuff's results (theorem 1 and corollary 1.3 [14]), which seems to us non trivial.

REFERENCES

[1] K. Bekka, Sur les propriétés topologiques et métriques des espaces stratifiés, thesis, University of Paris-Sud, Orsay,1988.

[2] K. Bekka, *C-régularité et trivialité topologique*, Singularity theory and its applications, Warwick 1989, Part I, Lecture Notes in Math. 1462 (Springer, Berlin 1991), 42-62.

[3] D.B.A. Epstein, *The simplicity of certain groups of homeomorphisms*, Comp. Math., 22 (1970), 165-173.

[4] D.B.A. Epstein, Commutators of C^{∞} -diffeomorphisms. Appendix to "A curious remark concerning the geometric transfer map" by John N. Mather, Comm. Math. Helv. 59 (1984),111-122.

[5] C.G. Gibson, K. Wirthmüller, A.A. du Plessis, E.J.N. Looijenga, *Topological stability of smooth mappings*, Lecture Notes in Math. 552, Springer Verlag, (1976).

[6] M. Goresky, Whitney stratified chains and cochains, Trans. Amer. Math. Soc. 267 (1981), 175-196.

[7] T.-C. Kuo, *The Ratio Test for Analytic Whitney Stratifications*, Proc. of Liverpool Singularities Symposium I, Lecture Notes in Math. **192**, Springer (1971), 141-149.

[8] J. Mather, *Notes on topological stability*, Mimeographed notes, Harvard University, (1970).

[9] J. Mather, *Stratifications and mappings*, Dynamical Systems (M. Peixoto, Editor), Academic Press, New York, 1971, 195-223.

[10] J. Mather, Simplicity of certain groups of diffeomorphisms, Bull. A.M.S. 80 (1974), 271-273.

[11] J. Mather, Commutators of diffeomorphisms I, Comm. Math. Helv. 49 (1974), 512-528.

ONE PARAMETER GROUPS AND EXTENSION OF STRATIFIED HOMEOMORPHISMS

[12] J. Mather, *Commutators of diffeomorphisms II*, Comm. Math. Helv. 50 (1975), 33-40.

[13] J. Mather, A curious remark concerning the geometric transfer map, Comm. Math. Helv., 59 (1984), 86-110.

[14] D. McDuff, The Lattice of Normal Subgroups of the Group of Diffeomorphisms or Homeomorphisms of an Open Manifold., J. London Math. Soc. (2), 18 (1978) 353-364.

[15] J. Milnor, *Remarks on Infinite-dimensional Lie groups*, Relativity, Groups and Topology II. Les Houches Session XL, 1983. B.S. de Witt & R. Stora Editors. North-Holland. Amsterdam (1984).

[16] C. Murolo, Semidifférentiabilité, Transversalité et Homologie de Stratifications Régulières, thesis, University of Provence, 1997.

[17], C. Murolo, A. A. Du Plessis and D. J. A. Trotman, *Stratified transversality by isotopy*, to appear.

[18] A. Parusiński, *Lipschitz stratifications*, Global Analysis in Modern Mathematics (K. Uhlenbeck, ed.), Proceedings of a Symposium in Honor of Richard Palais' Sixtieth Birthday, Publish or Perish, Houston, 1993, 73-91.

[19] R. Thom, Ensembles et morphismes stratifiés, Bull.A.M.S. 75 (1969), 240-284.

[20] W. Thurston, Foliations and groups of diffeomorphisms, Bull.A.M.S. 80 (1974), 304-307.

[21] D.J.A. Trotman, *Comparing regularity conditions on stratifications*, Singularities, Arcata 1981, Proc. Sympos. Pure Math. 40, (A.M.S.) (1983), 575-586.

[22] J.L. Verdier, *Stratifications de Whitney et théorème de Bertini-Sard*, Inventiones Math. 36 (1976), 295-312.

[23] H. Whitney, *Local properties of analytic varieties*, Differential and Combinatorial Topology, Princeton Univ. Press, (1965), 205-244.

Claudio Murolo

Università di Napoli - Dipartimento di Matematica ed Applicazioni Via Claudio 21 - 80125 - Napoli - Italy.

Email : murolo@cds.unina.it

Université de Provence - Centre de Mathématiques et Informatique 39, rue Joliot-Curie - 13453 Marseille Cedex 13, France. Email : murolo@gyptis.univ-mrs.fr